
Reconstructed networks of biochemical reactions are 
at the core of systems analyses of cellular processes. 
Such networks form a common denominator for 
both experimental data analysis and computational 
studies in systems biology. The conceptual basis for 
the reconstruction process has been outlined1, and 
computational methods and tools used to charac-
terize them have been reviewed2,3. Furthermore, the 
number of available, well-curated organism-specific 
network reconstructions is increasing (Supplementary 
information S1 (table)) and the spectrum of their uses 
is broadening4.

This Review describes the detailed work flows 
that form the basis of the reconstruction process and 
provide key procedural information needed for the 
increasing number of researchers who are perform-
ing organism-specific reconstructions. We describe 
the procedures in which various experimental data 
types are integrated to reconstruct biochemical net-
works, the current status of network reconstructions 
and how network reconstructions can be used in a 
prospective manner to discover new interactions 
and pathways. We will focus on the networks that 
underlie three key cellular processes: metabolism, 
transcription and translation, and transcriptional 
regulation. The reconstruction process for genome-
scale metabolic networks is well developed, whereas 
the process for the reconstruction of transcriptional 
regulation and for transcriptional and translational 
processes at the genome-scale is only now develop-
ing. In addition, we will briefly discuss the impact 

of network content on modelling and integration of  
these types of networks, as well as the prospects 
of reconstructing other types of networks, such as  
signalling and small RNA (sRNA) pathways.

Metabolic networks
Before annotated genomic sequences were available, 
primary literature and biochemical characterization of 
enzymes provided the main sources of information for 
reconstructing metabolic networks in a select number of 
organisms. Accordingly, some of the earliest metabolic 
reconstructions that were subsequently used in model-
ling applications were for Clostridium acetobutylicum5, 
Bacillus subtilis6 and Escherichia coli7–10.

Today, with the ability to sequence and annotate 
whole genomes, we can generate metabolic network 
reconstructions at a genome scale, even for organ-
isms for which little direct biochemical information is 
available in the published literature. To implement the 
metabolic reconstruction process, we need to answer 
the following questions for each of the enzymes in 
a metabolic network: what substrates and products 
does an enzyme act on; what are the stoichiometric 
coefficients for each metabolite that participates in 
the reaction (or reactions) catalysed by an enzyme; 
are the outlined reactions reversible; and where does 
the reaction occur in the cell (for example, the cyto-
plasm or periplasm)? These data come from a range 
of sources. Establishing a set of the chemical reactions 
that constitute a reaction network culminates in a 
database of chemical equations. Each reaction also 
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Abstract | Systems analysis of metabolic and growth functions in microbial organisms is 
rapidly developing and maturing. Such studies are enabled by reconstruction, at the 
genomic scale, of the biochemical reaction networks that underlie cellular processes. The 
network reconstruction process is organism specific and is based on an annotated genome 
sequence, high-throughput network-wide data sets and bibliomic data on the detailed 
properties of individual network components. Here we describe the process that is currently 
used to achieve comprehensive network reconstructions and discuss how these 
reconstructions are curated and validated. This Review should aid the growing number  
of researchers who are carrying out reconstructions for particular target organisms.
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has additional information associated with it, such as 
its cellular localization, thermodynamics, and genetic 
or genomic information. The genome-scale meta-
bolic network reconstruction process comprises four  
fundamental steps (FIG. 1).

Step one: automated genome-based reconstruction. 
The starting point for reconstructions is the anno-
tated genome for a particular target organism and 
strain (BOX 1). Genome annotations can be found in 
organism-specific databases, such as EcoCyc11 for 
E. coli and SGD (Saccharomyces Genome Database)12 
or CyGD (Comprehensive yeast Genome Database)13 
for Saccharomyces cerevisiae, or in databases with col-
lections of genome annotations, such as EntrezGene14, 
CmR (Comprehensive microbial Resource)15, Genome 
Reviews (through EBI; European Bioinformatics 
Institute)16 or ImG (Integrated microbial Genomes)17 

(see Further information). The genome annotation 
provides unique identifiers for the reconstruction, lists 
the metabolic enzymes that are thought to be present  
in the target organism and indicates how the gene 
products interact (as subunits, protein complexes or 
isozymes) to form active enzymes that catalyse meta-
bolic reactions. The next step in the reconstruction 
process is to determine which biochemical reactions 
these enzymes carry out, which can be determined 
manually or by using automated tools.

metabolic databases, such as KEGG (Kyoto 
Encyclopedia of Genes and Genomes)18, BRENDA19, 
metaCyc20, SEED21 and Transport DB22 (see Further 
information), contain collections of metabolic and 
transport reactions that have been shown to occur in a 
range of different organisms. many of these databases 
link enzyme commission (EC) numbers or transport 
commission (TC) numbers to individual or sets of 
reactions that have been observed biochemically in 
other organisms. However, substrate specificities and 
enzyme activities can vary between enzymes with 
the same EC or TC number, and therefore the actual 
reactions that are catalysed by the enzyme in the tar-
get organism may differ from that of the analogous 
enzyme in a reference organism. In addition, some 
information that is needed for the metabolic recon-
struction, such as subcellular localization and reac-
tion directionality, might be missing (Supplementary 
information S2 (table)).

Information from metabolic databases can be 
extracted manually, either by examining each active 
enzyme and reaction for a given organism or by using 
automated tools to piece together reactions from the 
metabolic databases. A number of such automated tools 
that facilitate the reconstruction process have been 
developed (BOX 2).

Step two: curating the draft reconstruction. Although 
the automated extraction of metabolic reactions from 
databases provides an initial set of candidate biochemi-
cal reactions encoded on a genome, it cannot establish 
certain organism-specific features, such as substrate or 
cofactor specificity and subcellular localization. Such 
information requires domain-specific knowledge of the 
organism. Therefore, the draft network reconstruction 
needs to be manually curated, ideally with input from 
organism-specific experts. An automatically recon-
structed metabolic network will be incomplete, will 
have gaps and may also contain mistakenly included 
reactions that do not actually occur in the target 
organism. manual curation is thus necessary to add 
and correct information that the automatic procedures 
miss or misplace in the initial network reconstruction. 
Although the automated reconstruction step is rapid, 
the manual curation process is labour intensive and 
sometimes tedious.

organism-specific databases, textbooks23–26, pri-
mary publications, review articles and experts famil-
iar with the legacy data for an organism are the main 
sources of information for the manual curation step. 
These detailed sources contain information about 

Figure 1 | Phases and data used to generate a metabolic reconstruction. 
Genome-scale metabolic reconstruction can be divided into four major phases, each of 
which builds from the previous one. An additional characteristic of the reconstruction 
process is the iterative refinement of reconstruction content that is driven by 
experimental data from the three later phases. For each phase, specific data types are 
necessary that range from high-throughput data types (for example, phenomics and 
metabolomics) to detailed studies that characterize individual components (for example, 
biochemical data for a particular reaction). For example, the genome annotation can 
provide a parts list of a cell, whereas genetic data can provide information about the 
contribution of each gene product towards a phenotype (for example, when removed or 
mutated). The product generated from each reconstruction phase can be used and 
applied to examine a growing number of questions, with the final product having the 
broadest applications.
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Box 1 | Reconstruction, validation and utilization of a metabolic reconstruction

The process of metabolic reconstruction can be performed in a sequential manner (see the figure). The process is 
initiated by obtaining the genetic content (that is, a parts list of the cell) from the genome annotation. Active 
enzymes on this scaffold are associated with the genetic content by using information from databases and published 
literature. The metabolic reactions that these enzymes catalyse are then delineated and a gene to protein to reaction 
association is ultimately generated. Automated reconstruction tools are available (BOX 2) to aid in this process and 
several databases possess the necessary information for each data type (see Further information and below).

Following the initial reconstruction process, a reconstruction is converted to a model in a mathematical format 
that can be used for computation. Further in the validation phase, the ability of the organism to produce biomass 
constituents and grow is examined using a biomass objective function (BOX 3). This analysis functionally tests the 
reconstruction for an experimentally observed phenomenon. A dead-end analysis should follow, for which 
computational algorithms are available (see the main text), to examine reactions on a pathway basis for their 
physiological role.

For predictions of physiological behaviour, a training data set is needed to examine non-metabolic energy needs 
and organism-specific components (for example, the electron transport system). In this phase, additional known key 
network properties can be applied in addition to the metabolic functions outlined in the reconstruction (for 
example, key regulatory interactions under a given condition) to improve predictive capabilities. For prospective 
use, high- and low-throughput data can also be compared with modelling simulations to validate the content and 
make predictions or find specific areas of disagreement between the functionality of the currently characterized 
content and experimental observations.

Available metabolic and transport databases include: BRENDA19, CMR15, Entrez Gene14, Genome Reviews16, 
GOLD102, IMG17, KEGG18, MetaCyc20, Microbes Online103, PSORTdb104, PubChem105, SEED106, Transport DB22 and 
UniProtKB107. 
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Box 2 | Automated reconstruction of metabolic networks

To date, most metabolic reconstructions have been generated based 
on a combination of genome annotation (see the table), and data 
from databases and literature, with heavy reliance on genome 
annotations for less studied organisms. Methods have been 
developed to help automate this process, but the resulting 
reconstructions still require manual curation if the goal is to convert 
them to mathematical models31,108.

A number of automated methods have been produced that 
facilitate the reconstruction process. Some of these are used to map 
genes in the genome to reactions, thereby forming a draft metabolic 
network (for example, PathwayTools109, GEM System110, metaShark111, 
SEED21 and others31,32,112), whereas others are used to refine the 

networks by filling in missing reactions (for example, SMILEY 
algorithm44, GapFind (also known as GapFill)113 and PathoLogic114) or 
by evaluating reaction directionality115,116. Methods that refine the 
networks improve draft reconstructions built from gene-to-reaction 
mapping from databases, as they can correct incorrect or missing 
information from metabolic databases and/or genome annotations. 
Because automated methods rely heavily on metabolic and transport 
databases, together with genome annotations, errors will propagate 
into reconstructed networks. A table of common problems 
encountered during automated network reconstruction is provided 
as a guide for the use of such methods and should enable further 
advancement of such tools.

Problem Description methods

Genome annotations

Annotations are 
not continuously 
updated with new 
information

As new genes are found, older genome annotations are not updated, 
resulting in incorrectly annotated genes. For example,  in most databases, 
slr0788 in Synechocystis spp. is annotated as a pre-B-cell enhancing 
factor (a mammalian function assigned to a bacterial gene), but in SEED21, 
is correctly annotated as nicotinamide phosphoribosyltransferase.

Automated annotation pipelines can be used 
to reanalyse older genome annotations117.

Incorrect 
annotations

Incorrect annotations can be due to either missing genes (from 
sequencing or gene-finding algorithm errors) or incorrect gene 
annotations. This can occur for a number of reasons. For example, when 
new sequences are not used to update older genome annotations or 
when weak homology is used as sole evidence for functional assignment.

Analysis of reconstructed networks can help 
identify some of these errors44,93,113,114.

Missing 
functionalities

Approximately 30% of enzyme activities with enzyme commission 
numbers lack sequence data118.Therefore, not all reactions will be 
associated with gene or protein sequences. For example, in 2005, 
the 6-phosphogluconlactonase gene (pgl) in Escherichia coli was 
discovered119. Prior to this, there was no pgl gene in the genome 
annotation even though the enzymatic activity was observed in cell 
extracts.

Automated tools have been developed 
to find missing reactions (for example, 
SMILEY algorithm44, GapFind  (or GapFill)113 
PathoLogic114 and topology-based 
methods120).

Transporter 
specificity

Annotations for transporters often lack sufficient detail to determine 
what substrate (or substrates) they transport, even though the 
mechanism (for example, proton symport or ATP hydrolysis) is known.

Methods for improving transporter functional 
annotations are needed.

Databases

Gene-protein- 
reaction (GPR) 
associations

Relationships between genes, enzymes and reactions are not always 
clearly defined (for example, subunits compared with isozymes). 

Can be automated based on comparisons of 
sequences and known GPRs31.

Reaction 
specificity

Reactions are often characterized through their actions on a general 
class of compounds, which can result in ambiguous connections in a 
network. Common general classes include electron carriers (for example, 
quinones, NAD compared with NADP) and alcohols (for example, ethanol 
and methanol compared with butanol).

Changes in databases are needed or 
automated tools need to be developed.

Reaction 
imbalances

Reactions are not elementally balanced for H, C, P, N, O or S. This means 
that substrates and products are missing from imbalanced reactions. For 
example, analysis of the KEGG database96 in 2004 found that only 51% of 
the reactions were balanced for C, P, N, O, H and S.

Automated procedures are available to check 
elemental reaction balancing96.

Reaction 
directionality

Reactions are generally defined as reversible. This can be a problem; for 
example, if cycles between reactions allow the free conversion of ADP 
into ATP (free-energy equivalents).

Automated procedures have been 
developed115,116.

Compound 
protonation 
states

Reactions are generally written for the neutral form of molecules and 
do not account for the protonation state of compounds (for example, 
carboxylic acid groups are deprotonated at pH 7). This affects the 
stoichiometric coefficients for protons across the network.

pKa prediction software is available, and 
therefore automation is possible.

Coenzyme 
availability

Enzymes often need coenzymes (for example, pyridoxal 5-phosphate, 
vitamin B12 and biotin). For enzymes to be functional, the cell must be 
able to produce them or get them from the environment. BRENDA19 
contains this type of information, and is available for download.

Automation is possible now that data are 
becoming available.

Organism-specific 
pathways

The cell membrane (or membranes) is composed of macromolecules 
(for example, phospholipids and peptidoglycans) that can vary across 
organisms and species. As a result, the biosynthesis pathways for these 
compounds are often unique.

Would require experimental data and is 
therefore unlikely to become subject to 
automation.
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BiGG knowledge base
The collection of established 
biochemical, genetic and 
genomic data (BiGG) 
represented by a network 
reconstruction.

Genome-scale network 
reconstruction
(GENRE). A two-dimensional 
genome annotation (for 
example, a metabolic 
reconstruction) that contains a 
list of all the chemical 
transformations known to take 
place in a particular network 
(usually the entire metabolic 
network of a particular 
organism; for example, a 
GENRE of E. coli). These 
transformations can be 
represented by a 
stoichiometric matrix. A genre 
is updated as the BiGG 
knowledge base expands.

properties such as reaction directionality and location 
that are not always found in more general databases. 
For example, protein localization studies27 can be used 
to assign metabolic reactions to subcellular compart-
ments. Similarly, biochemical studies of enzymes from 
the target organism (or a closely related organism) can 
provide information on reversibility and substrate 
specificity that is specific to that organism. These 
sources of information provide more direct evidence 
for the inclusion of specific reactions in the metabolic 
reconstruction. The availability of such sources for a 
particular organism is highly variable28. The goal of 
manual reconstruction is to fill in gaps or holes in the 
network by inference or through direct evidence from 
the available literature on the organism or its close 
relatives. Gap-filling is further discussed below and 

examples in metabolic networks are presented in BOX 2 
and Supplementary information S2 (table).

A high-quality network reconstruction is therefore 
based on a combination of automated genome-based 
procedures coupled with detailed and laborious lit-
erature-based manual curation. This process creates 
a biochemically, genomically and genetically (BiGG) 
structured knowledge base that is both organism 
specific and available to all researchers working with 
the target organism. All the reactions placed in a BiGG 
knowledge base form a genome-scale network reconstruc-
tion (GENRE). GENREs are formed in an iterative 
manner (for example, E. coli29,30) as the corresponding 
BiGG knowledge base grows for the target organ-
ism, based on new experimental data or new genome  
annotation.
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Box 3 | Procedure to generate a biomass objective function

An organism-specific biomass objective function (BOF) can be used to test the functionality of a network by examining the 
fundamental property of cellular growth and regeneration (see the figure). The BOF, a known growth-supporting media 
condition and a reconstruction in a mathematical format are necessary for this test. Starting with the organism of interest, 
the macromolecular weight percent contribution of each component is determined (see the figure, part a). These data can be 
generated using readily available assay kits. Each macromolecule is then broken down into the cellular building blocks that 
constitute the macromolecule or those that are necessary to synthesize the macromolecule in terms of molar fractions  
(see the figure, part b). The building block will often be physiologically present in the network (for example, lipid molecules), 
but in some cases, the most appropriate metabolite in the network is used to generate the BOF (for example, protein is 
broken down into individual amino acids and the net product of protein synthesis, water). With the availability of gene and/or 
component essentiality data, a core BOF can be generated that possesses different metabolites compared with the wild-type 
BOF. In formulating the core BOF, gene essentiality data are used together with the pathway context to determine the most 
basic macromolecule that is necessary for cell viability (see the figure, part c). Alternatively, published data that determine 
minimally essential biomass components can be incorporated to generate the core BOF. A core BOF can be used in 
simulations to more accurately examine essential components or aspects of the network. This process ultimately results in a 
BOF (or BOFs) in mmol per gram of dry weight (gDW) that can be used to evaluate an organism-specific network.
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Genome-scale model
A network reconstruction in a 
mathematical format that can 
be computationally 
interrogated and can be 
subsequently used for 
experimental design.

Step three: converting a genome-scale reconstruction to 
a computational model. Before a reconstruction can be 
used for computations of network and/or physiological 
capabilities, a subtle, but crucial step must be made in 
which a reconstruction is converted to a mathematical 
representation31,32 (BOX 1). This conversion translates a 
GENRE into a mathematical format that becomes the 
basis for a genome-scale model (GEm). Subsequent com-
putations serve as a way to interrogate data consistency 
and to compute which functions a reconstructed network 
can and cannot carry out.

Representation of a network in a mathematical 
format enables the deployment of a large range of 
computational tools to analyse network properties. 
These computational tools focus on the evaluation of 
network systemic properties and the functions that  
a network can perform under the physicochemical con-
straints placed on the cell. This approach has led to the 
so-called constraint-based reconstruction and analysis 
(CoBRA) framework1 for the target organism. various 
computational platforms have been developed that apply 
constraint-based methods to metabolic GEms3,33,34. In 
addition to stoichiometric representation, metabolic 
networks are commonly analysed as graphs35 or using a 
pathway or sub-system-based approach36, although these 
essentially non-parametric approaches are not discussed 
further here.

With a mathematical representation and computa-
tional platform, the generation of a biomass objective 
function is necessary to compute the ability of a network 
to support growth (BOX 3). Here, the macromolecular 
composition of the cell (and the building blocks that 
are used to generate them) is used to define a necessary 
functionality that the network must be able to execute. 
A useful consistency check performed on reconstructed 
networks is to use them to compute growth rates under 
a given condition. The set of experimental data that is 
necessary to perform such analysis includes: the compo-
sition of cellular biomass; the composition of the minimal 
growth media that is necessary to support growth in vivo; 
and a training data set that includes growth rate and 
substrate-uptake rates. Phenotypic data (growth, uptake 
and secretion rates) can be obtained through growth 
experiments in minimal or complex media by monitoring 
media components. These data are typically available in 
published cell-characterization studies, but may need to 

be generated for a specific organism of interest. Cellular 
biomass composition data can be obtained through assays 
that determine overall cellular composition and further 
catalogue the breakdown of each macromolecule of the 
cell (this information has been catalogued extensively 
for E. coli37). With essentiality data (gene and/or cellular 
content), this equation can be refined30. Genome-scale 
gene essentiality data sets are being produced for model 
organisms (listed in REF. 38), and these data sets are often 
available through specific projects or organism-specific 
databases, such as SGD39. overall, the analysis and testing 
of a network’s ability to produce biomass components are 
often used to curate metabolic networks (Supplementary 
information S1 (table)).

Aside from simulations to produce biomass constitu-
ents, additional gap-filling analyses can be performed 
to add missed pathways or remove those that have been 
incorrectly included from the automated reconstruction 
process, and additional cellular objective functions can 
be evaluated computationally to understand cellular 
behaviour40,41. our current ability to gap-fill in metabolic 
networks has been recently reviewed42.

once gap-filling analyses are complete, additional 
steps are necessary to account for strain-specific 
parameters and non-metabolic activities in modelling 
simulations. In this phase, growth data are necessary 
to understand and quantify these key physiological 
parameters. Two major factors to consider during 
this phase are the stoichiometry for translocation (or 
energy-coupling) reactions and maintenance param-
eters30,43. Translocation reactions differ from other 
reactions in the network because the mass and energy 
balances around these ion-pumping components are 
difficult to measure experimentally. Characterizing 
reactions of this type is therefore challenging, but can 
be accomplished if the proper experimental data are 
available (Supplementary information S2 (table)). After 
this phase is complete, a model can be applied to study 
the specific growth condition from which the training 
data were based and can be used to explore additional 
environmental conditions.

Step four: reconstruction uses and integration of high-
throughput data. High-throughput data sets that 
evaluate a large number of interactions across different 
growth or genetic conditions can be used to refine and 
expand the metabolic content of a network. These types 
of comparisons and analyses have the potential to truly 
evaluate genome-scale ‘omics data sets in an integrated 
manner by placing them in a functional and structured 
context. Several successful studies have been conducted 
for microbial species to uncover new metabolic knowl-
edge using systematic data-driven discovery (TABLE 1). 
The necessary data types to support studies of discovery 
and expansion, as well as pilot studies for discovery, 
have been recently reviewed42. Briefly, these studies fall 
into three categories: studies that use a reconstruction 
to examine topological network properties, studies that 
use a reconstruction in constraint-based modelling for 
quantitative or qualitative analyses and studies that are 
purely data driven.

Table 1 | Systematic data-driven discovery of new pathways or enzymes

Data type Discovery type refs

Growth in diverse media conditions New substrate utilization pathways 44

Deletion-strain growth 
phenotyping and synthetic lethal 
interactions

Alternative pathway discovery 97,126

Systematic in vitro enzymatic 
assays

New metabolic reactions and 
pathways

127

Metabolomics New metabolite utilization or 
production pathways

128

Proteomics, transcriptomics and 
genomic neighbourhood

Candidate genes for filling network 
gaps

120,129, 
130
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one example of systematic data-driven discovery 
integrated a number of data types and GEm modelling 
to annotate unknown gene functions in E. coli44. In this 
analysis, an iterative process was used first to identify 
discrepancies between modelling predictions and high-
throughput growth phenotyping data (using data from 
Biolog; see Further information), second to determine 
potential reactions that remedy disagreements (and the 
open reading frames (oRFs) that might encode proteins 
to catalyse them) through a computational analysis and 

third to characterize targeted oRFs experimentally to 
confirm their function. To drive discovery, this approach 
analysed a range of data types (phenotyping, gene 
expression and enzyme activity) to propose and vali-
date computational predictions. This example shows the 
promise of integrating modelling results and experimen-
tal data. Such integration will probably become a key 
approach that will allow us to expand current metabolic 
knowledge and aid our discovery of new components 
and interactions in cellular processes.

Box 4 | Reconstruction of transcriptional and translational networks

The reconstruction of a transcriptional and translational (TR–TR) network can be performed in an algorithmic manner, as 
depicted in the figure (illustrated for Escherichia coli). First, the network components responsible for every 
transcriptional or translational step need to be identified from different resources (for example, from primary and review 
literature, genome annotations and databases) (see the figure, part a). For each component, functions are then 
translated into a stoichiometric, and mass- and charge-balanced reaction based on primary and review literature. The 
resulting set of reactions can be separated into two groups: component-specific reactions (for example, the 
dimerization reaction of a protein) and template reactions (for example, a transcription initiation reaction). Template 
reactions can be formulated because polymerization reactions are similar for most genes. However, they need to be 
specified for each gene by considering the information listed (see the figure, part b) to produce active gene products for 
the different subsystems or pathways (see the figure, part c). The active form of some gene products may require 
post-translational modifications, protein folding, covalent binding of metallo-ions or coenzymes (see the figure, part d). 
The resulting reaction list is subsequently converted into a mathematical format (for example, a stoichiometric matrix) 
and tested for functionality, completeness, correctness and predictive potential compared with known cellular 
phenotypes. Discrepancies are elucidated by repeating the entire procedure again. The overall structure of the 
reconstructed TR–TR network resembles that of a metabolic reconstruction (see the main text). The quality control and 
quality assurance (QC–QA) procedures help to guaranty consistency and correctness of the network through mass  
and charge balancing of all possible network reactions, analysis and filling of network gaps and functionally testing for 
the production of every network component and its intermediate form. In the figure, the different resources in part a are 
colour coded according to their use in parts b–d.
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 Box 5 | Challenges in network reconstruction

A highly systematic process is now used to build a metabolic network reconstruction and model for any given microbial 
organism that starts with an annotated genome and ends with a predictive model of microbial physiology. For well 
characterized model organisms, this process has already enabled models to be produced that have helped discover new 
metabolic functionalities. However, there are many organisms of practical interest for which only initial steps towards the 
building of comprehensive metabolic network reconstructions and models have been taken. These include pathogens, 
such as Plasmodium falciparum and Staphylococcus aureus, as well as many microorganisms that are relevant to 
bioprocessing or bioenergy applications. Below, we outline some of the unique challenges that must be addressed when 
building metabolic network reconstructions for these organisms, using the malaria parasite P. falciparum as an example 
to discuss these challenges121.

The most fundamental type of challenge for reconstruction is that in which a genome encodes for proteins that have a 
low degree of sequence homology to any other organism (for example, owing to severe sequence biases, such as high 
A+T content, as for P. falciparum). For these organisms, automated, homology-based, function prediction tools will result 
in a highly incomplete initial reconstruction of metabolic networks with numerous gaps. Although more sophisticated 
sequence-analysis methods allow more complete initial reconstructions for organisms such as P. falciparum, these initial 
networks still require manual curation to define the comprehensive set of metabolic capabilities that the organism 
possesses111. The experimental identification of metabolic functions in P. falciparum is further complicated by inefficient 
methods for genetic manipulation. However, these methods have improved in recent years, enabling systematic 
validation of putative metabolic functions and the development of strain collections that can be used for general 
functional genomics studies122.

Our understanding of the metabolic physiology of P. falciparum and many other organisms of practical importance is 
also limited by our inability to culture these organisms in defined conditions. In most challenging cases, the organism 
cannot be readily cultured outside the host organism. P. falciparum can be cultured in vitro in red blood cells, but the 
presence of two different cell types in the culture poses problems to our understanding of the physiology of the parasite. 
For example, the transport of nutrients from the media to the parasite is only partially understood123. Further 
complications arise from the fact that typical in vitro culturing conditions require the use of non-specific media 
components, such as serum albumin. This makes it challenging to perform the types of auxotrophy experiments that are 
commonly used to establish metabolic functions in microorganisms, such as Escherichia coli or yeast. Even if well defined 
in vitro cultivation conditions can be established, it is likely that the metabolic behaviour in these conditions would fail to 
capture relevant features of in vivo physiology. This was shown to be the case for P. falciparum when in vivo expression 
profiles derived from patient blood samples were compared with expression profiles obtained from in vivo cultures of the 
parasite124.

Despite these challenges, much progress has been made in our understanding of the metabolic physiology of 
pathogens such as P. falciparum. Development of metabolic network reconstructions and models for these challenging 
organisms has enabled systematic evaluation of current knowledge gaps and the use of model-based gap-filling 
strategies discussed in the main text. Progress in reconstructing other types of networks, including transcriptional 
regulatory networks, for pathogens is more severely affected by the lack of facile genetic systems. For example, despite 
extensive profiling with gene and protein-expression technologies, the mechanisms that regulate gene and protein 
expression in P. falciparum have remained elusive125.

transcription and translation processes
Reconstructions of transcriptional and translational 
(TR–TR) networks at a genome scale follow a similar 
procedure as that established for metabolism. TR–TR 
network reconstructions can be generated using  
a genome annotation and the genome sequence as a scaf-
fold. A TR–TR network reconstruction contains sequence-
specific synthesis reactions for every included gene and 
gene product that participate in transcriptional and 
translational functions (BOX 4). Such TR–TR reconstruc-
tions do not contain transcriptional regulators and their 
functions (discussed in the next section). Furthermore, 
the presented stoichiometric TR–TR reconstructions are 
different from kinetic, small-scale or sequence-independ-
ent formulations of transcriptional and/or translational 
networks45–49, which are not discussed here. The scope of 
the TR–TR reconstruction is the synthesis of all proteins, 
tRNAs and ribosomal RNAs that are involved in the func-
tions listed in BOX 4. This scope ranges from the metabo-
lites that are consumed by the network to the functional 
proteins (for example, ribosomes), mRNAs and tRNAs. 
This type of TR–TR network has recently been developed 
for E. coli 131.

Step one: automated genome-based reconstruction. 
Information about the components of the TR–TR net-
work can be directly extracted from the genome annota-
tion. This step should provide details for gene function, 
gene type (for example, protein coding and tRNAs), start 
and stop codons, direction of transcription and transcrip-
tion unit association (for prokaryotes). Some genome 
annotations and databases (for example, RegulonDB47 
and BioCyc50; see Further information) provide infor-
mation about the type of transcription terminator (for 
example, Rho dependency and attenuation) and sigma 
factors for transcriptional initiation (for example, s70 and 
sH). TR–TR reactions can be formulated in an automated 
manner using this information, the genome sequence 
and template reactions (BOX 4). These manually formu-
lated template reactions can be used because the TR–TR 
reactions are similar for most genes or gene products. 
For example, for transcriptional initiation in E. coli, the 
holoenzyme RNA polymerase (a2bb′) must bind to a 
sigma factor (for example, s70) and this complex must 
then bind to a promoter site of a gene with a recogni-
tion site for this sigma factor. By contrast, gene-specific 
information, such as nucleotide triphosphate (NTP) 
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composition of an mRNA, needs to be specified in the 
template reaction. This subsequently allows the accurate 
formulation of the synthesis reactions in a gene-specific 
manner by using information about sigma factors, amino 
acids and NTPs together with template reactions.

Step two: curation and formulation based on bibliomic 
data. By using data from primary literature articles, 
template reactions must be manually formulated and 
curated. manual curation is also required for information 
about protein-complex stoichiometry and the presence 
and stoichiometry of metallo-ions or coenzymes (for 
example, flavins), as many databases do not contain this 
information. Challenges that are unique to reconstruc-
tion of TR–TR networks include reaction mechanisms 
of certain modifications (for example, tRNA modifica-
tions51) or pathways (for example, iron–sulphur cluster 
biogenesis) that are not well established131 (BOX 5). These 
reactions and pathways need to be tracked in the recon-
struction (for example, by using notes or a confidence 
score) to allow their update as new information becomes 
available.

Step three: converting a genome-scale reconstruction to 
a computational model. The reactions list generated in 
steps one and two can be readily converted into a math-
ematical format using bioinformatically driven pro-
gramming that extracts the stoichiometric coefficients 
from each network reaction and transfers them into the 
matrix. The network boundaries in TR–TR networks 
typically border metabolism: metabolic components 
are imported or exported across these boundaries. The 
uptake constraints for these metabolites can be derived 
from experimental data (for example, overall protein 
content) as a function of growth rate. These param-
eters have been directly measured for E. coli cells with 
40-minute doubling times52.

Step four: reconstruction uses and integration of high-
throughput data. The reconstruction of TR–TR networks 
is a first step towards a new generation of cellular net-
work models that will account quantitatively for mRNA 
and protein abundance. These models could increase 
the scope of modelling and therefore our understanding 
of cellular processes. For example, such models would 
allow us to calculate ribosome production at different 
growth rates and determine functional interactions of 
the network proteins by detecting functional modules. 
Furthermore, such TR–TR networks will increase our 
understanding of the relationship between mRNA and 
protein abundance and will allow us to consider the 
cost of the cellular machinery synthesis through in silico 
modelling. The reconstruction of TR–TR networks will 
also enable quantitative integration of high-throughput 
data to both expand and refine our knowledge of TR–TR 
networks and its components. However, there is a need 
to develop approaches to map relative or absolute 
molecule concentration data onto network reactions. 
Although it might be easier to integrate transcriptomic 
and proteomic data, an integration procedure that uses 
chromatin immunoprecipitation followed by microar-

ray hybridization (ChIP–chip) to quantify the binding 
affinities of the RNA polymerase or other transcription 
factors needs to be established. lastly, integration of the 
TR–TR network with other cellular processes should 
enable a mechanistically detailed and comprehensive 
description of the capabilities of different organisms.

transcriptional regulatory networks
The basic structure of transcriptional regulatory net-
works (TRNs) involves the interactions between tran-
scription factors and their target promoters that lead to 
activation or repression of transcription. This defini-
tion of a network boundary does not include upstream 
environmental and intracellular signals that regulate 
transcription-factor activity or any additional regula-
tory mechanisms that might influence gene-expression 
levels (for example, DNA is compacted by various pro-
teins that influence DNA structure such that it cannot 
be efficiently transcribed). most of the experimental 
and computational activities to elucidate TRNs have so 
far focused on mapping the basic structure of the net-
work, and therefore this Review will concentrate on the 
network of transcription-factor–promoter interactions. 
ChIP–chip has also been used to map genome-wide 
locations of proteins that are involved in the packaging 
of DNA53,54 (for example, histones and histone-like pro-
teins), and it is expected that future reconstructions of 
TRNs will include global regulation of DNA accessibil-
ity and thus transcription in addition to local regulation 
at specific promoters by specific transcription factors.

Step one: automated reconstruction. In contrast to 
metabolic networks, for which experimental methods 
to measure system-wide levels of metabolites and fluxes 
are not yet fully developed, methods for large-scale 
measurement of TRN interactions and components 
are already well established. This has enabled the 
development of top-down approaches for TRN recon-
struction that integrate multiple high-throughput data 
sets to reconstruct TRNs. The types of experimental 
approaches that are used for high-throughput studies 
of TRNs are typically multiplexed versions of classical, 
low-throughput assays for gene expression, in vitro 
DNA binding and in vivo DNA binding.

The most direct way to experimentally map TRNs 
is to determine genome-wide in vivo binding sites of 
a transcription factor using high-throughput versions 
of the ChIP assay. The most commonly used method 
is ChIP–chip, which uses a microarray-based approach 
to detect genomic loci if a given transcription factor 
binds under a given condition55. ChIP–chip data have 
now been generated in diverse microorganisms and for 
numerous transcription factors, allowing comprehen-
sive mapping of TRNs, especially in yeast56. However, 
challenges remain in applying ChIP–chip (for example, 
transcription-factor antibody availability). To fully map 
TRNs, ChIP–chip experiments need to be performed 
for the same transcription factor under multiple con-
ditions, as the set of target genes can vary from one 
condition to another57. Analogous to the development 
of multiplexed ChIP assays, high-throughput in vitro 
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Bibliomic data
Legacy data that are contained 
in peer-reviewed scientific 
publications. The ‘omic 
designation represents a 
comprehensive assessment of 
legacy data for a target 
organism.

DNA-binding assays that use both microarray58 and 
microfluidic platforms59 have been developed. In vitro 
methods reveal potential transcription-factor binding 
sites in a condition-independent manner. These in vitro 
methods require purified proteins and therefore can be 
challenging to apply in practice. However, they have 
been shown to provide valuable complementary data to 
in vivo experiments60.

Array-based, genome-wide gene-expression profiling-
based approaches are perhaps the most widely used meth-
ods to characterize TRN function. Expression profiling 
studies of strains in which specific transcription factors 
have been deleted61,62 or overexpressed are particularly 
useful63. In addition, large compendia of gene-expression 
data measured in response to different genetic and envi-
ronmental perturbations can be used to identify candidate 
regulatory interactions64 and transcriptional modules, as 
well as potential regulators for these modules65. However, 
gene-expression profiling alone is not sufficient to dif-
ferentiate between direct transcription-factor binding on 
a given promoter and indirect effects.

A major challenge remains in integrating all the avail-
able experimental data types, as well as cis-regulatory 
motif information derived from sequence conservation, 
to systematically reconstruct TRNs56,66. ChIP–chip data 
alone are sufficient to reconstruct the connectivity of the 
TRN, but expression profiling data on transcription-fac-
tor deletion or overexpression or time-course expression 
profiling studies are required to establish the mode of 
regulation (activation or repression). Furthermore, com-
binatorial interactions between transcription factors on 
promoters can only be mapped by performing expression 
profiling experiments in multiple transcription-factor 
deletion strains61 or by performing ChIP–chip experi-
ments for one transcription factor in strains in which 
another transcription factor has been deleted67.

Fully automated TRN reconstruction would 
require ChIP–chip experiments that target all major 
transcription factors and allow gene-expression pro-
filing of transcription-factor deletion strains under a 
set of representative experimental conditions. If these 
types of data are available and are of sufficiently high 
quality, TRN reconstruction can be done in a largely 
automated manner. Recent developments in massively 
parallel sequencing technologies promise to further 
improve our ability to automatically reconstruct TRNs 
by providing higher resolution, sensitivity and quality 
data on both gene expression68 and DNA binding69 

compared with array-based methods. As an alternative 
to full mapping of transcription factor–target interac-
tions, a number of approaches have been developed to 
identify condition-dependent co-regulated gene clus-
ters or modules based on large gene-expression data 
sets and assign regulators to these clusters based on a 
combination of ChIP–chip data, expression response 
to transcription-factor deletions, cis-regulatory motifs 
and time-dependent gene-expression profiling data65,70. 
These types of approaches do not always allow all 
individual regulatory interactions to be mapped, but 
they substantially reduce the complexity of the TRN 
reconstruction problem.

Step two: reconstruction based on bibliomic data. 
Analogous to the reconstruction of metabolic networks, 
TRNs can be reconstructed in a bottom-up way based on 
both genomic and bibliomic data. Genomic data can be 
used to identify potential transcription factors as well as 
potential transcription-factor target sites through com-
parative genomics of closely related species71. However, 
genomic information alone is insufficient to obtain 
predictions of transcription-factor functions or targets72 
and thus substantial amounts of additional experimental 
information is required. The reconstruction of TRNs 
based on bibliomic data relies on individual studies on 
transcriptional regulation of single promoters that typi-
cally aim to dissect the role of different binding sites on 
the promoter using gene-expression assays (for example, 
northern blots, reverse transcription PCR or reporter 
gene approaches) in response to transcription-factor 
deletions or partial deletions of promoter regions, in vivo 
DNA-binding assays (for example, ChIP) and in vitro 
DNA-binding assays. The challenge in using literature 
data is that only a subset of all the promoters have been 
extensively characterized, and even in well-characterized 
organisms, such as E. coli, the conditions, methods and 
strains used can be variable. For these reasons, bottom-
up reconstructions are only expected to provide a par-
tial picture of the full TRN, and their main role in most 
species would be to provide validation data for more 
comprehensive top-down reconstruction approaches. A 
limited number of databases currently store literature-
derived information on transcriptional regulation: the 
most comprehensive is RegulonDB for E. coli73.

Step three: converting a genome-scale reconstruction 
to a computational model. TRNs reconstructed using 
either automated or bibliomic methods are typically 
represented in two alternative ways: as graphs on which 
each transcription-factor node is connected to its tar-
get gene nodes by a directed edge or as co-regulated 
gene modules with candidate transcription factors and 
environmental (for example, carbon source) regulators 
associated with each module. However, for the network 
to predict expression responses to environmental or 
genetic perturbations, these network reconstructions 
must be converted to computational models using one 
of the possible modelling frameworks. Although sto-
chastic and kinetic models provide a good starting point 
for small-scale regulatory network modelling, these 
approaches do not scale up to larger and genome-scale 
networks. most large-scale regulatory network models 
built so far have used Boolean network approaches and 
a range of probabilistic modelling frameworks, includ-
ing simplified additive kinetic modelling approaches 
using, for example, log-linear kinetics66,74,75.

The choice of modelling framework is largely deter-
mined by the type of network reconstruction that is used 
as a starting point to build the model, the type of data that 
are available to parameterize the model and what types of 
predictions one wants to make. Boolean representations 
provide a good starting point for building qualitative 
models based on TRNs reconstructed primarily using 
bibliomic data61,76. Boolean models have been built 
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for E. coli and yeast, and these representations can be 
further converted to a matrix formalism that allows 
more straightforward integration with metabolic net-
work models77. many different probabilistic modelling 
frameworks, including probabilistic Boolean networks74 
physical network models66 and more complex types of 
models75, have been applied to reconstruct large-scale 
TRNs. However, most of these approaches have been 
used as tools for systematic data-based TRN recon-
struction and have not yet been used to build large-scale 
predictive models.

By contrast, recent studies have used additive kinetic 
modelling approaches to model genome-scale TRNs 
either in settings in which the network structure is 
known; for example, based on ChIP–chip or bibliomic 
data78 or in conjunction with methods that identify 
co-regulated gene clusters70. unlike Boolean models, 
these simplified kinetic models can be used to predict 
quantitative dynamic expression changes, but substan-
tial amounts of time-course gene-expression data are 
usually needed to parameterize the models. Recently, a 
predictive, additive kinetic model of the Halobacterium 
salinarum TRN GENRE was built using a combination 
of computational methods70. First, condition-dependent 
regulatory modules were built using bi-clustering of a 
well-designed gene-expression data compendium 
together with cis-regulatory motif information, and 
then quantitative effects of transcription factors and 
environmental factors on expression of these modules 
were identified based on dynamic gene-expression data. 
The H. salinarum study also showed that predictive 
TRN models can be built even for species with poorly 
characterized TRNs, as sufficient quantities of relevant 
high-throughput data can be generated in a systematic 
manner.

Step four: applications of TRN models. Analyses 
performed using TRN models have identified novel 
regulatory interactions and predicted general patterns 
of cellular behaviour. For example, a previous effort 
combined a comprehensive literature-based reconstruc-
tion of the TRN that controls metabolism in E. coli with 
expression profiling of single and double transcription-
factor deletion strains to improve the ability of an 
integrated regulatory and metabolic network model to 
predict phenotypes and expression changes61. Similarly, 
when predictions from the H. salinarum model70 were 
compared with experimental data, a number of novel 
regulators for key cellular processes in this archaeon 
were identified.

Technologies for mapping TRNs are maturing 
rapidly and promise to allow largely automated recon-
struction of these types of networks in the near future. 
major challenges still remain in modelling TRNs in a 
physicochemically realistic fashion and in integrating 
TRNs with other cellular processes. The signalling path-
ways that lead to the activation of transcription factors 
are also less understood than the TRN itself and the 
experimental techniques for mapping these pathways 
are not as well developed as TRN mapping methods 
(discussed below).

expansion of reconstruction efforts 
Together, the metabolic, transcriptional regulation, 
translation and transcription processes represent a 
sizable fraction of the genes in a microbial genome. 
However, other networks are also being intensively stud-
ied and will probably be the subject of future network 
reconstruction efforts. Such efforts are likely to develop 
according to four-step reconstruction processes that 
parallel those described above.

Two-component signalling systems are an example of 
this type of network. Current models of TRNs in E. coli 
already include some of the known two-component 
signalling pathways that respond to metabolic stimuli61. 
The components of two-component signalling pathways 
(histidine kinases and response regulators) can be identi-
fied easily by sequence homology, but the connectivity of 
these pathways is not completely known, even in E. coli. 
Progress has recently been made to systematically map 
the connectivity of two-component pathways in E. coli79 
and other bacteria80 using a range of experimental 
methods. It is expected that in the future comprehen-
sive reconstructions of two-component systems can be 
achieved by combining literature-based information 
with these types of high-throughput data81.

The second type of network that has attracted increas-
ing attention in recent years is the translational regulatory 
network controlled by sRNAs. The most common mecha-
nism for sRNA action is the repression of specific-mRNA 
translation through the binding of translation initiation 
regions, although other mechanisms, including the regu-
lation of protein expression or activity, also exist82. It has 
been estimated that typical bacterial genomes carry up to 
300 sRNA genes and that these sRNAs play a crucial part 
in the control of cellular functions, including metabolism 
and virulence83. The process of finding sRNAs in bacte-
rial genomes is reasonably well-established84, but find-
ing mRNA targets for these sRNAs is still challenging. A 
number of experimental and computational techniques 
have been devised to determine the targets of sRNAs at 
the genome-wide scale (reviewed in REFs 82,85), which 
will accelerate the process of mapping comprehensive 
sRNA regulatory networks. Initial systems studies of 
the known sRNA regulatory network in E. coli have 
indicated that sRNA regulation acts in concert with 
transcriptional regulation to provide mechanisms that 
allow tight, condition-dependent regulation of target 
protein levels86.

integration of network reconstructions
once two or more of the five different types of networks 
described above have been reconstructed for a target 
organism, they can be integrated to form computational 
GENREs and computational GEms that span a high 
number of cellular activities.

The integration of TRN and metabolic networks 
has received the most attention to date because these 
two network types have been most comprehensively 
reconstructed61,76,87 (see Supplementary information 
S1 (table) for metabolic networks). TRNs regulate 
metabolism by modulating active enzyme concentra-
tions, and subsequently by controlling the maximum 
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Figure 2 | Network integration: the interface between different types of reconstruction. The ultimate goal of 
network reconstruction is to fully represent every component of the cell and define the interactions between them. 
Reconstruction of metabolism, transcriptional regulation, and transcriptional and translational networks is currently 
possible (see the main text), but to date most emphasis has been put on metabolic reconstruction. Incorporation of small 
RNAs (sRNA) and two-component signalling interactions are future areas of reconstruction in which reconstruction 
technologies and development are needed. For integration of networks, the interplay between each of the processes 
needs to be defined to fully connect each of the major cellular functions.

Stoichiometric matrix
A matrix that contains the 
stoichiometric coefficients for 
the reactions that constitute a 
network. The rows represent 
the compounds, the columns 
represent the chemical 
transformations and the entries 
represent the stoichiometric 
coefficients.

flux levels through reactions. The levels of metabolites, 
in turn, regulate gene expression and thus the two  
networks are an integrated process.

Integration of metabolism and transcription and 
translation processes is straightforward in princi-
ple. on the one hand, transcription and translation 
requires energy and building blocks, such as nucle-
otides and amino acids, as inputs, and therefore these 
processes are constrained by the ability of the meta-
bolic network to produce these precursors48. on the 
other hand, the transcription and translation processes 
exert demands on the metabolic network function and 
thus limit other metabolic functions48. Furthermore, 
the TR–TR network feeds back to the metabolic net-
work by controlling the levels of the enzymes in the 
metabolic network.

Although GENREs that include three or more differ-
ent networks have not been produced, they should be 
achievable. In principle, each network can be described 
by a stoichiometric matrix once the underlying reactions 
have been determined. Stoichiometric matrices for 
metabolism have been produced (‘m’ matrix), and a 
stoichiometric matrix format for TR–TR reactions (‘E’ 
matrix), which form the expression state of networks, 
is also achievable131. TRN reconstruction (‘o’ matrix) 
in bacteria can be based on the operon structure of a 
genome and could also be described by a correspond-
ing stoichiometric matrix, once the underlying chemical 
reactions have been defined. Given that stoichiometric 
matrices can be integrated in a one-step process, an 
‘omE’ matrix that describes the integrated network can 
be formulated. Currently, however, TRNs are described 
by a set of logistical statements and, although a matrix 
format has been developed for Boolean statements77, 
which has enabled network integration, we ultimately 

need to seek chemical representation of TRNs. Working 
towards this aim, a small-scale integration of the three 
networks has been produced87, foreshadowing what is to 
come at the genomic scale.

Conversion to a computational model
Integrated network reconstructions, which are essentially 
two-dimensional annotations88, can be used to build 
GEms that represent the functions of integrated networks 
to make phenotypic predictions (FIG. 2). This conversion 
mathematically describes the reactions that have been 
shown to take place in a network of interest1 and therefore 
represents the conversion of a BiGG knowledge base into a 
GEm. The use of computational approaches to interrogate 
the properties of GEms has been described2. GEms have 
been used for experimentation in three ways4: to discover 
missing content in a reconstruction, to understand inte-
grated physiological process and to prospectively design 
experiments and physiological processes. The first topic 
is germane to this Review, as it is aimed at systematically 
discovering the missing content of a reconstruction.

the effects of missing network content
An important issue in the conversion of a network recon-
struction into a predictive computational model is the 
coverage and accuracy of available data from which the 
network was reconstructed. Therefore, it is important to 
understand the impact and influence network components 
can have on computational results. Intended-use examples 
of in silico models are used to help understand this issue.

Qualitative predictions obtained using GEms (for 
example, will an organism grow during a particular envi-
ronmental or genetic perturbation, or does gene expres-
sion increase or decrease) are likely to be less sensitive than 
quantitative predictions (for example, what is the cellular 
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growth rate or what level of gene expression is expected) 
to errors in network content. This is because qualitative 
predictions are compared with binary outcomes (dig-
ital outcomes), rather than a range of numerical values 
(analogue outcomes). If qualitative predictions regarding 
growth phenotypes are being generated, omitting an indi-
vidual reaction from a network will not affect the results. 
For example, individually removing approximately 87% 
of the 2,077 reactions from an E. coli metabolic model 
(iAF1260 (REF. 30)) did not affect the qualitative growth 
predictions for a particular environmental condition.

In-depth studies have been performed to assess the 
influence of individual network components, input 
parameters and the querying methods that are used to 
probe GEms on computational predictions. The results 
from these studies can be used to gauge the influence of 
the content of reconstructions. For example, these analyses 
examine input and output values30,43,89,90, biomass objective 
function composition30,40,43,91,92, querying methods93,94 and 
network components90,95–100. TRNs and TR–TR networks 
are less developed and are expected to be more difficult to 
assess than metabolic networks owing to the highly non-
linear structure of some components of the network, the 
higher number of interactions that are typically observed 
per component and the greater amount of missing knowl-
edge in these networks. missing regulatory interactions 
between transcription factors and metabolic target genes 
in the network would thus be expected to have a moderate 
effect on predictive abilities, as the regulation is likely to 
be highly redundant.

These initial studies demonstrate the necessity to 
identify the scope and intention of GENRE applications 
a priori and further show how computational analysis 
can help identify missing components and errors when 
computational results are compared with biological func-
tions. This model-driven gap-filling approach is expected 
to continue to develop and lead to GEms with improved 
predictive capabilities.

Conclusions
The reconstruction process relies on work flows that 
organize and integrate various data types and other 
relevant information about the network of interest. 
over the past 10 years, the development of work flows 
for genome-scale metabolic networks has increased 
to the point at which they represent BiGG knowledge 
bases and are in wide use. more recently, similar meth-
ods have been developed for other cellular processes, 
such as transcriptional regulation, transcription and 
translation. The implementation of these work flows 
for a growing number of organisms should accelerate 
systems analysis in a single organism, in communities 
of organisms and phyla. The work flows reviewed here 
have been implemented and have enabled a wide range 
of analyses4. To facilitate wider use and the develop-
ment of additional analysis procedures, improvements 
in the distribution of GENREs are needed. Two areas 
that will aid distribution and usage are the standardiza-
tion of a reconstruction format (for example, SBml101 
(Systems Biology markup language; see Further 
information) and available reconstruction databases, 
if accessible.

It is expected that the reconstruction process will 
continue to grow in scope, depth and accuracy, and 
enable a broadening spectrum of basic and applied 
studies. The availability of high-quality comprehensive 
reconstructions will accelerate the implementation of 
the systems biology paradigm (biological components 
to networks to computational models to phenotypic 
studies), which will help us realize the broad trans-
formative potential of this paradigm in the life sciences. 
Network reconstructions are necessary for us to build 
a mechanistic genotype–phenotype relationship. To 
date, quantitative genotype–phenotype relationships 
have been best established for bacterial metabolism4, 
and this Review should help new practitioners build 
such relationships for their target organisms.
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