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Simplicial complexes describe collaboration networks, protein interaction networks, and brain networks and in
general network structures in which the interactions can include more than two nodes. In real applications, often
simplicial complexes are weighted. Here we propose a nonequilibrium model for weighted growing simplicial
complexes. The proposed dynamics is able to generate weighted simplicial complexes with a rich interplay
between weights and topology emerging not just at the level of nodes and links, but also at the level of faces of
higher dimension.
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I. INTRODUCTION

Recently, generalized network structures such as multilayer
networks [1,2] and simplicial complexes [3–5] have been
attracting increasing attention in the network science commu-
nity. In the past 20 years, very significant advances in the under-
standing of complex systems have been made using network
theory [6–8]. Since the increasingly rich Big Data datasets
on social, technological, and biological systems often include
information that goes beyond what is possible to describe by a
single network, it is now becoming of fundamental importance
to characterize generalized network structures. For instance, in
many cases data include a set of interactions having different
connotations or occurring between more than two nodes. The
flourishing field of multilayer networks [1,2] defines a way
to treat networks where links have different connotations.
Simplicial complexes [3–5], instead, allow for the description
of interactions occurring between more than two nodes. As
such, simplicial complexes have an important role to play when
studying a large variety of complex systems. For example,
in scientific collaboration networks, collaboration extends to
teams of more than two scientists; in actor collaboration
networks, it is rare for a cast of a movie to include only two
actors. In on-line social networks, the rich structure of possible
actions such as tagging, posting, or linking to other users
also allows for the identification of interactions between more
than two nodes. In biology, simplicial complexes are useful
to understand protein interaction networks. In fact, in order to
perform a function, proteins in the cell bind together to form
protein complexes typically including more than two different
types of interacting protein. Interestingly, one of the first
algorithms proposed for detecting overlapping communities,
namely the clique percolation algorithm [9,10], effectively
uses cliques as simplicies to decompose the network in
different mesoscopic clusters. Finally, simplicial complexes
are becoming increasingly popular in analyzing brain networks
[3], where one needs to distinguish, for instance, between three
regions of the brain that are pairwise correlated, and the case
in which they are typically activated all at the same time.

From a network perspective, simplicial complexes can be
interchanged with hypergraphs [11,12] for the analysis of
real networked datasets. However, simplicial complexes also
have a geometric interpretation, and they can be interpreted
as the result of gluing nodes, links, triangles, tetrahedra,
etc. along their faces. As such, simplicial complexes can be

used to characterize the resulting network geometry using, for
instance, novel definitions of network curvatures [13–21] or
characterizing their emergent geometrical properties [22,23].
Simplicial complexes are also starting to be widely used
to perform topological analysis of network datasets and of
dynamical processes defined on networks [3,24–26]. Most
notably, this approach has been applied to brain functional
networks showing that these novel techniques can reveal
important differences between networked datasets that cannot
be detected by more traditional methods [3,24,25].

Different frameworks have been proposed to model simpli-
cial complexes. On one side, there are equilibrium models
of static simplicial complexes that generalize the random
graph or the configuration model to simplicial complexes
[4,11,12,27–30]. On the other side, there are nonequilibrium
models of growing simplicial complexes displaying emer-
gent structural properties and geometry [22,23,31–33]. These
models generalize at the same time growing network models
[34,35] with preferential attachment and Apollonian networks
[36–39].

In real applications, simplicial complexes are typically
weighted, which explains the need to extend the modeling
framework to characterize weighted simplicial complexes. For
instance, in scientific collaboration networks, teams of collab-
orators can be weighted by the strength of their collaboration
(i.e., how many papers a scientific collaboration has produced).
Here we characterize a weighted simplicial network model
using a nonequilibrium dynamics. The evolution of the
topology of these networks is based on the recently proposed
framework of Network Geometry with Flavor [31], which
can be used to generate networks with different complex
topology, including hyperbolic manifolds, scale-free networks,
and networks with relevant modularity.

Here our focus will be on characterizing the rich interplay
between weights and topology in these models. In single
networks [40–43], it has been shown by analysis of a vast set
of real datasets that weights might not be distributed uniformly
over the links of the network. Specifically in some networks,
hub nodes can have connections with on average stronger
weights than the typical connections of low degree nodes.
The way to characterize these weight-topology correlations
is by studying the scaling of the average strength of nodes
as a function of their degree. If the strength grows linearly
with the degree, the weights are uniformly distributed among
the nodes of the network. If instead the observed scaling

2470-0045/2017/95(6)/062301(14) 062301-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.062301


OWEN T. COURTNEY AND GINESTRA BIANCONI PHYSICAL REVIEW E 95, 062301 (2017)

is superlinear, then hubs typically have links with stronger
weights than low degree nodes. Both linear and superlinear
scaling have been observed in real-world networks [40].
While initially growing weighted network models appeared to
capture only the linear scaling [41], it was later shown that the
emergence of weight-topology correlations can be described in
the framework of growing network models, including growth
of the network by the continuous addition of new links, and at
the same time an increase in the weights of the existing links
driven by a reinforcement dynamics [42].

Here we study weight-topology correlations in growing
simplicial complexes, showing that they emerge not just at
the network level but also for δ-faces of higher dimension.
Finally, we compare the results obtained in the mean-field
approximation with extensive numerical simulations.

The paper is organized as follows. In Sec. II we define
weighted simplicial complexes and their main structural
properties. In Sec. III we define our model of growing weighted
simplicial complexes. In Sec. IV we discuss the mean-field
solution of the model. In Sec. V we compare our theoretical
prediction with the results of the numerical simulations.
Finally, in Sec. VI we present the conclusions. This paper
is accompanied by a code published online [44].

II. SIMPLICIAL COMPLEXES

Let us consider N nodes i = 1,2, . . . ,N . A simplex of
dimension d represents an interaction between a set of d + 1
of these nodes. For instance, a simplex α of dimension d (also
called d-simplex) is given by

α = [i0,i1, . . . ,id ], (1)

where in with n ∈ {0,1, . . . ,d} indicates a node of the simplex.
A face α′ of the d-simplex α is a δ-simplex with 0 � δ < d

formed by a subset of the nodes of α, i.e., α′ ⊂ α. A simplex
also has a geometrical interpretation and can be considered as
a d-dimensional volume. This justifies the choice of calling
its subsets its “faces.” For example, a simplex of dimension
d = 2 is a triangle, and all its links and nodes form its faces.
Similarly, a simplex of dimension d = 3 is a tetrahedron and
its faces include four triangles, six links, and six nodes.

A simplicial complex K of dimension d is a collection of
simplices of at most dimension d glued along their shared
faces. Additionally, every simplicial complex K satisfies the
following constraint: if a simplex belongs to the simplicial
complex (i.e., α ∈ K), then the simplicial complex also
includes all of the faces α′ ⊂ α of that simplex (i.e., α′ ∈ K).
In order words, the simplicial complex is closed under the
operation of inclusion of faces of its simplices.

In this paper, we indicate with Qd,δ(N ) the set of all
possible δ-dimensional faces (δ-faces) in a d-dimensional
simplicial complex formed by N nodes. Additionally, we
indicate with Sd,δ the set of δ-faces belonging to the simplicial
complex under consideration. Here we consider exclusively
d-dimensional simplicial complexes constructed by gluing
d-dimensional simplices. The structure of such d-dimensional
simplicial complexes of N nodes is determined by the adja-
cency tensor a with elements aα = 1,0 indicating whether the
simplex α ∈ Qd,d (N ) is present (aα = 1) or absent (aα = 0)

from the simplicial complex, i.e.,

aα =
{

1 if α ∈ Sd,d ,

0 otherwise.

The weights of the simplices are indicated by the weight tensor
w, with elements wα indicating the weight of simplex α. In a
simplicial complex representing co-authorship, for example, a
simplex represents a set of co-authors that have collaborated
on at least one paper together, while the weight of that simplex
corresponds to the total number of papers that have been co-
authored by the team. To characterize the properties of the
simplicial complex, we use here the generalized degrees and
generalized strengths of the δ-faces.

The generalized degree kα
d,δ of a δ-face α ∈ Sd,δ [30,31,33]

is the number of d-dimensional simplices incident to it,

kα
d,δ =

∑
α′∈Qd,d (N)|α′⊇α

aα′ . (2)

The generalized strength sd,δ(α)(t) of a δ-face α ∈ Sd,δ is the
sum of the weights of the d-dimensional simplices incident to
it,

sα
d,δ =

∑
α′∈Qd,d (N)|α′⊇α

aα′wα′ . (3)

The generalized degree of a δ-face α is related to the
generalized degree of the δ′-dimensional faces incident to it,
with δ′ > δ, by the simple combinatorial relation [30]

kα
d,δ = 1(

d − δ

δ′ − δ

) ∑
α′∈Sd,δ′ |α′⊇α

kα′
d,δ′ . (4)

Moreover, since every d-dimensional simplex belongs to

(
d + 1
δ + 1) δ-dimensional faces, in a simplicial complex with M

d-dimensional simplices we have∑
α∈Sd,δ

kα
d,δ =

(
d + 1
δ + 1

)
M. (5)

Interestingly, the generalized strength a δ-face α satisfies also

sα
d,δ = 1(

d − δ

δ′ − δ

) ∑
α′∈Sd,δ′ |α′⊇α

sα′
d,δ′ . (6)

The skeleton of a simplicial complex is the network formed
by all its 0-faces (nodes) and 1-faces (links). To a weighted
simplicial complex we can associate a skeleton that is a
weighted network in which the weights ωij of the links in
the skeleton are equal to the generalized strengths of the links
in the simplicial complex, i.e.,

ωij = s
[i,j ]
d,1 , (7)

and the strength Si of a node i is

Si =
N∑

j=1

ωij . (8)

The generalized degrees strength s
[i]
d,0 of the node i of the

simplicial complex is naturally related with the strength Si of
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the node in the skeleton network. Using Eqs. (6) and (7), it is
possible to see that

Si = ds
[i]
d,0. (9)

Instead, in general the only relation between the generalized
degree k

[i]
d,0 of node I and the degree Ki of the same node in

the skeleton network is

Ki � dk
[i]
d,0 (10)

because some of the d-simplices incident to the node i might
share some links (1-faces).

In weighted networks, it has been shown that it is possible
to characterize the interplay between the network topology and
the weights of the links by classifying networks depending on
the scaling of the strength as a function of the degree of the
nodes. Specifically, it has been shown that for some networks
the weights of the links are distributed rather uniformly,
resulting in a linear dependence of the strength of the nodes
with its degree,

Si ∝ Ki, (11)

while in other networks hub nodes tend to have links with
higher weights than low degree nodes. This latter scenario
results in a superlinear scaling of the strength versus the degree,
i.e.,

Si ∝ (Ki)
θ , (12)

with θ > 1. An example of networks with linear dependence
of the strength versus degree are collaboration networks,
while an example of a nonlinear dependence of strength on
degree are airport networks where the weights measure the
number of passengers for each flight connection. In Ref. [42]
it has been shown that a simple growing network model
with reinforcement of the links is actually able to generate
networks with linear and superlinear scaling of the strength
versus degree, depending on the rate at which new links are
added with respect to the rate at which links are reinforced.

Here we are proposing a model for growing simplicial
complexes showing a very rich phenomenology, and we
show evidence that in simplicial complexes it is possible to
characterize the correlations between weights and topology
by exploring the dependence of the generalized strength sα

d,δ

versus the generalized degree kα
d,δ . Specifically, we are able to

predict three alternative possible scalings: linear, superlinear,
and exponential, i.e.,

sα
d,δ ∝

⎧⎪⎨
⎪⎩

kα
d,δ,(
kα
d,δ

)θ
,

exp
[
βkα

d,δ

]
,

(13)

with θ > 1 and β indicating a constant greater than zero. In
this case, the superlinear scaling indicates weight-topology
correlations, and these correlations are even more pronounced
for the exponential scaling.

III. THE MODEL

In this section, we present a model of growing weighted
simplicial complexes based on reinforcement of the weights

of the simplices and capable of displaying important weight-
topology correlations depending on the value of its parameters.
This model is based on the already proposed model of Network
Geometry with Flavor [31], but it includes two important
new elements with respect to the mentioned model: (i) the
simplicial complexes generated by this model are weighted,
and (ii) the simplicial complexes generated by this model can
have nontrivial homology.

In this model, the weighted growing simplicial complexes
are generated as follows. We start at time t = 1 from an
initial finite simplicial complex that comprises m0 > m d-
dimensional simplices of total weight ω0. At each time step
t > 1, two processes take place:

(A) Add m simplices: A new node arrives and m new d-
simplices with initial weight w0 are created between the node
and preexisting (d − 1) faces. The probability �d−1(α) that a
given (d − 1) face α is selected is given by

�d−1(α) = 1

Zt

(1 + snα), (14)

where nα = kα
d,d−1 − 1 is called the occupancy number and

where s is a parameter called flavor, which takes the values s =
−1,0,1 and controls the simplicial complex topology. Note
that in Eq. (14), Zt is a normalization constant given by Zt =∑

μ∈Sd,d−1(t)(1 + snα).
(B) Reinforce m′ simplices: At this step, m′ existing d-

simplices are selected and their weights are increased by w0.
A d-simplex α with weight wα is selected for reinforcement
with probability �̃d (α) proportional to its weight, i.e.,

�̃d (α) = wα

Z̃t

, (15)

where Z̃t = ∑
α∈Sd,d (t) wα .

In Fig. 1, we describe the two processes (processes A and B)
for a two-dimensional simplicial complex starting from a given
initial condition. The flavor s has an important effect on the
topological properties of the simplicial complexes produced.
Selection of s = −1 imposes the constraint that the generalized
degree kd,d−1(α) of a (d − 1) face α can only take the values 1
and 2, or equivalently it imposes that nα can only take values
0 and 1, which leads to the simplicial complex produced being
a d-dimensional manifold. Choosing s = 0 or 1 removes this
constraint, and it gives a selection probability �d−1(α) that is
uniform on the set of all (d − 1) faces for s = 0 and a form of
preferential attachment with �d−1(α) ∝ kα

d,d−1 for s = 1.
In Fig. 2, we plot the weighted skeleton networks of two

simplicial complexes generated by the model in the case
d = 3 and s = −1 for (m,m′) = (1,2) and (m,m′) = (2,1).
The weights of the links in these networks indicate the
generalized strengths of the links in their corresponding
simplicial complexes. While in the case (m,m′) = (1,2) nodes
with high degree have typically links with stronger weights
than the weights of low-degree nodes, the weights are more
homogeneously distributed in the case (m,m′) = (2,1).

We note that for the case m = 1, each addition of a new
node and its initial d-dimensional simplex does not change
the Euler characteristics χ , i.e., indicating with χ (t) the Euler
characteristics at time t , we get

	χ (t) = χ (t) − χ (t − 1) = 0. (16)
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(b)

(a)

w+ 0

w+ 0

w+ 0
w+ 0

FIG. 1. Graphical representation of process A [panel (a)] and
process B [panel (b)] for a two-dimensional simplicial complex with
m = 3 and m′ = 4 starting from a given initial condition.

Therefore, if the initial condition has χ (0) = 1, we obtain
χ (t) = 1 for every time t and we have a trivial topology.
However, for the case m > 1, the Euler characteristics change
with time according to

	χ (t) = 1 − m < 0, (17)

and therefore it could be very interesting to study in more detail
the topology of these networks. Additionally, the information
on the weights could be exploited by considering, as in
Refs. [24,25], the persistent homology induced by a weights-
based filtration of the simplicial complex.

IV. MEAN-FIELD SOLUTION OF THE MODEL

A. Mean-field solutions for the generalized degrees

In this section, our aim is to derive the time evolution of the
generalized degrees of the δ faces of the simplicial complexes
using a mean-field approximation. Toward that end, let us
define the probability �δ(α) that due to the addition of a single
new simplex in the simplicial complex (process A), the δ-face
α increases its generalized degree. The probability �δ(α) is
the sum of the probabilities that any (d − 1) face α′ ⊇ α is
chosen for attaching a new simplex, i.e.,

�δ(α) =
∑

α′∈Sd,d−1|α′⊇α

�d−1(α′)

= 1

Zt

∑
α′∈Sd,d−1|α′⊇α

1 − s + skα′
d,d−1. (18)

(a)

(b)

FIG. 2. Skeleton networks of simplicial complexes generated by
the model for d = 3, N = 100, and s = −1. Node sizes indicate their
degrees while link widths indicate their generalized strength. Node
and edge colorings indicate community structure calculated according
to the Louvain algorithm [45]. Panel (a) shows the skeleton of a
simplicial complex with m = 1 and m′ = 2, while panel (b) shows
the skeleton of a simplicial complex with m = 2 and m′ = 1.

To derive this expression explicitly in terms of the general-
ized degree of α, we use the following relation:∑

α′∈Sd,d−1|α′⊇α

1 − s + skα′
d,d−1

= (1 − s)cδ + (d + s − δ − 1)kα
d,δ, (19)

where

cδ =
{

1 for δ > 0,

m for δ = 0.
(20)

To see why Eq. (19) holds, observe that Eq. (4) implies the
following: ∑

α′∈Sd,d−1|α′⊃α

kα′
d,d−1 = (d − δ)kα

d,δ. (21)

Additionally, the following relation can also be shown to hold
for our model:∑

α′∈Sd,d−1|α′⊃α

1 =
{

1 + (d − δ − 1)kα
d,δ for δ > 0,

m + (d − 1)kα
d,δ for δ = 0.

(22)

This equation can be derived by observing that each initial
d-simplex, which includes the δ-face α, contributes by d − δ

to the sum on the left-hand side of Eq. (22). In fact, there
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are ( d − δ

d − δ − 1) = d − δ ways to choose the d − (1 + δ) nodes
of a (d − 1) face that do not belong to the δ-face out of
the d − δ nodes of the d-simplex that do not belong to the
δ face. Initially, any δ-face with δ > 0 belongs to a single
simplex, while the δ-faces with δ = 0 (the nodes) belong to m

simplices. Finally, every d-simplex that further increases the
generalized degree of the δ-face contributes to the sum just by
d − δ − 1 because simplices are glued along (d − 1) faces of
the simplicial complex.

By using Eq. (19), we can express �δ(α) in terms of the
generalized degree kα

d,δ as

�δ(α) = (1 − s)cδ + (d + s − δ − 1)kα
d,δ

Zt

. (23)

From this expression, the mean-field equations for the
generalized degree can be easily derived. In the mean-field
approximation, the generalized degrees of the δ-faces are
approximated with their average value over different stochastic
realizations of the simplicial complex. Additionally, using a
very well-established framework for simple networks [6–8],
we will consider a continuous-time approximation in which the
(average) degree kd,δ(t,tα) that a δ-face α arrived in the network
at time tα has at time t is determined by deterministic differ-
ential equations. These equations read for any 0 � δ � d − 1

∂

∂t
kd,δ(t,tα) = m�δ(α), (24)

where �δ(α) is given by Eq. (23). Let us now note that the nor-
malization constant Zt is simply given, in the limit t � 1, by

Zt =
∑

α′∈Sd,d−1

1 − s + skα′
d,d−1 	 m(d + s)t. (25)

In fact, the total number of (d − 1) faces
∑

α′∈Sd,d−1
1 	 mdt

for t � 1 because at each time we add m new d-dimensional
simplices, each one contributing d new (d − 1) faces.
Additionally, we have that

∑
α′∈Sd,d−1

kα′
d,d−1 	 m(d + 1)t for

t � 1 because any new simplex increases by 1 the generalized
degree of each of its (d + 1)(d − 1) faces. Therefore, using
Eqs. (25) and (23) we can derive that, for sufficiently large
times, the mean-field equation determining the generalized
degree dynamics is given by

∂kd,δ(t,tα)

dt
= (1 − s)cδ + (d + s − δ − 1)kd,δ(t,tα)

(d + s)t
, (26)

with the initial condition

kd,δ(tα,tα) = cδ =
{

1 for δ > 0,

m for δ = 0.
(27)

The solution of this equation is

kd,δ(t,tα)

=
{

cδ
d−δ

d+s−δ−1

(
t
tα

)λδ + cδ
s−1

d+s−δ−1 for δ − s 
= d − 1,

cδ
1−s
d+s

log
(

t
tα

) + cδ for δ − s = d − 1,

(28)

with

λδ = d + s − δ − 1

d + s
. (29)

TABLE I. Distribution of generalized degrees of faces of di-
mension δ in a d-dimensional NGF of flavor s at β = 0. For
d � d [δ,s]

c = 2(δ + 1) − s, the power-law distributions are scale-free,
i.e., the second moment of the distribution diverges.

Flavor s = −1 s = 0 s = 1

δ = d − 1 Bimodal Exponential Power law
δ = d − 2 Exponential Power law Power law
δ � d − 3 Power law Power law Power law

The generalized degree distribution Pd,δ(k) for δ = d − 1
and s = −1 is bimodal, because only the generalized degrees
kα
d,d−1 = 1,2 are allowed. For all the other cases, it is possible

to derive the generalized degree distribution using the mean-
field solution given by Eq. (28). In this way, it is found that the
generalized degree distribution is exponential for d − 1 + s −
δ = 0 and power-law for d − 1 + s − δ > 0. To derive these
results, let us note that since at each time we add a constant
number of δ-faces, the explicit expression for the probability
P̂δ(tα < τ ) that a random δ-face has been added at time tα < τ

is given by

P̂δ(tα < τ ) = τ

t
. (30)

Using this result and Eq. (28), the probability that the
generalized degree kd,δ(t,tα) is greater than k can be calculated
to be given by

P (kd,δ(t,tα) � k)

=
{(

cδ(d−δ)
k(d+s−δ−1)

) 1
λδ for δ − s < d − 1,

exp
[ − d+s

(1−s)cδ
k
]

for δ − s = d − 1.
(31)

This leads to the following generalized degree distribution
Pd,δ(k):

Pd,δ(k) = −dP (kd,δ(t,tα) � k)
dk

=
{

d+s
d+s−δ−1

(
cδ

d−δ
d+s−δ−1

) 1
λδ k

− 1
λδ

−1 for δ−s < d−1,
d+s

(1−s)cδ
exp

[ − d+s
(1−s)cδ

k
]

for δ−s = d−1,

(32)

valid as long as δ − s < d. Therefore, the generalized degree
distribution of δ-dimensional simplices in growing simplicial
networks with flavor s follows Table I. Additionally, the
generalized degree distribution Pd,δ(k) given by Eq. (32)
decays as a power-law Pd,δ(k) ∝ k−γd,δ with a power-law
exponent

γd,δ = 1 + 1

λδ

= 1 + d + s

d + s − δ − 1
(33)

as long as δ − s < d − 1. These distributions are scale-free if
γd,δ � 3, or equivalently they are scale-free if

d � d [δ,s]
c = 2(δ + 1) − s. (34)

Let us now observe in the considered growing simplicial
complex the degree of a node Ki not belonging to the set
of nodes in the initial condition, which is given by

Ki = ki
d,0 + (d − 1)m. (35)
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In fact, initially each node has degree dm, and subsequently
the degree increases by 1 for any d-simplex glued to one
of the (d − 1) faces of the node. It follows then that if the
generalized degree distribution of the nodes is scale-free, the
degree distribution of the skeleton network is also scale-free.
As a result, growing simplicial complexes of flavor s = 1 are
scale-free for any d � 1, those of flavor s = 0 are scale-free
for d � 2, and those of flavor s = −1 are scale-free for d � 3.

B. Probability of a simplex

In this section, we derive the probability of a δ-simplex in
terms of the arrival times of its nodes. Let us indicate each δ-
face αδ as the sequence of its nodes αδ = [j0,j1, . . . ,jδ] where
the nodes are ordered according to the time of their arrival in
the simplicial complex, i.e., tj0 < tj1 < · · · < tjδ

. A new node
appears in the simplicial complex at every time step and forms
d-dimensional simplices with m already existing (d − 1) faces.
Thus, the δ-face αδ is the result of the subsequent addition of
new d-dimensional simplices to the faces αδ′ = [j0,j1, . . . ,jδ′ ]
formed by the δ′ + 1 oldest nodes of αδ for each 0 � δ′ < δ.
Specifically, after node j0 is added to the network at time tj0 ,
we must have that the node j1, which arrived at the simplicial
complex at time tj1 , belongs to a new d-simplex incident to the
node j0. Subsequently node j2, which arrived in the simplicial
complex at time tj2 , should belong to a d-simplex incident to
the face {j0,j1}, and so on. Therefore, probability pαδ

that the
δ-face αδ belongs to the simplicial complex may be written

pαδ
=

δ−1∏
n=0

πn(tjn+1,tjn
), (36)

where πn(tjn+1 ,tjn
) is the probability that the jn+1 node that

arrived in the simplicial complex at time tjn+1 belongs to a
d-simplex incident to the face αn formed by the set of nodes
{j0,j1, . . . ,jn} of arrival times tj0 < tj1 < · · · < tjn

.
Let us observe that in the mean-field approximation, as we

have shown in the previous section, the generalized degree k
αδ

d,δ

of the δ-face αδ only depends on the time tjδ
of arrival of the

younger node of the simplex, i.e., kαδ

d,δ = kd,δ(t,tjδ
). Therefore,

πδ(tjδ+1 ,tjδ
) is given by

πδ(tjδ+1 ,tjδ
) = (1 − s)cδ + (d + s − δ − 1)kd,δ(tjδ+1 ,tjδ

)

(d + s)tjδ+1

,

where we have used πδ(tjδ+1 ,tjδ
) = m�δ(αδ) and the expres-

sion of �δ given by Eqs. (23) and (25). Replacing k
αδ

d,δ(tjδ+1 )
with the mean-field (expected) generalized degree kd,δ(tjδ+1,tjδ

)
given by Eq. (28), we obtain

πδ(tjδ+1,tjδ
) = cδ

d − δ

d + s
tjδ

1+δ
d+s

−1t
− 1+δ

d+s

jδ+1
. (37)

Finally, using Eqs. (37) and (36) we get a closed expression
for the probability pαδ

of a δ-face as a function of the times
{tj1 ,tj2 , . . . ,tjδ

} of arrival of its nodes in the simplicial complex,
given by

pαδ
= m

d!

(d − δ)!(d + s)δ
(
tj0 tj1 , . . . ,tjδ−1

) 1
d+s

−1
t
− δ

d+s

jδ
. (38)

C. Mean-field solution for the weight of a simplex

Here we derive a mean-field expression for the (average)
weight w(t,tα) that the d-dimensional simplex α added to the
simplicial complex at time tα has at time t .

Since according to process B at each time we reinforce m′
random simplices increasing their weight by w0, we have

∂w(t,tα)

∂t
= w0m

′�̃d (α), (39)

where �̃d (α) = wα(t)/Z̃t is the probability that the d-simplex
α is reinforced at time t . This equation has the initial condition

w(tα,tα) = w0 (40)

since each new simplex initially has weight w0. At each time,
m new simplices, each of weight w0, are added to the simplicial
complex, and m′ existing simplices increase their weight by
w0. Therefore, we have that the normalization constant Z̃t is
given by

Z̃t =
∑

α∈Sd,d (t)

wα(t) = (m′ + m)w0t + ω0 	 (m′ + m)w0t,

where the last expression is valid for t � 1. It results that the
mean-field Eq. (39) for the weights can also be written as

∂w(t,tα)

∂t
= λ

w(t,tα)

t
, (41)

where

λ = m′

m + m′ . (42)

Given the initial condition expressed by Eq. (40), this equation
has the solution

w(t,tα) = w0

(
t

tα

)λ

. (43)

D. Mean-field approach for the generalized strengths

In this section, we evaluate the generalized strength of a δ-
face in the mean-field approximation. In the spirit of the mean-
field approximation, i.e., neglecting fluctuations, we identify
the generalized strength sα

d,δ with its expected value sd,δ(t,tα)
over different simplicial complex realizations and conditioned
on the existence of the face α with arrival time tα . This is given
by

sd,δ(t,tα) =
∑

α′∈Qd,d (N)|α′⊃α pα′w(t,tα′)

pα

. (44)

Let us indicate each δ-simplex α by the set of its nodes
[i0,i1, . . . ,iδ] ordered according to the arrival times in the
simplicial complex ti0 < ti1 < · · · < tiδ = tα . Similarly, we
will indicate each d-simplex α′ by the ordered set of its
nodes [j0,j1, . . . ,jd ] ordered according to the arrival times
in the simplicial complex tj0 < tj1 < · · · < tjd

= tα′ . When
the δ-simplex α is a face of the d-simplex α′, we have
[i0,i1, . . . ,iδ] ⊂ [j0,j1, . . . ,jn]. In this case, we may indicate
with q(r) the index of the node ir ⊂ α in the list [j0,j1, . . . ,jn]
specifying the nodes of the face α′. Therefore, we have

ir = jq(r). (45)
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FIG. 3. Generalized degree distributions Pd,δ(kd,δ) are shown for simplicial complexes of dimension d = 3 and flavor s = −1 [panels (a),
(d), and (g)], s = 0 [panels (b), (e), and (h)], and s = 1 [panels (c), (f), and (i)], and for faces of dimension δ = 2 [panels (a), (b), and (c)],
δ = 1 [panels (d), (e), and (f)], and δ = 0 [panels (g), (h), and (i)]. The results of simulations are shown for m = 1, 2, and 3 (blue circles, red
squares, and yellow triangles, respectively). The simulated simplicial complexes have N = 105 nodes, and the results are averaged over 10
simplicial complex realizations.

To be concrete, let us consider an example. In a simplicial
complex of dimension d = 4, consider the 4-simplex α′,

α′ = [j0,j1,j2,j3,j4] = [5,7,11,19,25] (46)

and the 1-face α,

α = [i0,i1] = [7,19]. (47)

Since i0 = j1 and i1 = j3, we have

q(0) = 1, q(1) = 3. (48)

In Eq. (44), let us now distinguish between contributions to the
average generalized strength sd,δ(t,tα) from d-simplices that
contain the nodes of α in the positions specified by distinct
{q(r)}r=0,1,...,δ . Additionally, noting that pα′ in the mean-field
approximation depends only on the set of arrival times of its
nodes, and that each node is uniquely identified by its arrival
time, and also taking the continuous approximation for arrival
times tjn

, we get the following expression for the average

generalized strengths:

sd,δ(t,tα) = 1

p[i0,...,iδ ]

∑
{q(r)}r=0,1,...,δ

∫
tj0 < · · · < tjd

[
d∏

n=0

dtjn

]

×
δ∏

r=0

δ̂
(
tjq(r) ,tir

)
p[j0,...,jd ]w(t,tjd

), (49)

where δ̂(x,y) indicates the Kronecker delta. Using Eq. (38)
for the probability p[j0,...,jd ] and Eq. (43) for the analytical
expression of w(t,td ), we get

sd,δ(t,tα) = 1

pα

w0m
d!

(d + s)d
tλ

(
ti0 ti1 , . . . ,tiδ

) 1
d+s

−1

×
∑
{q}

Aq(δ)

(
δ−1∏
r=0

Xq(r),q(r+1)

)
Bq(0), (50)
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FIG. 4. The average generalized strengths sd,δ(t,tα) of the δ-faces arrived in the network at time tα are shown for simplicial complexes of
dimension d = 3, and flavor s = −1 [panels (a), (d), and (g)], s = 0 [panels (b), (e), and (h)], and s = 1 [panels (c), (f), and (i)] and for faces
of dimension δ = 2 [panels (a), (b), and (c)], δ = 1 [panels (d), (e), and (f)], and δ = 0 [panels (g), (h), and (i)]. The results of simulations
are shown for (m = 1, m′ = 5), (m = 2, m′ = 5), (m = 2, m′ = 3), and (m = 3, m′ = 1) (blue circles, red squares, yellow crosses, and purple
triangles, respectively). The simulated simplicial complexes have N = 105 nodes, and the results are averaged over 10 simplicial complex
realizations.

where Aq(δ) is the integral over all arrival times greater than
tjq (δ), Xq(r),q(r+1) is the integral over arrival times between tjq(r)

and tjq(r+1) , and Bq(0) is the integral over arrival times less than
tjq(0) .

All of these quantities can be expressed in term of the
function I n

τ,t given by

I n
τ,t =

∫ t

τ

dtnt
1

d+s
−1

n

∫ tn

τ

dtn−1t
1

d+s
−1

n−1 · · ·
∫ t2

τ

dt1t
1

d+s
−1

1 .

In particular, by distinguishing between the cases in which
there is at least one node whose arrival time is being integrated
over, and the case in which the allocation of positions specified
by {q} implies that there are no arrival times to integrate over,
we obtain

Aq(δ) =
⎧⎨
⎩

∫ t

tiδ
dtjd

t
−λ− d

d+s

jd
I

d−q(δ)−1
tiδ ,tjd

if 0 � q(δ) � d−1,

t
−λ+ s−1

d+s

iδ
if q(δ) = d,

(51)

Xq(r),q(r+1) =
{

I
q(r+1)−q(r)−1
tir ,tir+1

if q(r + 1) − q(r) > 1,

1 if q(r + 1) − q(r) = 1,
(52)

Bq(0) =
{

I
q(0)
0,ti0

if q(0) > 0,

1 if q(0) = 0.
(53)

We note here that Eq. (50) may be simplified further by
substituting the expression for pα given in Eq. (38):

sd,δ(t,tα) = w0
(d − δ)!

(d + s)d−δ
tλt

− d+s−δ−1
d+s

iδ

×
∑
{q}

Aq(δ)

(
δ−1∏
r=0

Xq(r),q(r+1)

)
Bq(0). (54)

This expression can be shown to depend only on the ratio
between the time t and the time tα = tiδ . Specifically, it can be
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shown (see Appendix A for details of the derivation) that sd,δ(t,tα) is given by

sd,δ(t,tα) =
{

w0
d−δ

(d+s)(λδ−λ)

(
t
tα

)λδ + w0
[
1 − d−δ

(d+s)(λδ−λ)

](
t
tα

)λ
if λ 
= λδ,

w0
(

t
tα

)λ[
1 + d−δ

d+s
log

(
t
tα

)]
if λ = λδ,

(55)

where λδ is given by Eq. (29) and λ is given by Eq. (42).
For t/tα � 1 keeping only the leading terms of the above

expression, we get

sd,δ(t,tα) ∝

⎧⎪⎨
⎪⎩

(
t
tα

)λδ if λ < λδ,(
t
tα

)λ
if λ > λδ,(

t
tα

)λ
log

(
t
tα

)
if λ = λδ.

Finally, we can evaluate the scaling of the average gener-
alized strength versus the generalized degree sd,δ(kd,δ) using
the mean-field approximation. Toward that end, we keep only
the leading terms for t/tα � 1 both in Eq. (28) for the average
generalized degrees kd,δ(t,tα) and in Eq. (55) for the average
generalized strengths sd,δ(t,tα), and we neglect the fluctuations
of the generalized degrees [kd,δ(t,tα) 	 kα

d,δ] and generalized
strengths [sd,δ(t,tα) 	 sα

d,δ]. As long as λδ > 0, we obtain

sd,δ(kd,δ) ∝

⎧⎪⎨
⎪⎩

kd,δ for λ < λδ,

kd,δ ln kd,δ for λ = λδ,

(kd,δ)λ/λδ for λ > λδ.

(56)

For λδ = 0, instead we derive an exponential scaling of the
average of the generalized strength versus the average of the
generalized degree of the δ-faces, i.e.,

sd,δ(kd,δ) ∝ eβkd,δ , (57)

with β = λ d+s
(1−s)cδ

. These results predict that by tuning the
parameter values m and m′ [determining λ as for Eq. (42)],
is possible to observe either linear, superlinear, or even
exponential scaling of the generalized strengths versus the
generalized degrees.

We stress here that the scaling relations Eqs. (56) and (57)
are obtained in the limit t/tα � 1 neglecting the fluctuations
of the generalized degrees and the generalized strengths over
different network realizations. Therefore, these expressions
need to be compared to numerical simulations to assess the
limits of the considered approximations.

V. NUMERICAL SIMULATIONS

To check the validity of our mean-field calculations, we
have run extensive simulations of the model. When writing
the program to implement the model, care should be taken in
efficiently storing the information about the composition of
the simplicial complex. In fact, for a simplicial complex of
N nodes the total number of potential δ′-simplices scales like
Nδ′+1, therefore maintaining adjacency tensors with entries
for every potential δ′-simplex would require storing Nδ′+1

integers. Since in our model the actual number of d-simplices
and δ-faces scales linearly with N , we can handle efficiently the
information about the simplicial complex structure by keeping
a list of the simplices and the faces generated by the model
rather than maintaining adjacency tensors.

Here we report and discuss in particular the simulation
results obtained for simplicial complexes of dimension d = 3
with all the possible values of the flavor s = −1,0,1 and a
variety of choices of m and m′. Our main goal is to characterize
the limit of validity of the mean-field calculations performed
in the previous section.

In Fig. 3, we report the simulation results for the generalized
degree distribution Pd,δ(kd,δ) and N = 105 averaged over 10
realizations of the model. We observe that the mean-field
calculation predicts exactly for which dimension δ and for
which flavor s we observe binomial, exponential, or power-law
distribution.
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FIG. 5. The exponents λfitted obtained by fitting Eq. (58) to the
data in Fig. 4 are shown vs the predicted exponents λpredicted given
by Eq. (59) for different δ-faces. The panels (a), (b), and (c) refer,
respectively, to triangles (δ = 2), links (δ = 1), and nodes (δ = 0).
The blue stars, red squares, and yellow circles indicate the data
obtained, respectively, for the the flavors s = −1, 0, and 1.
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FIG. 6. The average generalized strengths of δ-faces as a function of their corresponding generalized degree sd,δ(kd,δ) are shown for
simplicial complexes of dimension d = 3 and flavor s = −1 [panels (a), (d), and (g)], s = 0 [panels (b), (e), and (h)], and s = 1 [panels (c),
(f), and (i)] and for faces of dimension δ = 2 [panels (a), (b), and (c)], δ = 1 [panels (d), (e), and (f)], and δ = 0 [panels (g), (h), and (i)].
The results of simulations are shown for (m = 1, m′ = 5), (m = 2,m′ = 5), (m = 2, m′ = 3), and (m = 3, m′ = 1) (blue circles, red squares,
yellow crosses, and purple triangles, respectively). The simulated simplicial complexes have N = 105 nodes, and the results are averaged over
10 simplicial complex realizations.

In Fig. 4 we display the average generalized strengths
sd,δ(t,tα) of δ-faces α as a function of their arrival time tα . We
observe a clear power-law scaling of sd,δ(t,tα) as a function of
t/tα for t/tα � 1 as predicted by the mean-field approximation
[Eq. (56)]. To evaluate more in detail the limits of validity of
the mean-field equations, we performed the power-law fits

sd,δ(t,tα) = a

(
t

tα

)λfitted

, (58)

valid for t/tα � 1, and we compared the fitted exponent λfitted

with the predicted exponent obtained from Eq. (56),

λpredicted 	 max(λ,λδ). (59)

The comparison between the exponents λfitted and λpredicted is
shown in Fig. 5 for simplicial complexes of dimension d = 3
and different values of m and m′ determining λ. We observe
that while the overall trend of λfitted is captured by the mean-
field result, some deviations are observed. These deviations

become more significant for λ 	 λδ , where it is expected to be
more difficult to observe the leading term in Eq. (55) starting
for finite-time simulations results.

Finally, as discussed in Sec. IV D, for simplicial complexes
with a large number of nodes, the mean-field approximation
predicts that the generalized strengths of the faces are related
to their generalized degrees by the scaling relation given in
Eqs. (56) and (57). Nevertheless, we have discussed that this
approximation neglects the role of fluctuations for the gener-
alized degree and for the generalized strengths. Therefore, it is
important to check to what extend the mean-field calculations
capture the simulation results. In Fig. 6, we show the average
generalized strength versus the generalized degree sd,δ(kd,δ).
We observe that the role of fluctuations is particularly
pronounced for δ-faces with exponential generalized degree
distributions (i.e., δ = d − 2 for s = −1 and δ = d − 1 for
s = 0). These fluctuations are more significant for values of
the parameters m and m′ corresponding to low values of λ.
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Instead, we observe that for the other δ-faces the mean-field
predictions provide a rather good prediction of the scaling of
the average generalized strength sd,δ(kd,δ).

VI. CONCLUSIONS

In this paper, we have presented a nonequilibrium model
for weighted simplicial complexes. In this model, simplicial
complexes evolve at each time (A) by the addition of a new
node belonging to m new d-dimensional simplices, and (B)
by the reinforcement of the weights of m′ d-dimensional
simplices.

The model generates simplicial complexes with nontrivial
topology, including manifolds, with either constant Euler char-
acteristics (for m = 1) or with continuously decreasing Euler
characteristics. The skeleton of these simplicial complexes
is a network with notable complex structure, including a
high clustering coefficient (ensured by the simplicial complex
structure) and heterogeneous scale-free degree distribution for
d � 3.

Here we have focused on the rich interplay between
topological properties of the simplicial complexes and the
distribution of the weights of the simplices. We have found
that is possible to extend the strength versus degree analysis
performed in simple networks to simplicial complexes by
characterizing the functional relation between the generalized
strengths of their faces versus the corresponding generalized
degrees. Specifically, the proposed model is able to generate
simplicial complexes where the generalized strength grows
linearly, superlinearly, or exponentially as a function of the
parameters m and m′ of the model.

We believe that this model could be rather fruitful
for modeling real-world simplicial complexes such as col-
laboration networks that are typically weighted. Addition-
ally, the model could be used as a benchmark to test

the wide range of topological and geometrical measures
and computational techniques that have been proposed in
recent years for the study of real datasets. These include
different definitions of curvature, and the persistent homology
conducted using a filtration based on the weights of the links
or on the simplices.

APPENDIX A: MAIN STEPS OF THE DERIVATION
OF EQ. (55)

In the main body of the paper, we have derived the following
equation [Eq. (54)] for the average generalized strengths
sd,δ(t,tα) of the δ-face α with arrival time tα:

sd,δ(t,tα) = w0
(d − δ)!

(d + s)d−δ
tλt

− d+s−δ−1
d+s

iδ

×
∑
{q}

Aq(δ)

(
δ−1∏
r=0

Xq(r),q(r+1)

)
Bq(0), (A1)

where Aq(δ), Bq(δ), and Xq(r),q(r+1) are defined, respectively, by
Eqs. (A7), (53), and (52) of the main text.

To obtain explicit expressions for Aq(δ), Xq(r),q(r+1), and
Bq(0), let us observe that the function I n

τ,t defined as

I n
τ,t =

∫ t

τ

dtnt
1

d+s
−1

n

∫ tn

τ

dtn−1t
1

d+s
−1

n−1 · · ·
∫ t2

τ

dt1t
1

d+s
−1

1 (A2)

can also be written as

I n
τ,t = (d + s)n

n!

(
t

1
d+s − τ

1
d+s

)n

= (d + s)n

n!

n∑
r=0

(
n

r

)
(−1)r t

n−r
d+s τ

r
d+s . (A3)

This result allows us to express Xq(r),q(r+1) as

Xq(r),q(r+1) =
{
I

q(r+1)−q(r)−1
tir ,tir+1

if q(r + 1) − q(r) > 1,

1 if q(r + 1) − q(r) = 1,

=
{

(d+s)q(r+1)−q(r)−1

[q(r+1)−q(r)−1]!

(
t

1
d+s

ir+1
− t

1
d+s

ir

)q(r+1)−q(r)−1
if q(r + 1) − q(r) > 1,

1 if q(r + 1) − q(r) = 1.
(A4)

Similarly, Bq(0) can be expressed as

Bq(0) =
⎧⎨
⎩

I
q(0)
0,ti0

if q(0) > 0,

1 if q(0) = 0,

=
⎧⎨
⎩

(d+s)q(0)

q(0)! t
q(0)
d+s

i0
if q(0) > 0,

1 if q(0) = 0.

(A5)

Finally, using Eq. (A3) and the definition of Aq(δ) that we rewrite here for convenience,

Aq(δ) =
⎧⎨
⎩

∫ t

tiδ
dtjd

t
−λ− d

d+s

jd
I

d−q(δ)−1
tiδ ,tjd

if 0 � q(δ) � d − 1,

t
−λ+ s−1

d+s

iδ
if q(δ) = d,

(A6)
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we obtain

Aq(δ) =
⎧⎨
⎩

(d+s)d−q(δ)−1

[d−q(δ)−1]!

∑d−q(δ)−1
r=0

(
d−q(δ)−1

r

)
(−1)r t

r
d+s

iδ

∫ t

tiδ
dtjd

t
−λ+ d+s−q(δ)−r−1

d+s
−1

jd
if 0 � q(δ) � d − 1,

t
−λ+ s−1

d+s

iδ
if q(δ) = d.

(A7)

In the case q(δ) � d − 1, the integral present in Eq. (A7) has two separate expressions for λ = d+s−q(δ)−1−r

d+s
and λ 
=

d+s−q(δ)−1−r

d+s
. By performing the integral, we find the following expression for Aq(δ):

Aq(δ) =
⎧⎨
⎩(d + s)d−q(δ)−1 ∑d−q(δ)−1

r=0 Dq(δ)+r t
r

d+s

iδ

(−1)r

r! if 0 � q(δ) � d − 1,

t
−λ+ s−1

d+s

iδ
if q(δ) = d,

(A8)

where the quantities Dq(δ)+r depend on q(δ) and r only through their sum, and they are given by

Dq(δ)+r =
⎧⎨
⎩

1
[d−q(δ)−r−1]!

(
d+s−q(δ)−1−r

d+s
− λ

)−1(
t

d+s−q(δ)−1−r

d+s
−λ − t

d+s−q(δ)−1−r

d+s
−λ

iδ

)
if λ 
= d+s−q(δ)−1−r

d+s
,

1
[d−q(δ)−r−1]! log

(
t
tiδ

)
if λ = d+s−q(δ)−1−r

d+s
.

(A9)

To calculate the generalized strengths given by Eq. (A1), let us observe that

∑
{q}

Aq(δ)

(
δ−1∏
r=0

Xq(r),q(r+1)

)
Bq(0) =

d∑
q(δ)=δ

Aq(δ)Rq(δ),δ, (A10)

where Rq(r),r are functions defined recursively by the following pair of equations:

Rq(1),1 =
q(1)−1∑
q(0)=0

Xq(0),q(1)Bq(0), (A11)

Rq(β),β =
q(β)−1∑

q(β−1)=β−1

Xq(β−1),q(β)Rq(β−1),β−1. (A12)

The solution of these equations (see the following appendix for details of this derivation) reads

Rq(β),β = (d + s)q(β)−β
t

q(β)−β

d+s

iβ

[q(β) − β]!
. (A13)

Therefore, the average generalized strength sd,δ(t,tα) may be written as

sd,δ(t,tα) = w0
(d − δ)!

(d + s)d−δ
tλt

− d+s−δ−1
d+s

iδ

⎡
⎣AdRd,δ +

d−1∑
q(δ)=δ

Aq(δ)Rq(δ)

⎤
⎦. (A14)

Using Eqs. (A9) and Eq. (A13), we get

d−1∑
q(δ)=δ

Aq(δ)Rq(δ),δ = (d + s)d−δ−1
d−1∑

q(δ)=δ

d−q(δ)−1∑
r=0

Dq(δ)+r t
q(δ)+r−δ

d+s

iδ

(−1)r

r![q(δ) − δ]!

= (d + s)d−δ−1Dq(δ)+r t
q(δ)+r−δ

d+s

iδ

∣∣∣∣
q(δ)+r=δ

= (d + s)d−δ−1Dδ. (A15)

Note that in deriving Eq. (A15), we have used the following mathematical identity:

b∑
x=a

b−x∑
y=0

f (x + y)
(−1)y

y!(x − a)!
= f (a), (A16)

valid for integers a,b > 0 with a < b. Therefore, the average generalized strength given by Eq. (A14) can be written as

sd,δ(t,tα) = w0
(d − δ)!

(d + s)d−δ
tλt

− d+s−δ−1
d+s

iδ

⎡
⎣AdRd,δ +

d−1∑
q(δ)=δ

Aq(δ)Rq(δ)

⎤
⎦

= w0
(d − δ)!

(d + s)d−δ
tλt

− d+s−δ−1
d+s

iδ

[
(d + s)d−δ

(d − δ)!
t
−λ+ d+s−δ−1

d+s

iδ
+ (d + s)d−δ−1Dδ

]
, (A17)
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which simplifies to

sd,δ(t,tα) = w0

(
t

tiδ

)λ

+ w0
(d − δ)!

d + s
tλt

− d+s−δ−1
d+s

iδ
Dδ. (A18)

As noted earlier, Dδ takes different forms in the cases λ 
= λδ = d+s−δ−1
d+s

and λ = λδ = d+s−δ−1
d+s

. Inserting Eq. (A9) into
Eq. (A18) leads to our final expression for the generalized strength:

sα
d,δ(t) =

{
w0

d−δ
(d+s)(λδ−λ)

(
t
tiδ

)λδ + w0
[
1 − d−δ

(d+s)(λδ−λ)

](
t
tiδ

)λ
if λ 
= λδ,

w0
(

t
tiδ

)λ[
1 + d−δ

d+s
log

(
t
tiδ

)]
if λ = λδ.

(A19)

Since this equation is the same as Eq. (55) of the main text,
this concludes our discussion here.

APPENDIX B: DERIVATION OF EQ. (A13)

In this appendix, our goal is to show that Eq. (A13) holds.
This equation is given by

Rq(β),β = (d + s)q(β)−β
t

q(β)−β

d+s

iβ

[q(β) − β]!
, (B1)

where Rq(r),r are functions defined recursively by the following
pair of equations:

Rq(1),1 =
q(1)−1∑
q(0)=0

Xq(0),q(1)Bq(0), (B2)

Rq(β),β =
q(β)−1∑

q(β−1)=β−1

Xq(β−1),q(β)Rq(β−1),β−1. (B3)

Toward that end, we first check that (B1) holds for β = 1.
Inserting Eq. (A4) for Xq(0),q(1) and Eq. (A5) for Bq(0) into
Eq. (B2) gives

Rq(1),1 =
q(1)−1∑
q(0)=0

q(1)−q(0)−1∑
l0=0

(d + s)q(1)−1(−1)l0

[q(1) − q(0) − 1 − l0]!(l0)!q(0)!

× t
q(0)+l0

d+s

i0
t

q(1)−q(0)−1−l0
d+s

i1
. (B4)

We note that the expression being summed over factorizes
into a term depending on q(0) and l0 only through their sum
and a term depending on q(0) and l0 otherwise:

Rq(1),1 =
q(1)−1∑
q(0)=0

q(1)−q(0)−1∑
l0=0

f (q(0) + l0)
(−1)l0

l0!q(0)!
, (B5)

where

f (q(0) + l0) = (d + s)q(1)−1
t

q(0)+l0
d+s

i0
t

q(1)−q(0)−1−l0
d+s

i1

[q(1) − q(0) − 1 − l0]!
. (B6)

Using the mathematical identity Eq. (A16), Eq. (B5) simplifies
to

Rq(1),1 = f (0) = (d + s)q(1)−1 t
q(1)−1
d+s

i1

[q(1) − 1]!
. (B7)

So (B1) holds in the case β = 1.

We now show that in general if Eq. (B1) holds for some
β, then it must also hold for β + 1. Substituting Eq. (A4) and
Eq. (B1) into Eq. (B3) gives

Rq(β+1),β+1 =
q(β+1)−1∑
q(β)=β

q(β+1)−q(β)−1∑
lβ=0

×
[

(d + s)q(β+1)−β−1(−1)lβ

[q(β + 1) − q(β) − 1 − lβ]!(lβ)![q(β)−β]!

× t

q(β)+lβ −β

d+s

iβ
t

q(β+1)−q(β)−1−lβ

d+s

iβ+1

]
. (B8)

Similar to the β = 1 case, we may write (B8) in the form

Rq(β+1),β+1 =
q(β+1)−1∑
q(β)=β

q(β+1)−q(β)−1∑
lβ=0

f (q(β) + lβ)
(−1)lβ

lβ!q(β)!
,

(B9)

where in this case the term depending only on q(β) and lβ
through the sum of the two is

f (q(β) + lβ)

= (d + s)q(β+1)−β−1
t

q(β)+lβ −β

d+s

iβ
t

q(β+1)−q(β)−1−lβ

d+s

iβ+1

[q(β + 1) − q(β) − 1 − lβ]!
. (B10)

Using the identity (A16) allows us to make the simplifica-
tion

Rq(β+1),β+1 = f (β) = (d + s)q(β+1)−β−1

×
t

q(β+1)−β−1
d+s

iβ+1

[q(β + 1) − β − 1]!
, (B11)

which confirms Eq. (B1), or equivalently Eq. (A13).

062301-13



OWEN T. COURTNEY AND GINESTRA BIANCONI PHYSICAL REVIEW E 95, 062301 (2017)

[1] S. Boccaletti et al., Phys. Rep. 544, 1 (2014).
[2] M. Kivelä et al., J. Comp. Net. 2, 203 (2014).
[3] C. Giusti, R. Ghrist, and D. S. Bassett, J. Comp. Neuro. 41, 1

(2016).
[4] M. Kahle, AMS Contemp. Math. 620, 201 (2014).
[5] G. Bianconi, Europhys. Lett. 111, 56001 (2015).
[6] A.-L. Barabási, Network Science Book (Cambridge University

Press, Cambridge, 2016).
[7] S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks:

From Biological Nets to the Internet and WWW (Oxford
University Press, Oxford, 2003).

[8] M. E. J. Newman, Networks: An Introduction (Oxford University
Press, Oxford, 2010).

[9] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Nature (London)
435, 814 (2005).

[10] I. Derényi, G. Palla, and T. Vicsek, Phys. Rev. Lett. 94, 160202
(2005).

[11] G. Ghoshal, V. Zlatic, G. Caldarelli, and M. E. J. Newman, Phys.
Rev. E 79, 066118 (2009).

[12] V. Zlatic, G. Ghoshal, and G. Caldarelli, Phys. Rev. E 80, 036118
(2009).

[13] Y. Lin, L. Lu, and S.-T. Yau, Tohoku Math. J. 63, 605 (2011).
[14] F. J. Bauer, J. Jost, and S. Liu, Math. Res. Lett. 19, 1185

(2012).
[15] R. P. Sreejith, K. Mohanraj, J. Jost, E. Saucan, and A. Samal, J.

Stat. Mech. (2016) 063206.
[16] R. P. Sreejith, J. Jost, E. Saucan, and A. Samal,

arXiv:1605.04662.
[17] D. Cushing, S. Liu, and N. Peyerimhoff, arXiv:1606.01496.
[18] Y. Ollivier, J. Funct. Anal. 256, 810 (2009).
[19] M. Gromov, Hyperbolic Groups (Springer, New York, 1987).
[20] R. Albert, B. DasGupta, and N. Mobasheri, Phys. Rev. E 89,

032811 (2014).
[21] M. Borassi, A. Chessa, and G. Caldarelli, Phys. Rev. E 92,

032812 (2015).
[22] Z. Wu, G. Menichetti, C. Rahmede, and G. Bianconi, Sci. Rep.

5, 10073 (2015).
[23] G. Bianconi and C. Rahmede, Sci. Rep. 7, 41974 (2017).

[24] G. Petri et al., J. R. Soc. Interf. 11, 20140873 (2014).
[25] G. Petri, M. Scolamiero, I. Donato, and F. Vaccarino, PloS One

8, e66506 (2013).
[26] D. Taylor, F. Klimm, H. A. Harrington, M. Kramar, K.

Mischaikow, M. A. Porter, and P. J. Mucha, Nat. Commun.
6, 7723 (2015).

[27] K. Zuev, O. Eisenberg, and D. Krioukov, J. Phys. Math. Theor.
48, 465002 (2015).

[28] A. Costa and M. Farber, in Configuration Spaces (Springer,
2016), p. 129.

[29] D. Cohen, A. Costa, M. Farber, and T. Kappeler, Discrete
Comput. Geom. 47, 117 (2012).

[30] O. T. Courtney and G. Bianconi, Phys. Rev. E 93, 062311 (2016).
[31] G. Bianconi and C. Rahmede, Phys. Rev. E 93, 032315 (2016).
[32] G. Bianconi, C. Rahmede, and Z. Wu, Phys. Rev. E 92, 022815

(2015).
[33] G. Bianconi and C. Rahmede, Sci. Rep. 5, 13979 (2015).
[34] A.-L. Barabasi and R. Albert, Science 286, 509 (1999).
[35] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys.

Rev. E 65, 066122 (2002).
[36] J. S. Andrade Jr, H. J. Herrmann, R. F. S. Andrade, and L. R. da

Silva, Phys. Rev. Lett. 94, 018702 (2005).
[37] Z. Zhang, L. Rong, and F. Comellas, Physica A 364, 610 (2006).
[38] T. Zhou, G. Yan, and B.-H. Wang, Phys. Rev. E 71, 046141

(2005).
[39] Z. Zhang, F. Comellas, G. Fertin, and L. Rong, J. Phys. A 39,

1811 (2006).
[40] A. Barrat, M. Barthelemy, and A. Vespignani, Proc. Natl. Acad.

Sci. (USA) 101, 3747 (2004).
[41] A. Barrat, M. Barthélemy, and A. Vespignani, Phys. Rev. Lett.

92, 228701 (2004).
[42] G. Bianconi, Europhys. Lett. 71, 1029 (2005).
[43] A. Allard, M. A. Serrano, G. García-Pérez, and M. Boguñà, Nat.

Commun. 8, 14103 (2017).
[44] https://github.com/owencourtney/Weighted-Growing

-Simplicial-Complexes
[45] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,

J. Stat. Mech. (2008) P10008.

062301-14

https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1007/s10827-016-0608-6
https://doi.org/10.1007/s10827-016-0608-6
https://doi.org/10.1007/s10827-016-0608-6
https://doi.org/10.1007/s10827-016-0608-6
https://doi.org/10.1090/conm/620/12367
https://doi.org/10.1090/conm/620/12367
https://doi.org/10.1090/conm/620/12367
https://doi.org/10.1090/conm/620/12367
https://doi.org/10.1209/0295-5075/111/56001
https://doi.org/10.1209/0295-5075/111/56001
https://doi.org/10.1209/0295-5075/111/56001
https://doi.org/10.1209/0295-5075/111/56001
https://doi.org/10.1038/nature03607
https://doi.org/10.1038/nature03607
https://doi.org/10.1038/nature03607
https://doi.org/10.1038/nature03607
https://doi.org/10.1103/PhysRevLett.94.160202
https://doi.org/10.1103/PhysRevLett.94.160202
https://doi.org/10.1103/PhysRevLett.94.160202
https://doi.org/10.1103/PhysRevLett.94.160202
https://doi.org/10.1103/PhysRevE.79.066118
https://doi.org/10.1103/PhysRevE.79.066118
https://doi.org/10.1103/PhysRevE.79.066118
https://doi.org/10.1103/PhysRevE.79.066118
https://doi.org/10.1103/PhysRevE.80.036118
https://doi.org/10.1103/PhysRevE.80.036118
https://doi.org/10.1103/PhysRevE.80.036118
https://doi.org/10.1103/PhysRevE.80.036118
https://doi.org/10.2748/tmj/1325886283
https://doi.org/10.2748/tmj/1325886283
https://doi.org/10.2748/tmj/1325886283
https://doi.org/10.2748/tmj/1325886283
https://doi.org/10.4310/MRL.2012.v19.n6.a2
https://doi.org/10.4310/MRL.2012.v19.n6.a2
https://doi.org/10.4310/MRL.2012.v19.n6.a2
https://doi.org/10.4310/MRL.2012.v19.n6.a2
https://doi.org/10.1088/1742-5468/2016/06/063206
https://doi.org/10.1088/1742-5468/2016/06/063206
https://doi.org/10.1088/1742-5468/2016/06/063206
http://arxiv.org/abs/arXiv:1605.04662
http://arxiv.org/abs/arXiv:1606.01496
https://doi.org/10.1016/j.jfa.2008.11.001
https://doi.org/10.1016/j.jfa.2008.11.001
https://doi.org/10.1016/j.jfa.2008.11.001
https://doi.org/10.1016/j.jfa.2008.11.001
https://doi.org/10.1103/PhysRevE.89.032811
https://doi.org/10.1103/PhysRevE.89.032811
https://doi.org/10.1103/PhysRevE.89.032811
https://doi.org/10.1103/PhysRevE.89.032811
https://doi.org/10.1103/PhysRevE.92.032812
https://doi.org/10.1103/PhysRevE.92.032812
https://doi.org/10.1103/PhysRevE.92.032812
https://doi.org/10.1103/PhysRevE.92.032812
https://doi.org/10.1038/srep10073
https://doi.org/10.1038/srep10073
https://doi.org/10.1038/srep10073
https://doi.org/10.1038/srep10073
https://doi.org/10.1038/srep41974
https://doi.org/10.1038/srep41974
https://doi.org/10.1038/srep41974
https://doi.org/10.1038/srep41974
https://doi.org/10.1098/rsif.2014.0873
https://doi.org/10.1098/rsif.2014.0873
https://doi.org/10.1098/rsif.2014.0873
https://doi.org/10.1098/rsif.2014.0873
https://doi.org/10.1371/journal.pone.0066506
https://doi.org/10.1371/journal.pone.0066506
https://doi.org/10.1371/journal.pone.0066506
https://doi.org/10.1371/journal.pone.0066506
https://doi.org/10.1038/ncomms8723
https://doi.org/10.1038/ncomms8723
https://doi.org/10.1038/ncomms8723
https://doi.org/10.1038/ncomms8723
https://doi.org/10.1088/1751-8113/48/46/465002
https://doi.org/10.1088/1751-8113/48/46/465002
https://doi.org/10.1088/1751-8113/48/46/465002
https://doi.org/10.1088/1751-8113/48/46/465002
https://doi.org/10.1007/s00454-011-9378-0
https://doi.org/10.1007/s00454-011-9378-0
https://doi.org/10.1007/s00454-011-9378-0
https://doi.org/10.1007/s00454-011-9378-0
https://doi.org/10.1103/PhysRevE.93.062311
https://doi.org/10.1103/PhysRevE.93.062311
https://doi.org/10.1103/PhysRevE.93.062311
https://doi.org/10.1103/PhysRevE.93.062311
https://doi.org/10.1103/PhysRevE.93.032315
https://doi.org/10.1103/PhysRevE.93.032315
https://doi.org/10.1103/PhysRevE.93.032315
https://doi.org/10.1103/PhysRevE.93.032315
https://doi.org/10.1103/PhysRevE.92.022815
https://doi.org/10.1103/PhysRevE.92.022815
https://doi.org/10.1103/PhysRevE.92.022815
https://doi.org/10.1103/PhysRevE.92.022815
https://doi.org/10.1038/srep13979
https://doi.org/10.1038/srep13979
https://doi.org/10.1038/srep13979
https://doi.org/10.1038/srep13979
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1103/PhysRevE.65.066122
https://doi.org/10.1103/PhysRevE.65.066122
https://doi.org/10.1103/PhysRevE.65.066122
https://doi.org/10.1103/PhysRevE.65.066122
https://doi.org/10.1103/PhysRevLett.94.018702
https://doi.org/10.1103/PhysRevLett.94.018702
https://doi.org/10.1103/PhysRevLett.94.018702
https://doi.org/10.1103/PhysRevLett.94.018702
https://doi.org/10.1016/j.physa.2005.09.042
https://doi.org/10.1016/j.physa.2005.09.042
https://doi.org/10.1016/j.physa.2005.09.042
https://doi.org/10.1016/j.physa.2005.09.042
https://doi.org/10.1103/PhysRevE.71.046141
https://doi.org/10.1103/PhysRevE.71.046141
https://doi.org/10.1103/PhysRevE.71.046141
https://doi.org/10.1103/PhysRevE.71.046141
https://doi.org/10.1088/0305-4470/39/8/003
https://doi.org/10.1088/0305-4470/39/8/003
https://doi.org/10.1088/0305-4470/39/8/003
https://doi.org/10.1088/0305-4470/39/8/003
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1103/PhysRevLett.92.228701
https://doi.org/10.1103/PhysRevLett.92.228701
https://doi.org/10.1103/PhysRevLett.92.228701
https://doi.org/10.1103/PhysRevLett.92.228701
https://doi.org/10.1209/epl/i2005-10167-2
https://doi.org/10.1209/epl/i2005-10167-2
https://doi.org/10.1209/epl/i2005-10167-2
https://doi.org/10.1209/epl/i2005-10167-2
https://doi.org/10.1038/ncomms14103
https://doi.org/10.1038/ncomms14103
https://doi.org/10.1038/ncomms14103
https://doi.org/10.1038/ncomms14103
https://github.com/owencourtney/Weighted-Growing-Simplicial-Complexes
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008



