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This article describes a means by which to undertake Bayesian posterior inference
via sampling techniques when the normalizing constant is not computable and
hence unavailable. The strategy relies on the introduction of latent variables which
removes any integrals associated with the inaccessibility of the normalizing constant.
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1. Introduction

This article considers the situation when a probability model is employed for which
the normalizing constant is not computable. That is, for y ∈ I ,

f�y � �� = g�y� ��∫
I
g�s� ��ds

where g�y� �� is known and computable, but

Z��� =
∫
I
g�s� ��ds

is uncomputable. Such a scenario arises naturally in a number of problems:

1. Censored data problems; for some density g�y� �� and A ⊂ I it is that

f�y � �� ∝ g�y� ��1�y ∈ A�

and the normalizing constant
∫
A
g�y� ��dy is not computable.
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2. Weighted sampling problems; for some density g�y� �� and weight function w�y�,
it is that

f�y � �� ∝ w�y�g�y� ��

and
∫
w�y�g�y� ��dy is not computable.

We will provide a means by which to implement an exact Gibbs sampler based
on latent variables; see Besag and Green (1993) and Damien et al. (1999). The
aim here is to use latent variables to remove the integral from the denominator.
Numerical methods work first by calculating an approximation to the normalizing
constant and then undertake posterior inference with the estimated normalizing
constant. Path sampling (Gelman and Meng, 1998) is one popular approach and
some applications are to be found in Pettitt et al. (2003).

Other methods rely on an original auxiliary variable scheme introduced by
Moller et al. (2006). This idea has been extended by Murray et al. (2006) and
also by Adams et al. (2009). Specifically, this latter paper deals with case 2 above
whereby it is also that w is modeled as a stochastic process in a Bayesian setting.
These algorithms rely on proposal distributions associated with auxiliary variables
which, within the framework of a Metropolis–Hastings sampler, yield an acceptance
probability ratio which does not depend on the normalizing constant. However,
difficulties emerge in obtaining good enough acceptance probabilities and also the
need to sample the proposals which are forced in order to obtain the correct
acceptance probability.

The method outlined in this article uses auxiliary variables but only to remove
the problem caused by the normalizing constant. The MCMC algorithm can then
be constructed with no special considerations required to be taken into account.
In Murray et al. (2006), it is stated that “No known method of defining auxiliary
variables removes Z��� from the joint distribution.” The joint distribution referred
to is the one for �y� �� once a prior ���� has been included; that is,

f�y� �� = g�y� ��

Z���
�����

The present article indeed finds such auxiliary variables for removing Z���.
Hence, we can proceed with posterior inference for � without first having to

estimate the normalizing constant and without being forced to employ a special
MCMC algorithm for which the normalizing constant only disappears in an
acceptance probability ratio. The only condition under which we work is that g is
bounded; so there exists some known constant M < +� such that g�y� �� ≤ M for
all � and y. In all of the material which follows, and without loss of generality,
we will assume that M = 1. We will also assume that y belongs to some bounded
interval which, again without loss of generality, we will assume to be the interval
�0� 1�. This is to cover the general case

f�y � �� = g�y� ��∫
I
g�s� ��ds

�

However, in cases 1 and 2, described earlier, no restrictions are required save A need
be a bounded set and w needs to be bounded. We can also cover case 2 with w
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modeled as a bounded stochastic process based on a transformed Gaussian process,
as in Adams et al. (2009).

In Sec. 2 we will describe the latent model which provides the basis for a
reversible jump MCMC algorithm for sampling the posterior distribution. The
reversible jump algorithm is given in some detail in Secs. 3 and 4 contains some
numerical illustrations.

2. The Latent Variables

The likelihood function based on a sample of size n from f�y � �� is given by

f�y1� � � � � yn � �� ∝
∏n

i=1 g�yi� ��

m���n
�

where

m��� =
∫ 1

0
g�s� ��ds�

When faced with a denominator of the type m���n, a standard trick (Nieto-Barajas
et al., 2004) to remove some of the complexity is to use

f�v� y � �� ∝ vn−1 exp	−vm���

n∏

i=1

g�yi� ��

so that integrating out the v yields the likelihood function. But, when m��� is an
uncomputable integral then little progress has been made here.

However, we can now introduce some further latent variables

�k� s1� � � � � sk�

which removes the integral:

f�v� k� s�k�� y � �� ∝ e−vvk+n−1

k!
k∏

j=1

{
�1− g�sj� ���1�0 < sj < 1�

} n∏
i=1

g�yi� ���

where s�k� = �s1� � � � � sk�. Integrating out the �sj�
k
j=1 and then summing over k returns

the likelihood. One further idea which can ease the sampling algorithm would be to
introduce further latent variables �uj�

k
j=1 which interact with the �sj� via

k∏
j=1

1�uj < 1− g�sj� ����

This then provides us with a basis for the implementation of a MCMC (Smith and
Roberts, 1993) for sampling the model. The only possible source of complication is
the k variable which when changes the dimension of the model also changes. This
can then be solved using ideas based on reversible jump MCMC (Green, 1995).

The variables ��uj� sj�
k
j=1� v� ��, once a prior ���� has been specified, should not

be difficult to sample from their full conditional density functions and so the next
section is devoted to the sampling of the k, which needs some attention.
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For completeness we provide the other full conditional densities here. But
before doing this, we note a simple procedure which is to remove the v latent
variable. Integrating out v from f�v� k� s�k�� y � �� yields

f�k� s�k�� y � �� ∝
(
n+ k− 1

k

) k∏
j=1

{
�1− g�sj� ���1�0 < sj < 1�

} n∏
i=1

g�yi� ���

Now we can also confirm that integrating out the s�k� and summing over k returns
the original likelihood due to the identity

�∑
k=0

(
n+ k− 1

k

)
�k = �1− ��−n

for any 0 < � < 1 and n ≥ 1.
The full conditional for uj is uniform from the interval �0� 1− g�sj� ��� and

similarly we take sj uniformly from the interval 	0 < s < 1 � g�s� �� < 1− uj
.
Finally, we have the conditional for � as

��� � · · · � ∝
{

n∏
i=1

g�yi� ��

}
����1�� ∈ A��

where

A = 	� � g�sj� �� < 1− uj∀j
�
We now turn to the sampling of k.

3. Sampling k

The form of reversible jump MCMC for k described here is based on the
formulation presented in Godsill (2001). The idea here is to complete the model with
an infinite set of �uj� sj�

�
j=1 and construct a joint density p�k� u� s� of the form

p�k� u� s� ∝
(
n+ k− 1

k

) k∏
j=1

{
1�uj < 1− g�sj� ���1�0 < sj < 1�

}

×
�∏
j=k

p�uj+1� sj+1 � uj� sj��

where p�uj+1� sj+1 � uj� sj� are to be specified density functions acting as proposals for
the states moved to when k changes. In this case, there is no dimension change when
k changes and hence a standard Metropolis step can be implemented. The specific
form involving the

�∏
j=k

p�uj+1� sj+1 � uj� sj�

term means that there is substantial canceling when the Metropolis acceptance
probability is computed.
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One possibility for the p�uj+1� sj+1 � uj� sj� is based on an independent proposal
density and given by

p�uj� sj� =
1�uj < 1− g�sj� ���

1− g�sj� ��
1�0 < sj < 1��

In fact, there is little reason here to have a dependent proposal and it makes things
simpler to work with.

Now suppose the chain is at state k and a proposal is made, with probability
q�k+ 1 � k�, to state k+ 1. Then we would need to sample �uk+1� sk+1� from
p�uk+1� sk+1� and the move is accepted with probability

min
{
1�

�n+ k��1− g�sk+1� ���q�k � k+ 1�
�k+ 1�q�k+ 1 � k�

}
�

On the other hand, if the proposal is made to go to state k− 1, with probability
p�k− 1 � k�, then the move is accepted with probability

min
{
1�

kq�k � k− 1�
�n+ k− 1��1− g�sk� ���q�k− 1 � k�

}
�

Note that it is a must for q�1 � 0� = 1, whereas for all other moves it seems
reasonable for q�k′ � k� = 1

2 for all �k− k′� = 1.

4. Numerical Illustrations

We start with a simple example whereby we take

g�y� �� = e−�y2

for 0 < y < 1 and � > 0. Then, specifically, sj is uniform from the interval(√
−�−1 log�1− uj�� 1

)
and � has density

���� exp

{
−�

n∑
i=1

y2i

}
1�� > a�

where

a = max
1≤j≤k

	−s−2
j log�1− uj�
�

We took the prior as ���� = e−� so the full conditional for � is easy to sample.
For the example, we took the true value of � as 2; 100 observations were

generated, which can be done by sampling truncated normal random variables with
mean 0 and variance 1/�2��. The chain was run for 50,000 iterations and every 100th
sample was used to construct the posterior distribution of � presented in Fig. 1. The
posterior mean was 2.10. In Fig. 2, we provide the trace of the plot of samples from
the chain, exhibiting adequate mixing.
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Figure 1. Density estimate for posterior distribution of � for first illustration.

In the second illustration, we take

g�y� �� = �1+ y2�−�

for 0 < y < 1 and � > 0. Again, we sample 100 observations with a true
value of � = 2. The conditional distribution of sj is uniform from the interval

Figure 2. Trace of samples from chain for first illustration.
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(√
�1− uj�

−1/� − 1� 1
)
, and the density for � is given by

���� exp

{
−�

n∑
i=1

log�1+ y2i �

}
1�� > a��

where

a = max
1≤j≤k

{
− log�1− uj�

log�1+ s2j �

}
�

We again took a standard exponential prior for �.
The posterior distribution of � is presented in Fig. 3. This is based on taking

every 100th sample from a chain of length 50,000. The posterior mean is 2.04. The
trace of samples, demonstrating adequate mixing, is presented in Fig. 4.

In both cases, the proposal probabilities for moving k was taken to be 1
2 ; to

k+ 1 and k− 1. Except when k = 0 and then the proposal is probability 1 of moving
to k = 1. In summary, the conditional densities are as follows.

• For j = 1� � � � � k, uj ∼ Un�0� 1− g�sj� ���.• For j = 1� � � � � k, sj ∼ Un	0 < s < 1 � g�s� �� > 1− uj
.• ��� � · · ·� ∝ ����
∏n

i=1 g�yi� ��1�� ∈ A�, where

A = 	� � g�sj� �� > 1− uj∀j
�

• Moving k as described in Sec. 3.

If at a particular iteration it is that k = 0, then the sampling of the �u� s� is not
needed; and � is sampled without the constraint of any �� ∈ A�.

Figure 3. Density estimate for posterior distribution of � for second illustration.
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Figure 4. Trace of samples from chain for second illustration.

5. Discussion

This article presented a means by which to undertake posterior sampling directly
even when the normalizing constant is not available. There is no need to estimate
it first using numerical methods nor ensure its removal only on the construction
of a special MCMC algorithm. We have introduced auxiliary variables so that the
normalising constant is removed prior to the introduction of any algorithm. Any
MCMC can be used based on any proposal distribution. The only requirement is
that in the most general case we require the g�y� �� function to be bounded.
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