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Abstract

The stochastic block model and its variants have been a popular tool in analyzing
large network data with community structures. Model selection for these network
models, such as determining the number of communities, has been a challenging
statistical inference task. In this paper we develop an efficient cross-validation approach
to determine the number of communities, as well as to choose between the regular
stochastic block model and the degree corrected block model. Our method, called
network cross-validation, is based on a block-wise edge splitting technique, combined
with an integrated step of community recovery using sub-blocks of the adjacency matrix.
The solid performance of our method is supported by theoretical analysis of the sub-
block parameter estimation, and is demonstrated in extensive simulations and a data
example. Extensions to more general network models are also discussed.

1 Introduction

In the last few decades, the amount of network data and the need for relevant statistical
inference tools are growing at a rapid pace. In network data analysis, the observed data is a
graph over n nodes, where each node represents an individual in a population, and an edge
between two nodes represents the presence of a certain kind of relationship or interaction
between the individuals. One of the main research topics in network data analysis is to
identify hidden communities from a single observed network. Roughly speaking, network
community refers to the phenomenon that individuals close to each other are more likely to
connect, and hence the edge density varies from within coherent subpopulations to between
subpopulations (Newman & Girvan, 2004; Newman, 2006). The stochastic block model
(Holland et al., 1983) and its variants such as the degree corrected block model (Karrer
& Newman, 2011) are powerful and mathematically elegant tools to model large networks
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with community structures, and have been proved useful in many scientific areas such as
social science, biology, and information science (Faust & Wasserman, 1992; Kemp et al.,
2006; Bickel & Chen, 2009).

The community recovery problem for stochastic block models has been the focus of much
research effort in the past decade, in several areas including statistics (Bickel & Chen,
2009; Zhao et al., 2012; Jin, 2012; Fishkind et al., 2013; Lei & Rinaldo, 2013), machine
learning (McSherry, 2001; Chen et al., 2012; Chaudhuri et al., 2012; Anandkumar et al.,
2014), statistical physics (Decelle et al., 2011; Krzakala et al., 2013), and probability theory
(Massoulie, 2013; Mossel et al., 2013; Abbe et al., 2014). These methods are based on a
wide range of different tools such as maximum likelihood, convex optimization, spectral
methods, and belief propagation, etc. However, almost all of these methods require K, the
total number of communities, to be known in advance.

Unlike the community recovery problem, there has been much less development on determin-
ing the number of communities. For stochastic block models, the null model corresponding
to K = 1 is an Erdős-Rényi graph. Zhao et al. (2011) propose to sequentially extract
one significant community from the remaining of the network, and they approximate the
null distribution of their optimizing statistic by bootstrapping from an Erdős-Rényi graph.
Bickel & Sarkar (2013) propose to test K = 1 vs K > 1 at each step of a recursive bipartition
algorithm. They derive the asymptotic null distribution of the largest eigenvalue of the
suitably scaled and centered adjacency matrix. But the convergence rate is slow and an
empirical tuning is needed in practice. Also it requires a diagonal dominant condition when
examining the power. Moreover, these sequential or recursive testing procedures only work
for certain types of community structures. To directly test K = k vs K > k remains an
open problem due to the difficulty of approximating the null distribution.

In standard model-based clustering, data points are assumed to be independently drawn
from a common underlying mixture distribution, and it is often possible to determine
the number of mixture components by modifying the AIC- and BIC-type model selection
criteria. For stochastic block models, it is hard to determine the model complexity using
suitable quadratic approximations of the log likelihood at the empirical maximum, which is
a key step in deriving AIC and BIC. Another popular method in general model selection
problems is cross-validation. In the traditional formulation of stochastic block models, each
node i (1 ≤ i ≤ n) is assigned a community membership gi ∈ {1, ...,K} independently with
probability P (gi = k) = πk for 1 ≤ i ≤ n, 1 ≤ k ≤ K. Therefore, a stochastic block model
is parameterized by the membership distribution π = (π1, ..., πK) and the community-wise
edge probability matrix B ∈ [0, 1]K×K . Following the traditional parameterization, a
straightforward cross-validation method for the stochastic block model has been considered
before, where one estimates π and B on the adjacency matrix confined on a training
subset of nodes, and evaluates the fitting on the adjacency matrix confined on the testing
subset of nodes. This approach is rarely used in practice, due to several drawbacks. First,
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calculating the full likelihood in presence of a missing membership vector g is computationally
demanding. Second, it introduces unnecessary randomness in the validation step by treating
the node memberships as random variables. Third, it does not use the observed edges
between the training and testing nodes, which contain useful information for inference. As
we will see below, all these problems can be resolved by a novel network cross-validation
(NCV) approach proposed in this paper.

The NCV method developed in this paper is based on a block-wise edge splitting technique,
combined with the idea of integrating community recovery into model selection. Given
n1 < n, consider a block-splitting of the adjacency matrix

A =

(
A(11) A(12)

A(21) A(22)

)
, (1)

where A(11) is an n1×n1 principal submatrix chosen at random. Our method first estimates
the community-wise edge probability B and a full membership vector g = (gi : 1 ≤ i ≤ n)
from the n1 × n rectangular matrix A(1) = (A(11), A(12)). Many standard procedures
designed for the full adjacency matrix can be extended to this case, such as likelihood
based methods and spectral methods. Our empirical and theoretical results are based on
spectral clustering. After obtaining the estimates (ĝ, B̂) from the rectangular matrix, we
can assess the goodness-of-fit of the estimated parameter by validating on the testing set of
edges contained in A(22). A natural choice of the predictive loss function ` is the negative
log-likelihood `(x, p) = −x log p− (1− x) log(1− p).

A key innovation of the proposed block-wise edge splitting techniques is that we train the
model on a rectangular submatrix that carries the full structural information of the network.
Therefore, the memberships for n nodes and the community-wise edge probability matrix
B can be consistently estimated from the training set (Theorem 1 in Section 2). This
distinguishes the proposed NCV method from the traditional cross-validation perspective
where the splitting is on nodes. The proposed NCV approach takes advantage of the
conditional independence between the two subsets of edges given the community partition
in a stochastic block model. It reflects a significant difference between the traditional
parameterization of the stochastic block model that treats the node memberships as random
variables, and the conditional parameterization that treats the memberships as parameters.
The traditional parameterization can model networks of arbitrary size and has a motivation
from exchangeable random graphs (Bickel & Chen, 2009). However, given an observed
realization of the stochastic block model, the useful information for statistical inference
is largely contained in the randomness of edge formulation, and it is usually beneficial to
use conditional inference by treating the memberships as fixed parameters. In particular,
when community recovery is of interest, these two parameterizations do not exhibit much
difference, but it is more natural to consider the memberships as fixed parameters to be
estimated. For example, the conditional parameterization is used in the profile likelihood
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method proposed in Bickel & Chen (2009), and similarly in spectral clustering (Lei &
Rinaldo, 2013).

The NCV method can be applied to select the best model from a general collection of
candidate models, which do not need to be nested or hierarchical. For example, one can
use NCV to choose between the regular stochastic block model and the degree corrected
block model, with simultaneous choice of number of communities. Moreover, the block-wise
edge splitting idea behind NCV can be further generalized to other network models with
conditional edge independence. These extensions are described in Section 3 and Section 5,
and illustrated in an application to a political blog data in Section 4, where the NCV
method chooses the degree corrected block model with two communities, matching pervious
findings in the literature.

So far there is no widely accepted approach in choosing the number of communities
in the network literature, and we believe the proposed NCV method is of substantial
practical interest. In Section 4, we demonstrate the effectiveness of our method via
extensive simulations, where different types of network community structures are investigated.
The proposed NCV method is tuning free except the number of folds. Throughout the
paper, we use three-fold NCV, which is computationally efficient and has very satisfactory
empirical performance under moderate sample sizes. Further discussions can be found in
Section 5.

2 Network cross-validation for stochastic block models

In a stochastic block model with n nodes and K communities, the observed random graph
is often represented by a n by n symmetric binary adjacency matrix A. The community
structure is represented by a vector g ∈ {1, ...,K}n with gi being the community that node
i belongs to. Given the membership vector g, each edge Aij (i < j) is an independent
Bernoulli variable satisfying

P (Aij = 1) = 1− P (Aij = 0) = Bgigj , (2)

whereB ∈ [0, 1]K×K is a symmetric matrix representing the community-wise edge probability.
In this section we focus on the problem of estimating K, the number of communities,
from a single observed network A. Generalization to other model selection problems is
straightforward and will be discussed in later sections.

2.1 Block-wise edge splitting

Given the community membership g, the only randomness in the observed graph is the
edge formulation. Our NCV approach is based on block-wise edge splitting. Let (N1,N2)
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be a partition of the nodes, the adjacency matrix can be written in a block form as in (1),
where A(jj) is the adjacency matrix for nodes in Nj (j = 1, 2).

The splitting step puts edges in A(11) and A(12) in the training sample and A(22) the testing
sample. Such a block-wise edge splitting is neither node splitting nor simple edge splitting.
It originates from two key observations. First, the rectangular matrix A(1) = (A(11), A(12))
carries information on the community structure of the entire network. That is, we can
estimate the membership of each of the n nodes as well as the community-wise edge
probability matrix from A(1). Second, given the community membership g, these two sets
of edges in A(1) and A(22) are independent. Generalization of this block-wise edge splitting
procedure to models other than stochastic block models is feasible, as long as these two key
facts hold.

Such a block-wise edge splitting makes full use of the entire observed adjacency matrix and
provides a way to directly compare multiple values of K based on the predictive loss on the
testing sample. We summarize the key component of the NCV procedure as follows.

Algorithm 1: model evaluation using sample splitting

Input: adjacency matrix A, number of communities K, training block size n1.

1. Randomly split the adjacency matrix into (A(11), A(12);A(12), A(22)) as in (1), where
A(11) contains edges between nodes in a random subset N1 of size n1, A

(22) contains
edges between nodes in N2, the compliment of N1, and A(12) contains edges between
N1 and N2.

2. Estimate model parameters (ĝ, B̂) using the rectangular submatrixA(1) = (A(11), A(12)).

3. Output the predictive loss evaluated on A(22):

L̂(A,K) =
∑

i,j∈N2,i 6=j

`(Aij , P̂ij) ,

where ` is a loss function and P̂ij is an estimate of Pij = E(Aij).

We give further details on how to adapt this sample splitting validation method to a V-fold
network cross-validation in Section 2.4 below. In the following we discuss Steps 2 and 3 of
Algorithm 1 in further detail.

2.2 Estimating model parameters from the rectangular matrix

Algorithm 1 estimates model parameters (g,B) from the n1 × n rectangular matrix A(1) =
(A(11), A(12)). Many standard procedures designed for the full adjacency matrix can be
extended to this case, such as likelihood based methods and spectral methods. Here
we focus on spectral clustering, because it is simple to implement and the analysis is
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straightforward. This is also the method we implement in the numerical experiments
presented in Section 4.

The simple spectral clustering method first performs a singular value decomposition on A(1),
and estimates g by applying k-means clustering on the rows of the n×K matrix consisting
of the leading K right singular vectors. Once ĝ is obtained, let Nj,k be the nodes in Nj

with estimated membership k, and nj,k = |Nj,k| (j = 1, 2, 1 ≤ k ≤ K). We can estimate B
using a simple plug-in estimator:

B̂k,k′ =



∑
i∈N1,k,j∈N1,k′∪N2,k′

Aij

n1,k(n1,k′ + n2,k′)
, k 6= k′ ,

∑
i,j∈N1,k,i<j Aij +

∑
i∈N1,k,j∈N2,k

Aij

(n1,k − 1)n1,k/2 + n1,kn2,k
, k = k′ .

(3)

When K is the true number of blocks, Theorem 1 provides performance guarantee for (ĝ, B̂),
in an asymptotic sense when n increase to ∞, under the following three conditions.

(A1) B = αnB0, where αn is a scaling factor, possibly changing with n, and B0 is a K ×K
fixed symmetric matrix with full rank.

(A2) The smallest community size is at least π0n for a constant π0 ∈ (0, 1).

(A3) The training block size n1 ≥ c0n for some constant c0.

Theorem 1 (Consistency of parameter estimation). Under assumptions (A1–A3), (ĝ, B̂),
the parameters estimated from A(1) using spectral clustering followed by plug-in as described
above, satisfies
(a) if αn ≥ c log n/n for a large enough constant c, then with probability tending to one ĝ
agrees with g on all but O(α−1n ) nodes;
(b) if α−1n = o(n1/2), then B̂ = B(1 + oP (1)).

Remark 1. The proof of Theorem 1 is given in Appendix A. Part (a) establishes the
consistency of community recovery when the expected node degrees is of order log n or
higher. Lei & Rinaldo (2013) have developed the same result for simple spectral clustering
applied to the full adjacency matrix. Our consistency result does not need to assume
that the k-means step achieves the global maximum. As proved in Lei & Rinaldo (2013),
polynomial-time approximate k-means algorithms can be used and lead to essentially the
same theoretical guarantee, and the proof can be adapted to our case. The consistency for
B matrix requires the expected node degrees to grow faster than

√
n order. This condition

can be slightly weakened if other methods are used to estimate g, such as those developed
in Vu (2014) and Bickel & Chen (2009). We use simple spectral clustering throughout this
paper, but the proposed NCV method is based on a generic block-wise sample splitting
idea, which can be combined with many other community recovery algorithms.
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2.3 Validation using the testing set of edges

After estimating the parameters (ĝ, B̂) in Step 2, we can assess the goodness-of-fit by
validating on the testing set of edges.

For each edge in the testing set, Aij (i 6= j, i, j ∈ N2) is a Bernoulli random variable with
parameter Pij = Bgigj , which is approximated by P̂ij = B̂ĝiĝj . Some natural choices of the
loss function ` in Step 3 include negative log-likelihood `(x, p) = −x log p− (1−x) log(1−p),
and squared error `(x, p) = (x− p)2. In our numerical experiments, these two loss functions
give almost identical performance, so we will focus on the log-likelihood loss function.

In the validation step, if K is too small, then the fitted model cannot capture the fine
structures in the data, and will likely lead to poor predictive loss on testing data. If K is too
large, then the model overfits the training data, with noisy prediction on the testing data.
Therefore, it is natural to expect the validated predictive loss L̂(A,K) to be minimized
when K is the true number of communities.

2.4 V-fold network cross-validation

Now we formally describe the V-fold network cross-validation procedure.

Algorithm 2: V-fold network cross-validation

Input: adjacency matrix A, a set K of candidate values for K, number of folds V ≥ 2.

1. Randomly split the adjacency matrix into V × V equal sized blocks

A = (A(ij) : 1 ≤ i, j ≤ V )

similarly as in (1), where the nodes are partitioned into V equal-sized subsets Nj

(1 ≤ j ≤ V ); A(jj) contains edges between nodes in the jth random subset Nj ; and
A(ij) contains edges between Ni and Nj .

2. For each 1 ≤ j ≤ V , and each K ∈ K

(a) Estimate model parameters (ĝ(j), B̂(j)) using the rectangular submatrix obtained
by removing the rows of A in subset Nj

A(−j) = (A(il) : i 6= j, 1 ≤ i, l ≤ V ) .

(b) Calculate the predictive loss evaluated on A(jj):

L̂(j)(A,K) =
∑

u,v∈Nj ,u6=v

`(Auv, P̂
(j)
uv ) ,

where P̂
(j)
uv = B̂

(j)

ĝ
(j)
u ,ĝ

(j)
v

.
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3. Let L̂(A,K) =
∑V

j=1 L̂
(j)(A,K) and output

K̂ = arg min
K∈K

L̂(A,K) .

In our experiments we found the performance of NCV insensitive to the choice of V , and
we used V = 3 for all numerical experiments. Further discussion on the choice of V and its
difference from the regular cross-validation is given in Section 5.

3 Degree corrected block models and further extensions

3.1 Choosing K for degree corrected block models

The degree corrected block model (Karrer & Newman, 2011) is a generalization of the
stochastic block model. Given membership vector g and community-wise connectivity
matrix B, the presence of an edge between nodes i and j is represented by a Bernoulli
random variable Aij with

P (Aij = 1) = 1− P (Aij = 0) = ψiψjBgigj , (4)

where ψi > 0 represents the individual activeness of node i. Thus the degree corrected block
model is parameterized by a triplet (g,B, ψ), with identifiability constraint maxi:gi=k ψi = 1
for all k = 1, ...,K. The regular stochastic block model is a special case with ψi = 1 for all
i. Recently, efficient community recovery methods have been developed for degree corrected
block models with high accuracy under mild conditions (see, for example, Zhao et al., 2012;
Jin, 2012; Chaudhuri et al., 2012; Lei & Rinaldo, 2013). We now extend the procedure
described in Section 2 to degree corrected block models.

The framework given in Algorithm 1 is general enough to cover the degree corrected
block model. The implementation needs to be changed in Step 2 because regular spectral
clustering may not work well for degree corrected block models, and we also need to estimate
the node activeness parameter ψ. To this end, we consider a spherical spectral clustering
method.

Spherical spectral clustering:

Input: Rectangular n1 × n matrix A(1), number of communities K.

1. Let Û be the n×K matrix consisting of the top K right singular vectors of A(1).

2. Let Ũ be the matrix obtained by scaling each row of Û to unit norm.

3. Output ĝ by applying the k-median clustering algorithm to the rows of Ũ .
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The normalization step in the spherical spectral clustering algorithm decouples the effect
of node activeness ψ from the community structure. As shown in the proof of Theorem 2
below, the community information is contained in the normalized matrix Ũ , whereas the
node activeness information is contained in the row norms of Û .

The community recovery is obtained by a k-median clustering algorithm, which finds a
collection of center points to minimize the sum of `2 distance from each data point to its
nearest center, instead of the squared `2 distance as in the k-means. To be precise, given
input matrix Ũ and number of centers K, the k-median clustering solves, possibly with
approximation, the following optimization problem:

min
v1,...,vK∈RK , g∈{1,...,K}n

n∑
i=1

‖ũi − vgi‖ ,

where ũi is the ith row of Ũ . Approximate solutions within a constant factor from the global
optimum can be found using efficient algorithms (Charikar et al., 1999; Li & Svensson,
2013). Our theoretical analysis is applicable to such approximate solutions. If the matrix Û
has zero rows, one can apply the spherical clustering algorithm on the non-zero rows and
assign arbitrary membership to the zero rows. Our theoretical analysis shows that with
high probability the number of zero rows in Û is negligible under mild conditions.

To estimate the node activeness parameter ψ, let

ψ̂′i = `2 norm of the ith row of Û ,

and ψ′ = (ψ′i : 1 ≤ i ≤ n) with

ψ′i =
ψi√∑

j:gj=gi
ψ2
j

be the community-normalized version of ψ. We will show, in the proof of Theorem 2
below, that ψ̂′ is a good estimate of ψ′ under appropriate conditions. Due to the scaling
identifiability of ψ and B, having a good estimate of ψ′ is sufficient for our purpose and
one can proceed with the plug-in estimator:

B̂′k,k′ =



∑
i∈N1,k,j∈N1,k′∪N2,k′

Aij∑
i∈N1,k,j∈N1,k′∪N2,k′

ψ̂′iψ̂
′
j

, k 6= k ,

∑
i,j∈N1,k,i<j Aij +

∑
i∈N1,k,j∈N2,k

Aij∑
i,j∈N1,k,i<j ψ̂

′
iψ̂
′
j +

∑
i∈N1,k,j∈N2,k

ψ̂′iψ̂
′
j

, k = k′ .

The estimated Pij = E(Aij) to be used for validation is then

P̂ij = ψ̂′iψ̂
′
jB̂
′
ĝi,ĝj

.
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To investigate theoretical properties of these estimators, we assume that there are no overly
inactive nodes.

(A4) inf1≤i≤n ψi ≥ ψ0 for a positive constant ψ0.

Then we have the following result analogous to Theorem 1, which is also proved in Ap-
pendix A.

Theorem 2. Under (A1)–(A4), we have
(a) if αn ≥ c log n/n for a large enough constant c, then with probability tending to one ĝ
agrees with g on all but O(

√
n/αn) nodes;

(b) if α−1n = o(n1/3) then P̂ij = Pij(1 + op(1)) for all but a vanishing proportion of node
pairs.

3.2 Choosing model types and K simultaneously

The above extension to degree corrected block models allows us to compare and choose,
for a given adjacency matrix, between the regular stochastic block model and the degree
corrected block model. Sometimes it is desirable to tell if the degree heterogeneity in an
observed network can be explained by pure random fluctuation in a stochastic block model
(see, for example, Yan et al., 2014).

Our V-fold NCV can be used simultaneously to choose between the regular stochastic block
model and the degree corrected block model, and to determine the number of blocks. To
this end, one just needs to calculate the regular stochastic block model validation error
L̂sbm(A,K), and the degree corrected block model validation error L̂dcbm(A,K), for a
collection of values of K as described in Section 2.4. The best model is chosen by finding
the overall smallest cross-validation loss. We illustrate this method on simulated data and
on a political blog data in Section 4.

4 Numerical Experiments

In this section, we illustrate the performance of our proposed NCV method by three
simulations and one data example.

Simulation 1: edge sparsity and community imbalance. This simulation is designed
to investigate the performance of choosing K for stochastic block models under different
levels of edge sparsity and community size imbalance. We use the community-wise edge
probability matrix B = rB0, where the diagonal entries of B0 are 3 and off-diagonal
entries are 1. The sparsity level is controlled by r ∈ (0, 1/3). We use a sequence of
r ∈ {0.01, 0.02, 0.05, 0.1, 0.2}, so that for n = 1000 the smallest expected degree ranges from
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Figure 1: Results for Simulation 1: reporting the proportion of correct estimate
of K for stochastic block models, for K = 2, 3, 4, under various sparsity levels r ∈
{0.01, 0.02, 0.05, 0.1, 0.2}, and various sizes of the first community n1. The number of
nodes is 1000.

12 to 400. Let n1 be the size of the smallest community, and the size of each of the remaining
K − 1 communities be (n− n1)/(K − 1). We generate edges according to the stochastic
block model (2). For each combination of (r,K, n1), three-fold NCV model selection is
carried out for 50 independently drawn adjacency matrices. Figure 1 shows the proportion
of correct model selection among these 50 repetitions as functions of r for different n1 and
K = 2, 3, 4. As expected, the performance is better as r and n1 increase. In particular, for
K = 2, in the most balanced case where n1 = 500, the proposed NCV can perfectly choose
the true number of clusters even for the sparsest case where r = 0.01, whereas in the most
imbalanced case where n1 = 100, there is a phase transition near r = 0.1. The curve for
n1 = 200 is in between. The same phenomenon is observed for K = 3 and K = 4. The
proposed NCV can almost perfectly pick out K for relatively balanced community sizes,
even for very sparse cases. For imbalanced cases, one needs to have moderate expected
degrees for the nodes in the smallest community. We note that community recovery for
a given K is an integrated step in the proposed NCV method, so it is expected that the
performance of NCV is closely related to the difficulty of the community recovery problem
when knowing the true K, which may depend on the particular community recovery method
used in NCV.

Simulation 2: general block structures and comparison to recursive bipartition.
This simulation is designed to further investigate the proposed NCV method under general
block structures of networks, and meanwhile to compare the proposed NCV method with
the recursive testing procedure proposed in Bickel & Sarkar (2013). We generate symmetric
B randomly as follows. For each upper-triangle entry of B, we generate a random number
from Unif(0, 0.5). The upper bound 0.5 is set to exclude unrealistically dense networks
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that are of less interest. We only use B matrices whose Kth singular values are in the
upper three quarters and therefore have relatively well-formed K-block structures. The
membership vector g is generated from multinomial distribution (n, π) with equal probability
π = (1/K, . . . , 1/K). For each simulated data, we applied three-fold NCV method as well
as the recursive bipartition algorithm developed in Bickel & Sarkar (2013) with α = 0.01.
The basic idea of the recursive bipartition method is to divide the nodes into two clusters
if K = 1 is rejected at level α, and then recursively test K = 1 vs K > 1 on each of the
two sub-networks until failing to reject K = 1. The success rates in 50 simulations for
each combination of n = 600, 1200 and K = 1, 2, 3, 4 are shown in Figure 2. As expected,
both methods benefit from a larger sample size (top row vs bottom row). The task of
determining K gets harder as the true number of communities gets larger (from left column
to right column). The proposed NCV method performs uniformly better than the bipartition
method. The NCV method is also much faster than the bipartition method, where the latter
requires a small bootstrap sample to adjust the null distribution at each testing step. The
simulation design suggests that the proposed NCV has very satisfactory performance under
very general structures of B. For n = 1200, the empirical success rate of NCV achieves
100% for K = 1, 2, 84% for K = 3, and 72% for K = 4.

Simulation 3: degree corrected block models. This simulation is designed to demon-
strate the performance of selecting between the stochastic block model and the degree-
corrected block model with simultaneous selection of K. We use a B matrix whose diagonal
is 0.25 and off-diagonal is 0.1, which gives a moderate sparsity level for stochastic block
models. For degree-corrected block model, the degree parameter ψ is generated from
Unif(0.2, 1), and normalized to have block-wise maximum value 1. The edges are generated
according to (4). The network is much sparser in presence of the degree parameter ψ and
the inference problem is harder. Three-fold NCV is used to simultaneously choose the
model type T from T = “SBM” or T = “DCBM”, and the number of communities K.
Table 1 shows the proportion of correct model type selection T̂ = T and proportion of
correct choice of K given correct model type selection. Data are generated 50 times from
both the stochastic block model and the degree corrected block model, for each combination
of K = 1, 2, 3, 4 and n = 300, 600, 1200. We observe that when the true model type is
stochastic block model, NCV can almost perfectly pick out the correct model and correct
K for various combinations of K and n. As expected, a relatively larger sample size is
needed to get good performance when the network is generated from a degree corrected
block model. Our simulation shows that for n = 1200, NCV can almost always pick out the
correct DCBM model with the right K.

Data example: political weblogs. The political blog data was collected and analyzed
in Adamic & Glance (2005). The data set contains snapshots of over one thousand weblogs
shortly before the 2004 U.S. Presidential Election, where the nodes are weblogs, and
edges are hyperlinks. The nodes are labeled as being either liberal or conservative, which
can be treated as two well-defined communities. The degree corrected block model is
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Figure 2: Results for Simulation 2: reporting the proportion of selected K by NCV (the
proposed method) and BiPart (Bickel & Sarkar (2013)), for true K = 1, 2, 3, 4 (from left to
right), and sample size n = 600 (top row) and n = 1200 (bottom row).

believed to fit better than the stochastic block model to this data with two communities
(Karrer & Newman, 2011; Zhao et al., 2012; Jin, 2012). To illustrate the NCV method
for simultaneously choosing between the regular stochastic block model and the degree
corrected block model, and choosing the number of communities K, we apply three-fold
NCV to the largest connected component in the network which contains 1222 nodes. The
NCV method consistently selects the degree corrected block model with two communities.
The cross-validated negative log-likelihood for all candidate models is plotted in Figure 3
for a typical block splitting. We repeated the NCV selection 100 times using independent
random block splittings. The NCV method selected DCBM and K = 2 in 99 out of
100 repetitions, where the one failure was due to non-convergence of k-means in spectral
clustering.
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Table 1: Results for Simulation 3: proportion of selecting the correct model type, and
choosing the correct K given correct model type selection, from 50 independent simulations.
The true models are generated from stochastic block models (SBM) or degree corrected
block models (DCBM), for true K = 1, 2, 3, 4 and n = 300, 600, 1200.

SBM DCBM
K = 1 2 3 4 K = 1 2 3 4

n = 300 P̂ (T̂ = T ) 1 1 1 1 1 0.68 0.44 0.42

P̂ (K̂ = K|T̂ = T ) 1 1 0.98 0.92 1 0.41 0 0

n = 600 P̂ (T̂ = T ) 1 1 1 1 1 1 0.96 0.98

P̂ (K̂ = K|T̂ = T ) 1 1 1 0.98 1 1 0.42 0

n = 1200 P̂ (T̂ = T ) 1 1 1 1 1 1 1 1

P̂ (K̂ = K|T̂ = T ) 1 1 1 0.98 1 1 1 1

5 Discussion

Further extensions In general, the network cross-validation approach proposed in
this paper is applicable to network models where (i) edges form independently given an
appropriate set of model parameters; and (ii) the edge probabilities can be estimated
accurately using a subset of rows of the adjacency matrix. The stochastic block model
and the degree corrected model are good examples satisfying these two properties. There
are other popular network models in this category, such as the random dot-product graph.
The random dot-product graph model (Young & Scheinerman, 2007) assumes that each
node i has an embedding vi on a subset of the d-dimensional unit sphere, and that given
the embedding the edge between node i and node j is an independent Bernoulli random
variable with parameter 〈vi, vj〉. This is a special case of the latent space model (Hoff et al.,
2002). The latent vectors can be accurately estimated using spectral methods (Sussman
et al., 2013), which can be adapted naturally so that the model parameters can be estimated
using only the training subset of rows of A.

Effect of the number of folds In general, cross validation methods are insensitive to
the number of folds. The same intuition empirically holds true for the proposed NCV
method. However, there is slight difference between the NCV framework and the traditional
cross-validation. Unlike traditional cross validation where each data point is included in a
testing sample, In V-fold NCV only the diagonal blocks are used as testing samples and
hence the proportion of edges included in testing samples is roughly 1/V . On the other
hand, the ratio between the sizes of training and testing samples in a single fold is (V 2 − 1)
to 1 for NCV, and (V − 1) to 1 for traditional cross-validation. Roughly speaking, having a
larger value of V will rapidly increase the estimation accuracy in the training stage but will
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Figure 3: Results for the political blogs data: reporting the three-fold cross-validated
negative log-likelihood of all candidate models from one random block splitting. Dashed
line: stochastic block models; solid line: degree corrected block models. The results are
consistent over 100 repeated random block splittings.

reduce the testing sample size. In our numerical experiments we found V = 3 a reasonable
choice for most cases, which is roughly comparable to a 9-fold traditional cross validation
in terms of the training and testing sample size ratio.

A Proofs

Let P be the n × n matrix such that Pij = Bgigj , and P (1) be defined using the same
block representation of A. Let N ∗j,k be the nodes in subsample Nj belonging to community
k and n∗j,k = |N ∗j,k| (j = 1, 2, k = 1, ...,K). For any matrix M , let σK(M) be its Kth
largest singular value. In the statement of results and the proof, constants c, C may take
different values from line to line. We let ‖M‖ = σ1(M) be the spectral norm of M and
‖M‖F = (σ21(M) + σ22(M) + ...)1/2 be the Frobenious norm.

Lemma 3 (Size of split community). Under Assumptions (A2) and (A3), for n large
enough we have mink n

∗
1,k ≥ c0π0n/2, with probability at least 1− n−1/2.

The proof of this lemma follows from a simple application of large deviation bounds
for hypergeometric random variables (Skala, 2013) combined with union bound and is
omitted.
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Lemma 4 (Spectral norm error of partial adjacency matrix). Let A be the adjacency
matrix generated from a degree corrected block model satisfying Assumptions A1 and A4,
with αn ≥ c log n/n for a positive constant c. Let A(1) be an arbitrary subset of rows of A
and P (1) be the corresponding submatrix of P . We have, for some constant C,

P
(
‖A(1) − P (1)‖ ≤ C

√
nαn

)
≥ 1− n−1/2 .

Proof. Observe that ‖A(1) − P (1)‖ ≤ ‖A − P‖. The claimed result follows easily from
Theorem 5.2 of Lei & Rinaldo (2013), where it has been shown that with high probability
‖A− P‖ ≤ C√nαn.

Lemma 5 (Singular subspace error bound). Let M̂ , M be two matrices of same dimension,
and Û and U be n×K orthonormal matrices corresponding to the top K right singular
vectors of M̂ and M , respectively. Then there exists a K ×K orthogonal matrix Q such
that

‖Û − UQ‖ ≤ 2
√

2‖M̂ −M‖
σK(M)

.

Proof. If ‖M̂ −M‖ ≤ σK(M)/2, then using Wedin sin Θ theorem (Wedin, 1972) and Weyl’s
inequality there exists an orthogonal Q such that ‖Û − UQ‖ ≤ ‖M̂ − M‖/(σK(M) −
‖M̂ − M‖) ≤ 2‖M̂ − M‖/σK(M). If ‖M̂ − M‖ ≥ σK(M)/2, then ‖Û − UQ‖ ≤ 1 ≤
2‖M̂ −M‖/σK(M).

Remark. The orthogonal matrix Q will have no particular impact on the argument below.
For presentation simplicity, we assume, without loss of generality, that Q = I in the rest of
the proof.

Since our community recovery method is spectral clustering, the proof of Theorem 1 relies on
the following lemma that guarantees the accuracy of k-means algorithm under a Frobenius
norm condition.

Lemma 6 (Lemma 5.3 of Lei & Rinaldo (2013)). Let Û and U be two n ×K matrices
such that U contains K distinct rows. Let δ be the minimum distance between two distinct
rows of U , and g be the membership vector given by clustering the rows of U satisfying
Assumption A2. Let ĝ be the output of a k-means clustering algorithm on Û , with objective
value no larger than a constant factor of the global optimum. Assume that ‖Û−U‖2F ≤ cnδ2
for some small enough constant c. Then ĝ agrees with g on all but c−1‖Û − U‖2F δ−2 nodes
after an appropriate label permutation.

Proof of Theorem 1. Let G be the n × K matrix with Gij = 1 if j = gi, and Gij = 0
otherwise. Let G(1) be the submatrix of G containing rows in N1. Then P (1) = G(1)BGT =
GB̃G̃T , where G̃ is an n×K matrix obtained by normalizing the columns of G. and B̃ is
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a K ×K matrix after corresponding column scaling of B. It is easy to check that G̃ has
orthonormal columns and hence the top K-dimensional right singular subspace of P (1) is
spanned by U = G̃Q, for any K×K orthogonal matrix Q. Thus U contains K distinct rows
and the distance between two distinct rows is of order at least 1/

√
n under Assumption A2.

We focus on the event that mink n
∗
1,k ≥ c0π0n/2 and ‖A(1) − P (1)‖ ≤ C

√
nαn, which has

probability at least 1− n−1 according to Lemmas 3 and 4. Then it can be directly verified
that σK(P (1)) ≥ Cnαn because the Kth largest singular values of both G(1) and G are of
order at least

√
n. Then Lemma 5 implies that Û and U , the matrices consisting of n×K

top singular vectors of A(1) and P (1), satisfy, with appropriate choice of Q,

‖Û − U‖2F ≤ C
1

nαn
.

Then applying Lemma 6, we know that the k-means clustering algorithm misclusters no
more than C/αn nodes. This completes the proof of part (a).

To prove part (b), for fixed 1 ≤ k < k′ ≤ K, consider the oracle estimator

B̂∗k,k′ =

∑
i∈N ∗1,k,j∈N

∗
1,k∪N

∗
2,k′

Aij

n∗1,k(n∗1,k′ + n∗2,k′)
. (5)

It is obvious that B̂∗k,k′ = Bk,k′(1 + oP (1)) because n∗j,k →∞ at order n for all j, k.

Now using part (a), the numerators of (3) and (5) differ by at most o(n3/2). But the
denominators are asymptotically equivalent with order n2 and their ratio tends to 1. Thus
|B̂k,k′ − B̂′k,k′ | = oP (n−1/2) = oP (B̂k,k′). The proof for k = k′ is almost identical.

For the proof of Theorem 2, we need the analogous version of Lemma 6 for the k-median
algorithm, which is a simple adaptation of Lemma 6 and has been proved in Theorem 4.2
of Lei & Rinaldo (2013). For a matrix M , ‖M‖2,1 denotes the sum of `2 norms of the rows
in M .

Lemma 7. Let Û and U be two n×K matrices such that U contains K distinct rows. Let
δ be the minimum distance between two distinct rows of U , and g be the membership vector
given by clustering the rows of U . Let ĝ be the output of a k-median clustering algorithm
on Û , with objective value no larger than a constant factor of the global optimum. Assume
that ‖Û − U‖2,1 ≤ cnδ for some small enough constant c and that g satisfies Assumption
A2. Then ĝ agrees with g on all but c−1‖Û − U‖2,1δ−1 nodes after an appropriate label
permutation.

Proof of Theorem 2. Let Ψ be an n×K matrix such that Ψij = ψ′i if j = gi and Ψij = 0
otherwise. Let Ψ(1) be the corresponding submatrix of Ψ with rows in N1. Then P (1) =
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Ψ(1)B̃Ψ, where B̃ is a K ×K matrix obtained after corresponding row/column scaling of
B. It is easy to check that Ψ is orthonormal so that the top K-dimensional right singular
subspace of P (1) is spanned by U = ΨQ for any K × K orthogonal Q. It follows that
the norm of ith row of U is ψ′i, and that any two rows of U in distinct communities are
orthogonal. Let Ũ and Ũ∗ be the row-normalized versions of Û and U , respectively. Then
Ũ∗ contains K distinct rows and the distance between any two distinct rows of Ũ∗ is

√
2.

Similarly we will focus on the event that mink n
∗
1,k ≥ c0π0n/2 and ‖A(1) − P (1)‖ ≤ C√nαn,

which has probability at least 1 − n−1 according to Lemmas 3 and 4. Using the same
reasoning as in the proof of Theorem 1 we know that, for appropriate choice of Q,

‖Û − U‖2F ≤ C/(nαn) .

Because the minimum row norm of U is at least ψ0/
√
n, the number of zero rows in Û is at

most ‖Û − U‖2F /(ψ0/
√
n)2 = O(α−1n ) = o(

√
n/αn). In the rest of the proof we can safely

assume that Û has no zero rows.

Now let ui, ûi be the ith row of U , Û , respectively. We have, using the fact that
‖(u/‖u‖ − v/‖v‖)‖ ≤ 2‖u−v‖/‖v‖ for all vectors u, v of same dimension, Cauchy-Schwartz,
and Assumption A4,

‖Ũ − Ũ∗‖2,1 ≤2
n∑

i=1

‖ûi − ui‖
‖ui‖

= 2
n∑

i=1

‖ûi − ui‖
ψ′i

≤2‖Û − U‖F

(
n∑

i=1

(ψ′i)
−2

)1/2

≤ 2ψ−10 n‖Û − U‖F ≤ C
√
n/αn .

Then part (a) follows by applying Lemma 7 to Ũ and Ũ∗.

For part (b), recall that ‖ui‖ = ψ′i for all i. Then Cauchy-Schwartz implies that

‖ψ̂′ − ψ′‖1 ≤
n∑

i=1

‖ûi − ui‖ ≤
√
n‖Û − U‖F ≤ Cα−1/2n . (6)

By Assumptions (A2) and (A4) we have infi ψ
′
i ≥ Cn−1/2 for some constant C.

Let Sn = {i : |ψ̂′i−ψ′i| ≤ n−1/2(n1/3αn)−1/2}. Then for all i ∈ Sn, we have ψ̂′i = ψ′i(1 +o(1))
and

|Sc
n| ≤

‖ψ̂′ − ψ′‖1
n−2/3α

−1/2
n

≤ Cn2/3 . (7)

For 1 ≤ k < k′ ≤ K, consider the oracle estimator

B̂′∗k,k′ =

∑
i∈N ∗1,k,j∈N

∗
1,k′∪N

∗
2,k′

Aij∑
i∈N ∗1,k,j∈N

∗
1,k′∪N

∗
2,k′

ψ′iψ
′
j

.
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It is obvious that P̂ ∗ij = ψ′iψ
′
jB̂
′∗
gigj = (1 + oP (1))ψiψjBgigj = (1 + oP (1))Pij . As a result,

the claim in part (b) of the theorem follows if we can show that B̂′k,k′ = (1 + oP (1))B̂′∗k,k′
because for all but a vanishing proportion of pairs (i, j) we have (ĝi, ĝj) = (gi, gj) and

ψ̂′iψ̂
′
j = ψ′iψ

′
j(1 + o(1)) in view of (7). To this end, we compare

n−1B̂′k,k′ =

∑
i∈N1,k,j∈N1,k′∪N ∗2,k′

Aij∑
i∈N1,k,j∈N1,k′∪N2,k′

(
√
nψ̂′i)(

√
nψ̂′j)

with

n−1B̂′∗k,k′ =

∑
i∈N ∗1,k,j∈N

∗
1,k′∪N

∗
2,k′

Aij∑
i∈N ∗1,k,j∈N

∗
1,k′∪N

∗
2,k′

(
√
nψ′i)(

√
nψ′j)

.

Note that
√
nψ′i � 1 for all i. It is easy to check that the numerators differ by at most

o(n5/3). For the denominators, first we compare the denominator of n−1B̂′∗k,k′ with∑
i∈N1,k,j∈N1,k′∪N2,k′

(
√
nψ′i)(

√
nψ′j) . (8)

It straightforward to check that their ratio tends to 1, because the index sets of these two
summations differ by a vanishing proportion. Now compare (8) with the denominator of
n−1B̂′k,k′ . We have

∑
i∈N1,k,j∈N1,k′∪N2,k′

(
√
nψ̂′i)(

√
nψ̂′j) =

 ∑
i∈N1,k

√
nψ̂′i

 ∑
j∈N1,k′∪N2,k′

√
nψ̂′j


=(1 + o(1))

 ∑
i∈N1,k

√
nψ′i

 ∑
j∈N1,k′∪N2,k′

√
nψ′j


=(1 + o(1))

∑
i∈N1,k,j∈N1,k′∪N2,k′

(
√
nψ′i)(

√
nψ′j) ,

where the second line follows from the fact
∑

i∈Nj,k
ψ̂′i = (1 + o(1))

∑
i∈Nj,k

ψ′i for all

j ∈ {1, 2}, 1 ≤ k ≤ K, which is a consequence of (6). Now we conclude that the
denominators of n−1B̂′k,k′ and n−1B̂′∗k,k′ are both of order at least n2 with ratio tending to

one. Therefore, the absolute difference between n−1B̂′k,k′ and n−1B̂′∗k,k′ is o(n−1/3) which is

o(n−1B̂′∗k,k′). The same argument can be used for the case k = k′.
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