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ON THE APPROXIMABILITY OF INFLUENCE IN SOCIAL
NETWORKS∗
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Abstract. In this paper, we study the spread of influence through a social network in a model
initiated by Kempe, Kleinberg, and Tardos [Maximizing the spread of influence through a social net-
work, in Proceedings of the 9th ACM SIGKIDD International Conference, Washington, D.C., 2003,
pp. 137–146], [Influential nodes in a diffusion model for social networks, in Proceedings of the 32nd
International Colloquium on Automata, Languages, and Programming (ICALP), Lisbon, Portugal,
CITI, 2005, pp. 1127–1138]: Given a graph modeling a social network, where each node v has a (fixed)
threshold tv, the node will adopt a new product if tv of its neighbors adopt it. Our goal is to find a
small set S of nodes such that targeting the product to S would lead to adoption of the product by a
large number of nodes in the graph. We show strong inapproximability results for several variants of
this problem. Our main result says that the problem of minimizing the size of S, while ensuring that
targeting S would influence the whole network into adopting the product, is hard to approximate
within a polylogarithmic factor. This implies a similar result if only a fixed fraction of the network
is ensured to adopt the product. Further, the hardness of approximation result continues to hold
when all nodes have majority thresholds or have constant degrees and thresholds two. The latter
answers a complexity question proposed in [P. A. Dreyer, Applications and Variations of Domination
in Graphs, Ph.D. thesis, Rutgers University, Piscataway, NJ, 2000], [F. S. Roberts, Graph-theoretical
problems arising from defending against bioterrorism and controlling the spread of fires, in Proceed-
ings of DIMACS/DIMATIA/Renyi Combinatorial Challenges Conference, Piscataway, NJ, 2006].
When the underlying graph is a tree, we give a polynomial-time algorithm to find an optimal solution.
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1. Introduction. It is well-documented that information spreads via social net-
works. The dynamic processes governing the diffusion of information and “word-of-
mouth” effects have been studied in many fields, including epidemiology [9, 26, 31],
sociology [27, 28, 35, 24, 7], economics, and computer science [11, 30, 16, 15, 17, 5,
8, 25, 14, 18, 3, 6]. For example, a recently studied problem in the area of viral
marketing is the following: Suppose that we would like to market a new product and
hope it will be adopted by a large fraction of individuals in the network. Which set of
individuals should we “target” (for instance, one form of “targeting” involves offering
free samples of the product)? The answer to the question depends crucially on the
network structure and the extent to which “word-of-mouth” effects will take hold.

One simple way to model diffusion with discrete dynamics is to assume that
each individual in the network has a “threshold”: The individual becomes influenced
(i.e., adopts the new product) if a certain prespecified number of its neighbors have
adopted the product. A natural algorithmic problem arises: Given knowledge of
these thresholds, which individuals should be targeted so as to create a large wave of
adoptions? Domingos and Richardson [11, 30] studied this problem in a probabilistic
setting, and heuristic solutions were given. Kempe, Kleinberg, and Tardos [16, 17]
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APPROXIMABILITY OF INFLUENCE IN SOCIAL NETWORKS 1401

modeled the question as an optimization problem, showed that it is NP-hard to com-
pute the optimal subset to target, and developed approximation algorithms in a sub-
modular framework. Other related literature about diffusion with thresholds includes,
e.g., [23, 27, 28, 12, 7, 25].

In many studies, e.g., [23, 27, 12, 9, 31], researchers are interested in the long-
term effects of diffusion and whether some consensus can be reached. For example,
in a virus propagation network, which nodes should be immunized so that the whole
network is protected? Related work can be found in, e.g., [9, 26, 13]. In applications
like this, a key requirement is that all (or a large fraction of) individuals in the network
are influenced. In the current paper, we focus on this problem in the threshold model.
In particular, we address the question as an optimization problem: Find a small set
S of individuals such that targeting S would lead to influencing a large fraction of
individuals in the network.

1.1. The model. We now define the problem formally. Given a connected undi-
rected graph G = (V, E), let d(v) be the degree of v ∈ V . For each v ∈ V , there is a
threshold value t(v) ∈ N, where 1 ≤ t(v) ≤ d(v). Initially, the states of all vertices are
inactive. We pick a subset of vertices, the target set, and set their state to be active.
After that, in each discrete time step, the states of vertices are updated according to
the following rule: An inactive vertex v becomes active if at least t(v) of its neighbors
are active. The process runs until either all vertices are active or no additional vertices
can update states from inactive to active (it is easy to verify that the process runs
at most n − 1 rounds, where n = |V | is the number of vertices in the graph). The
process we consider is progressive; i.e., a vertex can only become active from inactive
but not vice versa.

We are interested in the following optimization problem, called Target Set

Selection: Which subset of vertices should be targeted at the beginning such that
all (or a fixed fraction of) vertices in the graph are active at the end? Observe that
a trivial solution is to target all vertices in the graph. The goal we consider in this
paper is to minimize the size of the target set.

Our model is different from Kempe, Kleinberg, and Tardos [16, 17] in the following
two respects: First, Kempe, Kleinberg, and Tardos [16, 17] focused on the maximiza-
tion problem—for any given k, find a target set of size k to maximize the (expected)
number of active vertices at the end of the process. In our paper, however, we ask for
a target set of minimum size that guarantees that all (or a fixed fraction of) vertices
are eventually active. Second, we consider deterministic, explicitly given, thresholds,
whereas the main focus of [16, 17] was on probabilistic thresholds where all thresholds
are drawn randomly from a given distribution. (For deterministic thresholds, Kempe,
Kleinberg, and Tardos [16] showed strong hardness of approximation results for the
maximization problem.)

1.2. Our results. For the general Target Set Selection problem, we show
a polylogarithmic lower bound on the approximation ratio. Specifically, the Target

Set Selection problem cannot be approximated within a ratio of O(2log1−ε n) for
any fixed constant ε > 0, unless NP ⊆ DTIME(npolylog(n)). Our proof is based on
a reduction from the minimum representative problem [21, 22].

Our result gives further evidence that, without additional assumptions such as
the probabilistic thresholds in [16, 17], the problem is completely intractable (even in
constant degree graphs with thresholds of at most two). Indeed, in the maximization
problem studied in [16, 17], for deterministic thresholds, the problem is NP-hard to
approximate within a ratio of n1−ε [16]. In related work, Aazami and Stilp [1] studied
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1402 NING CHEN

a nonthreshold propagation process called power dominating set and showed a similar
hardness of approximation result.

Our result implies the same hardness of approximation ratio if, instead of ensuring
all vertices in the network are active, we need only to activate a fixed fraction of
vertices. Our hardness result gives a negative answer to the problem proposed by
Roberts [31]—what vertices need to be “vaccinated” to make sure a virus does not
spread to a fixed fraction of the whole network?

By considering different types of thresholds and network structures, we show the
following additional results.

Majority thresholds. One important and well-studied threshold is majority,
where a vertex becomes active if at least half of its neighbors are active. It has
many applications in distributed computing, voting systems, etc. [27]. For example,
Peleg [28] proposed the use of a majority update rule for maintaining data consistency
in a distributed system. Peleg [27] proved that it is NP-hard to compute the optimal
target set for majority thresholds. For different variants of majorities and progressive
processes, different lower bounds on the size of the target set were obtained [23, 28, 7].
For further information about majority thresholds, see [27].

For the majority thresholds setting, we show that the problem shares the same
hardness of approximation ratio as the general setting. In particular, this implies that
the majority thresholds setting does not admit any approximation algorithm of a ratio
better than O(2log1−ε n) for any fixed constant ε > 0. To the best of our knowledge,
this is the first inapproximability result for majority thresholds.

Small thresholds. Another interesting special case is when all thresholds are
small, say, constant [32]. Dreyer [12] showed that if the threshold of every vertex
is k for any k ≥ 3, the Target Set Selection problem is NP-hard. However, it
leaves as an open problem [32] for the case of k = 2. Note that, the problem can be
solved trivially for the case of k = 1: Target an arbitrary vertex in each connected
component.

In this paper, we solve the problem by proving it is NP-hard as well when k = 2.
Indeed, we show a much stronger and surprising result: Approximating the Target

Set Selection problem in the threshold 2 setting is as hard as approximating the
problem in the general setting, even for constant degree graphs. Our result implies
that, to study upper or lower bounds on the approximation ratio of the Target Set

Selection problem, it suffices to consider the threshold 2 setting.
Our proof is based on our hardness result for majority thresholds and the simula-

tion of monotone boolean circuits. Specifically, observe that the state of each vertex
can be viewed as a boolean variable and written as a majority boolean function of
the states of its neighbors. By the results built on sorting networks [20], e.g., the
seminal work by Ajtai, Komlós and Szemerédi [2], a majority boolean function can
be simulated by a polynomial size monotone circuit. Thus, the influence propagation
in a social network can be viewed as running a polynomial size monotone circuit on
each vertex locally. Given this idea, we construct gadgets composed of vertices with
thresholds of at most 2 to simulate each AND and OR gate in the circuit.

Unanimous thresholds. The most influence-resistant setting are unanimous
thresholds; i.e., the threshold of each node is equal to its degree. For example, in an
ideal virus-resistant network, a vertex is infected only if all of its neighbors are infected.
Understanding this particular case can help us to construct robust virus-resistant
network structures. We show that the problem with unanimous thresholds is equiva-
lent to vertex cover, which implies that it admits a 2-approximation algorithm.
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APPROXIMABILITY OF INFLUENCE IN SOCIAL NETWORKS 1403

Tree structure. One simple, but important, class of social networks are trees.
For example, in query incentive networks [19, 4], the graph is modeled by a tree
structure. When the underlying social network is a tree, Dreyer [12] gave a polynomial-
time algorithm to compute the optimal target set if all thresholds are the same. We
generalize the result to arbitrary thresholds, using dynamic programming. In a recent
paper, Ben-Zwi et al. [6] generalize our result to show a polynomial-time algorithm
when the graph has constant treewidth.

2. A polylogarithmic hardness result. In general, the Target Set Selec-

tion problem is hard to approximate within a near polynomial ratio.
Theorem 2.1. Unless NP ⊆ DTIME(npolylog(n)), the Target Set Selec-

tion problem cannot be approximated within the ratio of O(2log1−ε n) for any fixed
constant ε > 0.

We will prove the theorem by a reduction from the minimum representative (Min-

Rep) problem [21, 22]. We begin by describing the MinRep problem and then show
the reduction.

2.1. The MINREP problem. Given a bipartite graph G = (A, B; E), where
A and B are disjoint sets of vertices, there are explicit partitions of A and B into
equal-sized subsets. That is, A =

⋃α
i=1 Ai and B =

⋃β
j=1 Bj , where all sets Ai have

the same size |A|/α and all sets Bj have the same size |B|/β. The partition of G
induces a supergraph H as follows: There are α + β supervertices, corresponding to
each Ai and Bj , respectively, and there is a superedge between Ai and Bj if there
exist some a ∈ Ai and b ∈ Bj that are adjacent in G. Figure 1 gives an example of
the MinRep problem, where each set Ai has three vertices and Bj has four vertices.

v

u

A 1 A i A α

B 1 B j B β

Fig. 1. An instance of the MinRep problem.

We say a pair (a, b) covers a superedge (Ai, Bj) if a ∈ Ai and b ∈ Bj are adjacent
in G. For example, in Figure 1, (u, v) covers superedge (A1, Bj). We say S ⊆ Ai ∪Bj

covers a superedge (Ai, Bj) if there exist a, b ∈ S such that (a, b) covers (Ai, Bj).
The goal of the MinRep problem is to select the minimum number of represen-

tatives from A ∪ B such that all superedges are covered. That is, we wish to find
subsets A′ ⊆ A and B′ ⊆ B with the minimum total size |A′| + |B′| such that, for
every superedge (Ai, Bj), there exist representatives a ∈ A′ ∩Ai and b ∈ B′ ∩Bj that
are adjacent in G.
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1404 NING CHEN

The MinRep problem is closely related to the label cover problem that models
two-prover one-round proof systems, and the following result follows directly from the
parallel repetition theorem [29].

Theorem 2.2. For any fixed ε > 0, the MinRep problem cannot be approximated
within the ratio of O(2log1−ε n) unless NP ⊆ DTIME(npolylog(n)).

2.2. Proof of Theorem 2.1. For any given MinRep instance G = (A, B; E),
let M be the number of superedges and N be the total input size. In the reduction,
we will use a number of the following basic gadgets Γ� (see Figure 2), where t(vi) = 1
for i = 1, . . . , �.

v1 v2 v
denoted by

Γ

Fig. 2. The basic gadget Γ�.

We next describe the construction of graph G′ for the Target Set Selection

problem. Basically, G′ consists of four different groups of vertices V1, V2, V3, and
V4, where the vertices between different groups are connected by the basic gadgets
described above.

• V1 = {a | a ∈ A} ∪ {b | b ∈ B} and each vertex has threshold N2.
• V2 = {ua,b | (a, b) ∈ E} and each vertex has threshold 2N5. Vertex ua,b ∈ V2

is connected to each of a, b ∈ V1 by a basic gadget ΓN5 .
• V3 = {vi,j | Ai, Bj are connected by a superedge} and each vertex has thresh-

old N4. Vertex ua,b ∈ V2 is connected to vi,j ∈ V3 by a basic gadget ΓN4 if
a ∈ Ai and b ∈ Bj .

• V4 = {w1, . . . , wN} and each vertex has threshold M · N2. Each vertex
vi,j ∈ V3 is connected to each wk ∈ V4 by a basic gadget ΓN2 , and each
vertex a, b ∈ V1 is connected to each wk ∈ V4 by a basic gadget ΓN .

Figure 3 displays the structure of the construction.
We claim that the size of the optimal MinRep solution of G is within a factor

of two of the size of the optimal Target Set Selection solution of G′. Thus,
any approximation algorithm for Target Set Selection essentially gives the same
approximation ratio (up to at most a constant factor) for MinRep.

Assume that A′ ⊆ A and B′ ⊆ B are an optimal MinRep solution of G. We
claim that A′∪B′ ⊆ V1 is a Target Set Selection solution of G′. Since A′∪B′ is a
MinRep solution, for any superedge (Ai, Bj), there exist a ∈ A′ ∩Ai and b ∈ B′ ∩Bj

such that (a, b) ∈ E. Thus, vertex ua,b ∈ V2 can be activated, which implies that
vi,j ∈ V3 can be activated as well. This is true for all superedges, and thus all vertices
in V3 are active, which implies that all vertices in V4 are active. Therefore, all vertices
in V1 can be activated, which induces all vertices in G′ to be active at the end.

On the other hand, let S be an optimal Target Set Selection solution of G′.
First of all, it is safe to assume that no middle vertices v1, . . . , v� from any basic gadget
Γ� are in S. Second, we can assume without loss of generality that no vertices in V3

are in S. This is because if there is a vertex vi,j ∈ S ∩ V3, then we can remove vi,j
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V1

threshold = N 2

V2

threshold = 2N 5

V3

threshold = N 4

V4

threshold = M · N 2

a b

ua,b

ΓN 5 ΓN 5

vi, j

ΓN 4 ΓN 4 ΓN 4

w1 wk wN

ΓN 2 ΓN 2 ΓN 2

ΓN ΓN ΓN

Fig. 3. The structure of graph G′.

from S and include ua,b ∈ V2 to S, where a ∈ Ai and b ∈ Bj , which gives a solution
of the same size. Finally, if there is a vertex ua,b ∈ S ∩V2, we can remove ua,b from S
and include a, b ∈ V1 to S. By doing this, the size of S is increased by at most a factor
of two. Now S contains only vertices from V1 and V4, i.e., S ⊆ V1 ∪ V4. According
to our construction, those vertices in S ∩ V4 cannot affect any other vertices until all
vertices in V4 are active. Therefore, the only direction for influence to flow in G′ is
through the channel V1 → V2 → V3 → V4. However, to activate any vertex w ∈ V4 \S,
all vertices in V3 have to be activated. This implies that S ∩V1 is a MinRep solution
of G.

By Theorem 2.2, we have the same hardness of approximation result for the
Target Set Selection problem, which completes the proof of Theorem 2.1.

2.3. Extensions. We observe that Theorem 2.1 continues to hold for a few
extensions:

• The optimal solution influences each vertex in a constant number of rounds.
This follows directly from the above construction, i.e., Figure 3.

• Instead of ensuring that all vertices in the network are active, only a fixed
fraction of vertices need to be activated. This can be done by the following
simple reduction: For the given graph G = (V, E), let n = |V |. We construct
a new graph G′ as follows: Replace each edge in E by a basic gadget Γn,
and define the new threshold of each v ∈ V in G′ to be t′(v) = n · t(v). It is
easy to see that G and G′ have the same optimal solution. In graph G′, by
adding many dummy vertices (with thresholds being equal to their degrees)
and connecting to all original vertices in V , it can be seen that to activate a
fixed fraction of vertices, all vertices in V have to be activated.
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1406 NING CHEN

3. Majority thresholds. In this section, we consider majority thresholds ; i.e., a
vertex becomes active if at least half of its neighbors are active. Formally, for each
v ∈ V , t(v) =

⌈d(v)
2

⌉
.1

Theorem 3.1. Assume that the Target Set Selection problem with arbitrary
thresholds cannot be approximated within the ratio of f(n) for some polynomial-time
computable function f(n). Then the problem with majority thresholds cannot be ap-
proximated within the ratio of O(f(n)).

Proof. For any graph G = (V, E) with arbitrary thresholds, we will construct
another graph G′ with majority thresholds such that the size of the optimal Target

Set Selection solution of G′ and G differs by at most 1. The basic idea is, for each
v ∈ V with t(v) 	= ⌈ d(v)

2

⌉
, to add some dummy vertices incident to v (and change the

threshold of v, if necessary) such that the threshold of v in the new setting is majority.
To be specific, for any v ∈ V with threshold t(v) and degree d(v), there are the

following two cases:
Case 1

(
t(v) >

⌈d(v)
2

⌉)
. For this case, we add 2t(v)−d(v) isolated dummy vertices

incident to v and with threshold 1 each.
Case 2

(
t(v) <

⌈d(v)
2

⌉)
. For this case, we add d(v)−2t(v) isolated dummy vertices

incident to v and with threshold 1 each. Furthermore, let the new threshold
of v be d(v) − t(v).

In addition, we add a “super” vertex u and connect u to all dummy vertices added
in the above Case 2. Let the threshold of u be its majority. Denote the resulting graph
by G′. Note that the thresholds of all vertices in G′ are majority.

We claim that the size difference between the optimal Target Set Selection

solution of G′ and G is at most 1. For any given solution S of G, it can be seen that
S ∪ {u} is a Target Set Selection solution of G′. On the other hand, consider
any optimal solution S′ of G′. Assume without loss of generality that no dummy
vertices added in Cases 1 and 2 are in S′. If u ∈ S′, then S′ \ {u} is a solution of G.
Otherwise, S′ itself is a solution of G.

Therefore, the size of the optimal solution of G′ and G differs by at most 1. Thus,
essentially they share the same hardness of approximation ratio.

Given the hardness result of Theorem 2.1 and the above result, the following
conclusion follows immediately.

Corollary 3.1. The Target Set Selection problem with majority thresholds
cannot be approximated within the ratio of O(2log1−ε n) for any fixed constant ε > 0,
unless NP ⊆ DTIME(npolylog(n)).

4. Small thresholds. When the thresholds are small, say, all equal to one
(i.e., t(v) = 1 for any v ∈ V ), the problem can be solved trivially: For each con-
nected component of the graph, we target a vertex arbitrarily. Surprisingly, the
problem becomes even hard to approximate when we extend the thresholds to be at
most 2. We will first show a simple NP-hardness proof and then prove the hardness
of approximation result.

4.1. NP-hardness.
Theorem 4.1. The Target Set Selection problem is NP-hard when the

thresholds are at most 2, even for bounded bipartite graphs.
Proof. We reduce from the following restricted version of 3SAT [33]: Given a

formula φ(x1, . . . , xn) = C1∧· · ·∧Cm, where xi and x̄i appear at most three times and

1In our discussions, we assume that ties are broken in favor of “prefer-to-change.” All our results
continue to hold for other tie-breaking rules.
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each clause Cj contains at most three literals, we are asked if there is an assignment
that satisfies φ. Note that we can assume without loss of generality that both xi and
x̄i appear at least once in φ, because otherwise we can simply decide the assignment
of xi and remove those already satisfied clauses.

We construct a bipartite graph G = (V, E) as follows. For each i = 1, . . . , n, given
the occurrences of xi and x̄i, we construct the following gadget in Figure 4 (use the
left one if xi occurs twice and x̄i occurs once, the middle one if xi occurs once and x̄i

occurs twice, and the right one if both xi and x̄i occur once), where the numbers on
the vertices are their thresholds.

ui

ui

vi

vi

2

2

1 1

1

1

1

2

ui

ui

vi

vi

2

2

1

21

1

1

1

ui

ui

vi

vi

2

2

1

1

Fig. 4. Gadget for each variable xi.

For each clause Cj , we add a vertex wj with threshold 1. Let W = {w1, . . . , wm}.
If xi ∈ Cj , connect vi and wj . If x̄i ∈ Cj , connect v′i and wj . Observe that, in
our construction, the threshold of each vi (resp., v′i) is equal to the number of edges
between vi (resp., v′i) and W . We claim that φ is satisfiable if and only if the optimal
target set of G has size n.

Assume that φ is satisfiable. Define the target set

(1) S = {ui | 1 ≤ i ≤ n : xi = true} ∪ {u′
i | 1 ≤ i ≤ n : xi = false}.

Note that |S| = n. If ui ∈ S, it is easy to see that vi (and all other vertices between
ui and vi on the gadget of xi) becomes active. Similarly, if u′

i ∈ S, v′i (and all other
vertices between u′

i and v′i on the gadget of xi) becomes active. Since φ is satisfiable,
by the construction of G, all vertices in W become active, which in turn implies that
all vi and v′i become active (if they were inactive). Hence, all vertices in G become
active finally.

On the other hand, let T be the set of targeted vertices. Suppose that |T | ≤ n.
Observe that, for any i = 1, . . . , n, the threshold of ui and u′

i is 2, which implies that
at least one of them is in T . Hence, |T | = n and T does not contain any vertex other
than ui, u

′
i. Consider any vertex wj . To make wj active, at least one of its neighbors

should be active before wj . Assume without loss of generality that (vi, wj) ∈ E and
vi is active before wj . To make vi active, given the threshold and our construction,
ui must be activated before vi, which could happen only if ui ∈ T . In other words,
if all vertices in W are active by targeting T , the assignment corresponding to T
(i.e., xi = true if ui ∈ T , and xi = false if u′

i ∈ T ) satisfies φ.
Hence, φ is satisfiable if and only if the optimal target set of G has size n, which

implies that the Target Set Selection problem is NP-hard.
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4.2. Hardness of approximation. Beyond NP-hardness, the problem is even
hard to approximate within a ratio of O(2log1−ε n) when t(v) = 2 (or t(v) ≤ 2). In
particular, we will show the following result.

Theorem 4.2. Assume that the Target Set Selection problem with arbitrary
thresholds cannot be approximated within the ratio of f(n) for some polynomial-time
computable function f(n). Then the problem cannot be approximated within the ratio
of O(f(n)) when all thresholds are at most 2.

We have the following corollary, which answers a complexity question proposed
in [12, 32].

Corollary 4.1. Given any graph where t(v) = 2 (or t(v) ≤ 2) for any vertex
v, the Target Set Selection problem cannot be approximated within the ratio of
O(2log1−ε n) for any fixed constant ε > 0, unless NP ⊆ DTIME(npolylog(n)).

Proof. The case where t(v) ≤ 2 follows directed from Theorems 2.1 and 4.2. It
remains to consider the case where t(v) = 2 for any vertex v.

We will prove the t(v) = 2 case by a reduction from the t(v) ≤ 2 case. Given
a graph G = (V, E) where t(v) ≤ 2 for any v ∈ V , we add a “super” vertex u and
connect u to each v ∈ V with t(v) = 1. Let the resulting graph be G′ and all thresholds
in G′ be 2. We claim that the size difference between the optimal solution of G′ and
G is at most 1. Then the claim follows from the hardness of the t(v) ≤ 2 case.

For any Target Set Selection solution S of G, it is easy to see that S ∪ {u}
is a solution of G′. On the other hand, assume that S′ is an optimal solution of G′.
If u ∈ S′, then S′ \ {u} is a solution of G. If u /∈ S′, then S′ itself is a solution of G.
This completes the proof.

Next we will prove Theorem 4.2. Our reduction is built on (1) the hardness result
of majority thresholds given by Theorem 3.1, (2) the monotone boolean circuits of
computing majority functions, and (3) the gadgets of simulating majority boolean
circuit. We begin by describing how to do the simulation and then show the reduction.

4.2.1. Simulating majority boolean circuit. A boolean function f :
{0, 1}n → {0, 1} is called a majority function if

f(x1, . . . , xn) =
{

1 if x1 + · · · + xn ≥ ⌈
n
2

⌉
,

0 otherwise.

We will use the following result by Ajtai, Komlós, and Szemerédi [2].
Theorem 4.3 (see [2]). There exist polynomial-size monotone circuits to compute

majority boolean functions, where monotone means only AND and OR gates are in
the circuit.

The basic idea is to construct small gadgets composed of vertices of thresholds of
at most 2 to simulate AND and OR gates in the circuit. For a circuit that computes
a majority function f(x1, . . . , xn), let us denote the gates in the circuit by ui. Denote
the final output gate by u0 and input gates by u1, . . . , un (corresponding to x1, . . . , xn,
respectively). Thus, each gate ui, i > n, is the output of an AND or an OR gate with
other uj ’s as inputs. The graph we construct has a vertex wi with threshold 2 for
each ui and a gadget for each AND and OR gate in the circuit. We consider AND
and OR gates, respectively, as follows.

For any AND gate, we construct the following gadget (see Figure 5), where the
value on each vertex is its threshold.

It can be seen that for the “bottom-to-top” channel (i.e., wj , wk → wi), wi is
active (corresponding to the output ui being 1) only if both wj and wk are active
(corresponding to the inputs uj and uk being 1). In addition, if only one of wj and
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∧ ui

uj uk

wi

wj wk

2

22

11

2

1

1

1
1

1

1

Fig. 5. Gadget for AND gate.

wk is active (say, wj), the center vertex of threshold 2 ensures that neither wi nor wk

can get activated due to the influence from wj . On the other hand, considering the
channel from “top-to-bottom,” once wi is active, both wj and wk become active as
well.

For any OR gate with output ui, we construct the following gadget (see Fig-
ure 6), where the value on each vertex is its threshold. Recall that w0 is the vertex
corresponding to the final output u0 of the circuit.

∨ ui

uj uk

wi

wj wk

2

22

11

1

1

1

2
1

1

2

w0

1 1 1 1

22

Fig. 6. Gadget for OR gate.

As in AND case, for the “bottom-to-top” channel (i.e., wj , wk → wi), wi is active
(corresponding to the output ui being 1) if at least one of wj and wk is active (cor-
responding to at least one of the inputs uj and uk being 1). In addition, if only one
of wj and wk is active (say, wj), even though wi can be activated, neither w0 nor
wk can get activated due to the influence from wi, wj . On the other hand, for the
channel from “top-to-bottom,” when wi is active, wj and wk can be activated once
w0 is active as well.

Denote the resulting graph by Gn. From the argument above, we know that Gn

has the following properties:
• If w0 is active, then all vertices in Gn can become active. This implies that

if there is a vertex targeted in Gn, we can assume without loss of generality
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1410 NING CHEN

that the vertex is w0. We call w0 the output vertex of Gn and denote it by
r(Gn).

• If at least half of the vertices in {w1, . . . , wn} are active, then w0 can be
activated. This holds because the circuit correctly computes the majority
function and our simulation of each gate. In the following discussions, we
denote w1, . . . , wn by the input vertices of Gn.

• If a vertex wi is inactive, then all its neighbors are still inactive. This is
important in that the propagation in Gn can only be through the channel of
“top-to-bottom” or “bottom-to-top.” In particular, this implies that if less
than half of the input vertices are active, then the remaining inactive input
vertices cannot be activated due to the influence in Gn.

4.2.2. Proof of Theorem 4.2. We are now ready to prove Theorem 4.2. Given
a graph G = (V, E), where each v ∈ V has majority threshold, we will construct a
graph G′ = (V ′, E′), where t(v) ≤ 2 for any v ∈ V ′, such that the size of the optimal
Target Set Selection solution of G is equal to that of G′. The claim then follows
from Theorem 3.1.

For each v ∈ V , let d(v) be the degree of v in G. We use a copy Gv of graph Gd(v)

to replace v and all its incident edges, where Gd(v) is the graph constructed above to
simulate majority function f(·) with d(v) input variables. Each input vertex in Gv

corresponds to an edge incident to v in E. For any edge (u, v) ∈ E, let wi and w′
j be

the two input vertices in Gu and Gv corresponding to (u, v), respectively. We connect
wi and w′

j by a basic gadget Γ2 (i.e., as Figure 7 shows, we add two vertices a1 and
a2 with threshold 1 each and connect (a1, wi), (a1, w

′
j), (a2, wi), and (a2, w

′
j)). Denote

the resulting graph by G′.

u v

Gu Gv

w1

wi

wd(u )

w1

wj

wd(v )

a1

a2

1

1

Fig. 7. Gadget for edge (u, v).

For any Target Set Selection solution S of G, let S′ = {r(Gv) | v ∈ S};
i.e., S′ contains the output vertex of each Gv for v ∈ S. For any v ∈ S, we consider
how its neighbor u could be influenced by v. In graph G, we know that u can be
influenced from v directly by one unit. In graph G′, according to the properties of Gv

established in the last subsection, we know that all vertices in Gv are active. Thus,
as u and v are connected by an edge, one of the input vertices of Gu becomes active.
Since the threshold of u in G is majority, u becomes active when at least half of its
neighbors are active, which is equivalent to at least half of the input vertices of Gu

being active (and thus, all vertices in Gu are active). Hence, the influence propagation
in G′ follows exactly the same pattern as that in G, and hence S′ is a Target Set

Selection solution of G′.
On the other hand, let S′ be an optimal Target Set Selection solution

of G′. According to the properties of simulation graph discussed above, we can
assume without loss of generality that only output vertices are in S′. Define
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S = {v ∈ V | r(Gv) ∈ S′}. By a similar argument as above, it follows that S is a
Target Set Selection solution of G.

Therefore, the size of the optimal Target Set Selection solution of G is equal
to that of G′, which completes the proof of Theorem 4.2. �

4.2.3. Constant degree graphs. In this subsection, we will show that Theo-
rem 4.2, as well as Corollary 4.1, continues to hold for constant degree graphs.

By the construction of the Ajtai, Komlós, and Szemerédi sorting network [2] and
the reduction of proving Theorem 4.2, the only vertex that has nonconstant degree in
each Gv gadget is its output vertex r(Gv). This is because, for each OR gadget, we add
four edges incident to r(Gv) as Figure 6 shows (i.e., w0). To fix this, we make a few
“identical” copies of r(Gv) such that each copy has constant degree. More precisely,
we replace r(Gv) and all its incident edges with the gadget shown in Figure 8, where
each ri, i = 1, . . . , k, is an “identical” copy of r(Gv) and k − 1 is the number of OR
gates in Gv.

2 2 2 2 2

r1 r2 r3 rk− 1 rk

1 1 1

1 1 1

Fig. 8. Gadget for the output vertex.

In particular, r1 corresponds to the original r(Gv) and each ri, i = 2, . . . , k, corre-
sponds to an OR gate and is used to add the four edges as Figure 6 shows. If one of
the ri’s becomes active, all others are active as well, and thus the resulting constant
degree graph is equivalent to the original graph.

Note that in the proof of Corollary 4.1 we add a “super” vertex u and connect u
to all vertices with threshold one. In general, the degree of u can be arbitrary. Instead
of adding one such “super” vertex, we add the following gadget (see Figure 9), where
each vi connects to a vertex in the original graph with threshold one (assume that
there are k such vertices in total).

v1 v2 v3 vk− 1 vk

Fig. 9. Gadget for the “super” vertex.

The threshold of each vertex in the resulting graph is 2. It can be seen that the size of
the optimal solution of the original and resulting graph differs by at most 2. Hence,
Corollary 4.1 still holds for constant degree graphs.

5. Unanimous thresholds. The most influence-resistant setting is the unani-
mous thresholds setting. That is, the threshold of each vertex is equal to its degree,
i.e., t(v) = d(v) for each v ∈ V . For this case, we have the following hardness result.

Theorem 5.1. If all thresholds in a graph are unanimous, the Target Set

Selection problem is equivalent to vertex cover.
Proof. In vertex cover, given a graph G = (V, E), we want to find a subset V ′ ⊆ V

such that for each (u, v) ∈ E, V ′ ∩ {u, v} 	= ∅ and |V ′| is as small as possible. We
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1412 NING CHEN

consider the same graph for the Target Set Selection problem and claim that
G has a vertex cover of size at most k if and only if Target Set Selection has a
solution of size at most k.

For any vertex cover solution V ′ of G, let the target set of G be V ′. Then, for
each v /∈ V ′, all edges incident to v are covered by the corresponding vertices in V ′,
which implies that v can be activated. Thus, by targeting V ′, all vertices are active
at the end.

On the other hand, for any Target Set Selection solution V ′, we argue that
V ′ is a vertex cover as well. For any edge (u, v), if neither u nor v is in V ′, both u
and v cannot be activated, since their threshold is equal to their degree, which is a
contradiction.

As an implication of the above result, the Target Set Selection problem
admits a 2-approximation algorithm [34] and is NP-hard to approximate better than
1.36 [10].

6. Tree structure. When the underlying graph G = (V, E) is a tree, the Tar-

get Set Selection problem can be solved in polynomial-time. The basic observa-
tion is that for any leaf v ∈ V , t(v) is equal to 1. Thus, at most one of v and its
parent u will be targeted in the optimal solution. Hence, we can assume without loss
of generality that v is not targeted; otherwise, we can target u instead of v and get a
solution of the same size. The algorithm is as follows.

Alg-Tree

1. Let t′(v) = t(v), for v ∈ V
2. Let x(v) = 0, for each leaf v ∈ V
3. While there is x(v) not defined yet
4. for any vertex u where all x(·)’s of its children have been defined
5. let w be u’s parent
6. if t′(u) ≥ 2
7. let x(u) = 1
8. let t′(w)← t′(w)− 1
9. else
10. let x(u) = 0
11. if t′(u) ≤ 0
12. let t′(w)← t′(w)− 1
13. Output the target set {v ∈ V | x(v) = 1}

Theorem 6.1. Alg-Tree computes an optimal solution for the Target Set

Selection problem when the underlying graph G = (V, E) is a tree.
Proof. Let OPT be an optimal target set solution and S be the set generated by

Alg-Tree. For each u ∈ V , let T (u) be the subtree rooted at u. Define

S(u) = S ∩ T (u)

and

OPT (u) = OPT ∩ T (u).

For any vertex u, consider the influence process in T (u). Given a target set (either
S(u) or OPT (u)), u may or may not become active before its parent. Let A(u) and
B(u) be the subset of children of u that become active before u when we target S(u)
and OPT (u), respectively.

We inductively prove the following claims:
• |S(u)| ≤ |OPT (u)| when u ∈ S or u /∈ S ∪ OPT .
• |S(u)| < |OPT (u)| when u /∈ S and u ∈ OPT .
• If |S(u)| = |OPT (u)|, u /∈ S ∪ OPT , and |B(u)| ≥ t(u), then |A(u)| ≥ t(u).
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Note that the first two claims imply that |S| ≤ |OPT |, and the theorem follows
immediately.

The claims trivially hold when u is a leaf of G (note that u /∈ S in this case).
Consider any internal vertex u in G. There are the following cases to consider.

Case 1 (u ∈ S and u ∈ OPT ). By induction, we know that for each child v of u,
|S(v)| ≤ |OPT (v)|. Thus, |S(u)| ≤ |OPT (u)|.

Case 2 (u /∈ S and u ∈ OPT ). Similarly, by induction, we have

|S(u)| =
∑

v∈T (u): (u,v)∈E

|S(v)|

≤
∑

v∈T (u): (u,v)∈E

|OPT (v)|

= |OPT (u)| − 1
< |OPT (u)|.

Case 3 (u /∈ S and u /∈ OPT ). Similarly, by induction, we know that |S(u)| ≤
|OPT (u)|.
Assume that |S(u)| = |OPT (u)| and |B(u)| ≥ t(u). Observe that |S(v)| ≤
|OPT (v)| for any child v of u. Thus, essentially |S(v)| = |OPT (v)|. By
induction, we know that if v ∈ OPT , then v ∈ S. Furthermore, if B(u)
contains a vertex v /∈ OPT , i.e., v ∈ B(u) \ OPT , we know that v is active
in T (v) given target set OPT (v), i.e., |B(v)| ≥ t(v). Hence, by induction,
|A(v)| ≥ t(v), which implies that v can be activated before u so that v ∈ A(u).
Therefore, |A(u)| ≥ |B(u)| ≥ t(u).

Case 4 (u ∈ S and u /∈ OPT ). By induction, it suffices to find a child v of u such
that |S(v)| < |OPT (v)|. Since u ∈ S, according to step 6 of Alg-Tree, we
know that t(u) ≥ 2 + |A(u)|. Note that u has at most one parent and u is
active in OPT ; we have t(u) ≤ 1 + |B(u)|. Therefore, 1 + |A(u)| ≤ |B(u)|.
Hence, we know that there is v ∈ B(u) \A(u). If v ∈ OPT and v /∈ S, we are
done because of the second inductive claim. Otherwise, v /∈ OPT ∪ S such
that |B(v)| ≥ t(v). The third claim says that if |S(v)| is not strictly smaller
than |OPT (v)|, |A(v)| ≥ t(v) and thus v is in A(u). Hence, for both cases,
|S(v)| < |OPT (v)|.

Therefore, the claim holds, which completes the proof.
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[16] D. Kempe, J. Kleinberg, and É. Tardos, Maximizing the spread of influence through a social
network, in Proceedings of the 9th ACM SIGKDD International Conference, Washington,
D.C., 2003, pp. 137–146.
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