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Driven by growing interest across the sciences, a large num-
ber of empirical studies have been conducted in recent years 
of the structure of networks ranging from the Internet and the 
World Wide Web to biological networks and social networks. 
The data produced by these experiments are often rich and 
multimodal, yet at the same time they may contain substan-
tial measurement error1–7. Accurate analysis and understand-
ing of networked systems requires a way of estimating the 
true structure of networks from such rich but noisy data8–15. 
Here we describe a technique that allows us to make optimal 
estimates of network structure from complex data in arbitrary 
formats, including cases where there may be measurements 
of many different types, repeated observations, contradictory 
observations, annotations or metadata, or missing data. We 
give example applications to two different social networks, 
one derived from face-to-face interactions and one from self-
reported friendships.

Most empirical studies of networks take a `naive' view of struc-
tural data, meaning that one assumes that the data are the network. 
For instance, in a study of a protein–protein interaction net-
work16–18, one might compile a list of known protein interactions 
and represent them as a network of protein nodes joined by inter-
action edges. But this network represents the pattern of measured 
interactions, not the pattern of actual interactions. The two could, 
and probably do, differ substantially, because of both error in the 
measurements and missing data5,19. As another example, in stud-
ies of friendship networks20,21, one commonly assembles a network 
simply by asking people who their friends are. The resulting net-
work thus represents who people say they are friends with, not who 
they are actually friends with. The two can differ if, for instance, 
participants and experimenters apply different standards for what 
constitutes a friendship, or if participants fail to report some friend-
ships at all1,2,8,22.

At the same time, many studies return data much richer than just 
a simple measurement of connections. Protein–protein interaction 
networks, for example, are commonly assembled from the results 
of many complementary experiments involving a variety of tech-
niques, further enriched by knowledge of protein function, genetics 
or other features. Friendship networks can likewise be probed in 
different ways, using surveys, online data, observations of face-to-
face interactions and others, possibly enhanced with metadata on 
participant location, occupation, age and many other characteris-
tics. Taken together, these many types of data may be able to give a 
more accurate and nuanced picture of network structure than any 
single one can alone.

The problem of determining network structure from experi-
mental data, which often goes under the heading of network recon-
struction, has been studied particularly in the biological sciences  
(for instance, in the context of gene regulatory networks, metabolic 
networks and protein networks5,12,23,24). A range of methods have 
been developed for use with data from high-throughput laboratory  

techniques such as microarrays, RNA sequencing and tandem  
affinity purification19,25–29. The issue of errors and unreliability in 
network data has also been recognized in the social sciences, where 
there has been extensive discussion of sources of error in social sur-
veys, its effects on measurements and ways of estimating and mini-
mizing it1,2,6–8. There is also domain-specific literature on problems 
such as predicting missing nodes or edges in networks9,10,30–32 and 
name disambiguation in bibliometrics33–36, typically making use of 
assumptions about correlations in network structure. Combinations 
of these methods can be used to create hybrid algorithms for resa-
mpling and Monte Carlo estimation of network structure9–11,13,15. 
There is also a significant volume of work on the related problem 
of estimating network structure from non-network data (see ref. 37 
for a review).

Here we present a general formalism for the optimal inference of 
network structure from rich but noisy data, and show how it can be 
applied to a range of data types. Generically, the question we want to 
answer is this: given the results of a set of measurements performed 
on a system of interest, what is our best estimate of the structure 
of the underlying network? The data could take many forms. They 
could be rich, hierarchical, multilevel and multimodal, but they may 
also be unreliable and error prone. Some of the data may have no 
bearing at all on the network structure. Others may be related only 
obliquely to it. Furthermore, we may not know in advance which 
data are relevant and which are not, or how accurate any of the 
measurements are. Remarkably, under these seemingly daunting 
circumstances, we can nonetheless make progress.

Suppose that we are interested in the structure of a certain 
n-node network and for the moment let us concentrate on the com-
monest case of an unweighted undirected network. (We describe 
some generalizations to weighted and directed data below and in 
the Supplementary Information.) Let us denote the true structure 
of the network—which we do not know—by an n ×​ n symmetric 
adjacency matrix A, having elements Aij =​ 1 if nodes i and j are con-
nected by an edge and 0 otherwise. This structure, commonly called 
the ground truth, is the thing we are trying to estimate.

We now make a set of measurements of the system, measure-
ments that can take many forms as discussed above, perhaps includ-
ing direct measurements of network structure but also potentially 
including indirect measurements, metadata, or `red herrings' that 
have nothing to do with the network at all. The network structure 
and the data are related to one another by a data model, expressed 
in the form of a probability function P(data|A, θ) that specifies the 
probability of making the particular set of measurements we did, 
given the ground-truth network A plus, optionally, some additional 
model parameters, which we collectively denote by θ. In general, we 
do not know the form of this probability distribution—in most cases, 
it will be a complicated function—but the option to include param-
eters θ allows us to specify a family of functions that encompass a 
broad spectrum of possibilities. Our goal will be, given such a fam-
ily, first to determine the values of the parameters, which effectively  
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chooses a particular member of the family and thereby fixes the 
relationship between the network structure and the data, and then, 
given those values, to estimate the network structure itself.

We write
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then, summing over all possible network structures A, we get 
P(θ|data) =​  θ∑ ∣P A( , data)A , which we maximize to find the most 
probable value of the parameters θ given the observed data, the so-
called maximum a posteriori estimate. In fact, for convenience, we 
maximize not P(θ|data) but its logarithm, whose maximum falls 
in the same place. Employing the well-known Jensen inequality 
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where q(A) is any probability distribution over networks A satisfy-
ing ∑ =q A( ) 1A . It is trivially the case that exact equality between 
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and hence this choice maximizes the right-hand side with respect 
to q. A further maximization with respect to θ will then give us the 
optimal parameter values we seek. To put that another way, a double 
maximization of the right-hand side of equation (2) with respect to 
both q and θ will give us our answer for θ. This can be easily car-
ried out by maximizing first with respect to q(A) using equation 
(3) and then with respect to θ, repeating until the result converges. 
Differentiating equation (2) while holding q(A) constant, we find 
the maximum with respect to θ to be the solution of

∑ θ∇ ∣ =θq PA A( ) log ( , data) 0 (4)
A

Our calculation consists of iterating equations (3) and (4) from 
random initial values to convergence. The final result is a value for 
the parameters θ, which we can then use to estimate the ground-truth 
network. In fact, however, it turns out that this last step is unneces-
sary: the calculations we have already performed give us the ground-
truth network structure as a by-product; indeed, they give us the 
entire posterior probability distribution over structures, since from 
equation (3) the quantity q(A) =​ P(A, θ|data)/P(θ|data) =​ P(A|data, 
θ). In other words, it is precisely the probability of the network hav-
ing true structure A given the observed data and the parameters θ.

The method derived here is an example of an expectation-max-
imization or EM algorithm38. As described, the method is a general 
one that can be used with many different networks and data models. 
Let us see how it is applied in practice.

Our first example application is to a social network of US univer-
sity students. The data come from a ‘reality mining’ study39, which 
aimed to establish the real-world social network of a set of individu-
als by measuring their physical proximity over time. The 96 stu-
dents participating in the study were given mobile phones that used 
special software to record when they were in proximity with one 
another. The resulting record of pairwise proximity measurements 
is both richer and poorer than a direct network measurement, in 
exactly the manner considered in this paper. It is richer in the sense 
that interactions between individuals may be measured repeat-
edly and not just once, but poorer in the sense that proximity is an  

error-prone indicator of actual interaction—two individuals may 
find themselves coincidentally in proximity, as they pass on the 
street say, without being acquainted or having any social interaction.

We take as our data set the measurements made during the real-
ity mining study for eight consecutive Wednesdays in March and 
April of 2005. (We choose weekly observations to remove weekly 
periodic effects, and March and April because they fall during the 
university term.) This gives us eight sets of observations, one for 
each day, in which an observed edge means that two individuals 
were in physical proximity at some time during that day.

The data model we adopt for these data is a particularly simple 
one, in which the edge measurements—the observations of proxim-
ity—are assumed to be independent identically distributed random 
variables, conditioned on the ground truth Aij. That is, the prob-
ability of observing an edge between nodes i and j depends only on 
the matrix element Aij and in the same way for all i,j. This depen-
dence can be parametrized by two quantities: the true-positive rate 
α, which is the probability of observing an edge where one truly 
exists, and the false-positive rate β, the probability of observing an 
edge where none exists. (Note that these are the empirical true- and 
false-positive rates—the frequency with which the measurements 
agree or disagree with the ground truth—rather than the true- and 
false-positive rates for our final inferred networks, which we can-
not normally calculate.) In addition, we will assume a uniform prior 
probability ρ of the existence of an edge in any position, so that our 
model is parametrized by three parameters α, β and ρ.

If for each node pair i, j, we make N measurements and observe 
an edge to be present in Eij of them then, as shown in the Methods, 
our expectation-maximization equations give the following esti-
mates for the three parameters:
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(We use symbols with hats to denote estimated values of variables.) 
The quantity Qij appearing here is the posterior probability that 
there is an edge between nodes i and j for these parameter values, 
which is given by
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The full calculation involves iterating equations (5) and (6) until 
convergence is reached, and the results tell us the estimates of the 
three parameters α, β and ρ, as well as the entire posterior prob-
ability distribution over possible ground-truth networks, which 
is given by P(A|data, θ) =​ ∏ −>

−Q Q(1 )i j ij
A

ij
A1ij ij. The posterior 

distribution allows us to compute estimates of any other network 
quantities we might be interested in, such as degrees, correlations 
or clustering coefficients (see Supplementary Section 5) and can 
also be used as an input to further calculations (for instance, of  
community structure14).

Applying equations (5) and (6) to the reality mining data, the 
algorithm converges rapidly and reliably to parameter estimates 
α = .� 0 4242, β = .� 0 0043 and ρ = .� 0 0335. The small value of β tells us 
that there are very few false positives: an edge is observed where 
none exists less than 1% of the time. On the other hand, even if the 
false-positive rate is low, the probability of being wrong when one 
does observe an edge can still be high. This probability, called the 
false discovery rate, is given by (1 −​ ρ)β / [ρα +​ (1 −​ ρ)β], which has 
an estimated value of 0.2270 in the present case, meaning that more 
than one in every five observed edges is in error. Moreover, the rela-
tively small value of α implies that there are also a large number of 
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false negatives: around 58% of pairs of individuals who are, in fact, 
connected in the underlying network are not observed in proximity 
on any one day. This is understandable. Most people do not see all 
of their acquaintances every day.

Figure 1a shows the inferred ground-truth network, with edge 
thicknesses varying to indicate the probability Qij of individual 
edges. In Fig. 1b we show the relationship between the number of 
observations Eij of a particular edge and the posterior probability Qij. 
As the figure shows, an edge observed only zero times or one time 
implies a low Qij (less than 0.1), so a single observation is probably 
a false alarm. However, two or more observations of the same edge 
result in a much larger Qij (greater than 0.9), indicating a strong 
inference that the edge exists in the ground truth. The sharp transi-
tion between low and high values of Qij means that it is possible to 
infer the presence or absence of edges with good reliability despite 
the high error rate in the data.

For our second example, we study a more traditional friendship 
network, taken from the National Longitudinal Study of Adolescent 
Health (the `Add Health' study)21. This study compiled networks 
of friendships between students at a number of US high schools by 
asking participants to name their friends. Again, the data are both 
richer and poorer than a simple network measurement. They are 
richer in the sense that we have two measurements of each friend-
ship, from the point of view of each of the two participants, but 
poorer in the sense that those measurements can (and often do) 

disagree, indicating that respondents are not reliable in the reports 
they give or that they are employing different standards for what 
constitutes a friendship. Following ref. 8, we represent this situation 
by giving each participant i their own individual true- and false-pos-
itive rates αi and βi. Once again, one can derive closed-form expres-
sions for these parameters and for the posterior probabilities Qij of 
edges in the ground-truth network (see the Methods). The analysis 
can be applied to any of the schools in the Add Health study; we use 
one of the smaller ones as our example, solely because it allows us to 
make a clear picture of the resulting network.

Again the expectation-maximization algorithm converges 
quickly and reliably, giving a network-average estimated true-
positive rate α⟨ ⟩ = .� 0 6083, false-positive rate β⟨ ⟩ = .� 0 0096 and 
prior edge probability ρ⟨ ⟩ = .� 0 0235. These values indicate that 
non-existent friendships are rarely falsely reported as existing 
(low average βi), although, once again, arguably the more interest-
ing quantity is the false discovery rate, the probability of a friend-
ship that is reported being false. This probability, which is equal to 
(1 −​ ρ)βi / [ραi +​ (1 −​ ρ)βi], is significantly larger, having a network-
average estimated value of 0.3309. In other words, about one in three 
reported friendships does not really exist. There is also a relatively 
high rate of failure to report friendships that do exist (many of the 
αi are significantly less than 1). The latter is perhaps less surprising 
given the design of the study: students were limited to naming at 
most ten friends, so those with more than ten would be obliged to 
omit some.

Figure 1c shows the inferred network of friendships, with edge 
widths again indicating the probability Qij that an edge exists, and 
node sizes now varying to indicate how reliable the nodes are, in 
terms of the fraction of reported friendships that actually exist 
(which is equal to one minus the false discovery rate, also called 
the precision). Reports made by nodes depicted with large diam-
eter are reliable; those made by smaller nodes are not. Armed with 
these results, one can now calculate a multitude of further quanti-
ties, including any function of network structure.

These are just two examples of possible applications. The partic-
ular data models applied here are quite flexible and could be applied 
to other networks, but there are also many other models one could 
use. Note, for instance, that the two models above both make the 
assumption that edges are conditionally independent. This works 
well for these particular examples but it is not a requirement. The 
methods described can be applied to models with dependent edges 
too, which might be appropriate, for instance, for data sets derived 
from longitudinal (time-dependent) network studies. See the 
Supplementary Information for further discussion and a number of 
additional examples of possible models.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0076-1.
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Methods
In the reality mining example, edge observations are assumed to be independent 
(Bernoulli) random variables, conditioned on the ground truth Aij for the 
appropriate node pair i, j, with true-positive rate α and false-positive rate β. Suppose 
that for each node pair i, j, we make Nij measurements and observe an edge to be 
present in Eij of those measurements. Then, under this independent edge model,

∏θ α α β β∣ = − −
<

− − −
P A(data , ) [ (1 ) ] [ (1 ) ] (7)

i j

E N E A E N E A1ij ij ij ij ij ij ij ij

If the prior probability of an edge in any position is ρ, then the prior probability 
of the entire network is P(A|ρ) =​  ρ ρ∏ −<

−(1 )i j
A A1ij ij. We also assume that the prior 

probability distributions on α, β and ρ themselves are all uniform in the interval 
[0,1]. Combining equations (1) and (7), we then have
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ρ β β
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× − −
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ij ij ij ij
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Taking the log, substituting into equation (4), and differentiating with respect 
to α, we find that the maximum a posteriori estimate α� of the true-positive rate 
satisfies

∑ ∑ α α
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−
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Defining the posterior probability of an edge between i and j by 
Qij =​ P(Aij =​ 1|data,θ) =​ ∑ q AA( ) ijA  and rearranging equation (9), we then get

∑
∑
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Similarly, differentiating with respect to β and ρ, we arrive at
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For the data set considered here, the Nij all take the same value N, in which case 
equations (10) and (11) reduce to equation (5).

To calculate q(A), we evaluate (8) at the estimated parameter values and 
substitute the result into equation (3) to get
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Note that if we make no measurements for a pair of nodes i, j, so that Nij =​ Eij =​ 0 
(the case of ‘missing data’), this expression correctly gives Qij equal to the estimated 
prior edge probability ρ�.

Turning to the Add Health friendship network example, measurements of 
edges in this data set come from unilateral statements made by participants. 
Let Eij in this case represent the number of times node i identifies node j as a 
friend. (Normally this number will be zero or one, but we allow arbitrary values 
for the sake of generality.) In effect, Eij constitutes a directed network, and self-
reported friendship networks are sometimes depicted as being directed. However, 
we consider the underlying ground-truth network to be undirected. Only our 
observations of it are directed.

Study participants may vary in the reliability with which they identify their 
friends. A participant whose identifications agree, generally, with those of their 
friends, is probably a reliable observer; one whose identifications disagree is 
probably not. We do not have to impose these assumptions on our calculation, 
however. They will be automatically reflected in the solution found by the 
expectation-maximization algorithm.

In our calculations, we employ a data model in which each node i has its 
own true-positive rate αi and false-positive rate βi. Then the likelihood of a set of 
observations given a ground-truth network A is
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β β β β
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where Nij is the total number of observations of node j made by node i. Note 
that we explicitly include terms in Eij and Eji separately, since these numbers are 
distinct. (On the other hand, Aij =​ Aji since the ground-truth network is assumed 
undirected. We write Aij and Aji separately in the above expression purely to 
preserve symmetry.)

Again assuming a prior probability of ρ on each ground-truth edge and 
uniform priors on the parameters, applying equation (1), and taking logs, we arrive 
at the log-likelihood:
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Applying equation (4), performing the derivatives and rearranging, we then find 
the following estimates for the parameters:
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As before, Qij is the posterior probability of an edge between i and j, which can be 
calculated by a method analogous to the one we used for our first model above. 
Combining equations (1) and (14) and using Aij =​ Aji, we write
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We evaluate this probability at the estimated values of the parameters and the 
complete posterior distribution over ground-truth networks A is then given by
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Note that this expression is explicitly symmetric with respect to the indices i and j, 
as it should be, since Qij =​ Qji by definition.

This calculation returns not only an estimate of the ground-truth network but 
also an estimate of the reliability of each of the nodes, parametrized by their true-
positive and false-positive rates, which tell us both how often a node truthfully 
reports an edge that does exist and how often it falsely reports an edge that does 
not. Note that even in the (common) case where each edge is observed at most 
once, so that Eij can take only the values zero and one, the parameter estimates 
α�i and β�i  and the posterior probabilities Qij can take a wide range of values, by 
contrast with the case of the reality mining network, where there are only as many 
possible values of Qij as there are values of Eij (see Fig. 1b). For instance, even if 
both nodes i and j report the existence of an edge between them (Eij =​ Eji =​ 1), if 
neither node is considered reliable then the algorithm may say that the probability 
Qij of the edge actually existing is low. If either of them is considered reliable, on 
the other hand, then Qij will be larger. Finally, if one is unreliable and claims an 
edge, while the other is reliable but does not, then Qij will be particularly small.

Data availability. The reality mining data39 are available at http://realitycommons.
media.mit.edu/realitymining.html and the high-school friendship data21 are 
available at http://www.cpc.unc.edu/projects/addhealth/documentation/publicdata.
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	Fig. 1 Application of the methods described here to two example networks.




