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Inferring missing edges in a graph from observed collective patterns
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Many real-life networks are incomplete. Dynamical observations can allow estimating missing edges. Such
procedures, often summarized under the term ‘network inference’, typically evaluate the statistical correlations
among pairs of nodes to determine connectivity. Here, we offer an alternative approach: completing an incom-
plete network by observing its collective behavior. We illustrate this approach for the case of patterns emerging
in reaction-diffusion systems on graphs, where collective behaviors can be associated with eigenvectors of the
network’s Laplacian matrix. Our method combines a partial spectral decomposition of the network’s Laplacian
matrix with eigenvalue assignment by matching the patterns to the eigenvectors of the incomplete graph. We
show that knowledge of a few collective patterns can allow the prediction of missing edges and that this result
holds across a range of network architectures. We present a numerical case study using activator-inhibitor
dynamics and we illustrate that the main requirement for the observed patterns is that they are not confined
to subsets of nodes, but involve the whole network.
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I. INTRODUCTION

At the core of network science [1] is the representation of
large amounts of data in the form of mathematical graphs.
Data about the binding of proteins yield protein-interaction
networks [2,3], contact data and surveys of behavioral pat-
terns yield social networks [4,5], compilations of transcription
factor binding sites can be summarized as transcriptional
regulatory networks [6], connectivities of brain areas can be
estimated from measured asymmetries in local water diffusion
via diffusion tensor imaging (DTI) leading to connectome
representations of biological neural networks [7,8].

It is by now widely accepted that most network repre-
sentations of biological, social, and technical networks are
incomplete [6,9–15]. The most common type of incomplete-
ness is to be equipped with complete (or near-complete)
knowledge of the nodes of the network (e.g., having an in-
ventory of all genes of an organism or all social actors in a
community), but only with incomplete information on their
connections (e.g., the regulatory processes among genes or the
acts of communication or interactions among social actors). A
large body of algorithms predicts missing edges either evalu-
ating the plausibility of certain topological features (like the
degree of a node or its betweenness centrality) or similarity of
the network to a particular class of generic network topologies
(e.g., hierarchical modular networks) or via the embedding
of the network in a geometric (e.g., three-dimensional) space
exploiting spatial proximity for prediction purposes (see also
Ghasemian et al. [15] for details of these categories and a
clear summary and comparative analysis of these algorithms).
Examples of such edge prediction algorithms are [10,16–20].

Often, dynamical information of nodes in a network is ana-
lyzed in one of two ways: (i) A set such dynamical ‘snapshots’
is converted into pairwise relationships among nodes, thus
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leading to a network representation of this dynamical infor-
mation, which is then thought of as an approximation of the
(e.g., regulatory) interaction structure underlying the system
at hand and which is used to determine missing edges [14,21–
24]. This is the core of the rich topic of network inference
[25,26]. (ii) The dynamical information is represented in a
network-like fashion (often called functional connectivity and
then compared to a given (structural) network. This is the core
idea of comparisons of structural and functional connectivity
(SC/FC relationships), as frequently employed in computa-
tional neuroscience [27] and other disciplines [28].

Beyond the research described above, the general chal-
lenge posed by incomplete networks has led to a range of other
investigations, such as the question of accurate community
detection or centrality in incomplete or erroneous networks
[29,30] or the reconstruction of topological and dynamical
information when only incomplete dynamical information is
available, as in compressive sensing approaches [31]. Other
recent methods leverage observed heterogeneous patterns of
activity of nonlinear random walks [32,33] and spiking neuron
models [34,35] to infer on the underlying network topology
(see also [36] for details on patterns on graphs based on ran-
dom walks). In [14], a formalism is presented for estimating
network structure from noisy and erroneous data in cases
where additional information is provided. Newman [14] dis-
cusses how to leverage this information, in order to maximise
the agreement between network structure and data, using a
variant of Bayesian statistics.

Here, we draw attention to an underrated source of in-
formation – collective patterns – about missing edges in a
network and more generally we construct a framework for
a pattern-based network inference. Our focus is on a special
case associated for example with Turing patterns on graphs
[37–39], where (near the Turing instability) these collective
patterns are proportional to eigenvectors of the Laplacian ma-
trix. By simulating a reaction-diffusion system on a graph, we
show how this approach can be operationalized in practice.
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FIG. 1. Schematic illustration of the pattern-based network inference method. Collective (reaction-diffusion) patterns emerge as a dynam-
ical process on the original graph (unknown) and bear the imprints of its (Laplacian) eigenvectors. Measuring the former and using them
as a proxy for the latter, and adding to it the partial knowledge of the graph edges (known), we are able to infer the full network topology
(prediction).

Pattern forming capabilities of complex networks unites
two fields of fundamental relevance to statistical physics,
namely the theory of complex networks and the theory of self-
organization and spatiotemporal pattern formation. Prominent
examples of this combination of fields are Turing patterns
on graphs [37–39] and self-organized waves in excitable net-
works [40–42].

Only few investigations consider the perspective of dy-
namical systems to enhance edge prediction of networks, for
example leveraging recorded statistics of time invariants [43],
response patterns [44,45], or entire dynamical trajectories
[46].

In the following, we will first present the technicalities
involved in our method, including the eigenvalue assignment
procedure and the formalism undertaken for the simulation
of Turing patterns. We show how we can reliably infer the
missing edges of a partially unknown graph from the incom-
plete graph together with the knowledge of a few eigenvectors
of the corresponding original graph. In a subsequent step, we
reconstruct the original graph using Turing patterns instead of
the eigenvectors of the latent network, Fig. 1 summarizes our
approach. Further, we assess the role of network architecture,
the importance of eigenvector ranks, measure and explain
the performance of our method as a function of the amount
of missing information. Later, we finish by discussing its
strengths, identify its limitations and propose future directions
to explore.

II. METHODS

A. Notation

Let G = (N ,E ) be an undirected unweighted graph with
N = |N | nodes and E = |E | edges with no self-loops or mul-

tiple edges. For i = 1 . . . N , the degree of the node i is denoted
as ki. The adjacency matrix of G is an N × N symmetric
matrix denoted as A = (ai j ) such that i, j = 1 . . . N , where
ai j = 1 if j is adjacent to i and ai j = 0 otherwise. Hence,
ki = ∑N

j=1 ai j . The Laplacian matrix of G is denoted as L =
(li j ) and is defined as li j = ai j − kiδi j . Via an eigenvector
equation

∑N
j=1 li jφ jα = �αφiα , we can obtain �α , the real

negative Laplacian eigenvalue associated to the eigenvector
�φα = (φ1α, . . . , φN α ). The indices α are sorted in increasing
order of the eigenvalues such that �1 � �2 � . . . � �N = 0.
For α, β = 1 . . . N , all �φα and �φβ are orthonormal such that∑N

i=1 φiαφiβ = δαβ .
After deleting pE edges from G with 0 < p < 1, we are

left with a graph denoted as G(D) = (N ,E ′) with an adja-
cency matrix A(D) and a Laplacian matrix L(D) which has for
eigenvalues �(D)

α and eigenvectors �φ(D)
α for α = 1 . . . N .

Note that, while some eigenvectors of the original graph
are known (in terms of observed collective patterns), the
eigenvalues of the original graph are not known. In fact, a
core component of our approach is to estimate these quanti-
ties from the eigenvalues and eigenvectors of the incomplete
graphs (via eigenvector matching; see Sec. II C). Table I sum-
marizes our starting point.

B. Spectral decomposition

G is reconstructible [47,48] and its Laplacian L has a spec-
tral decomposition such that

L =
N∑

α=1

�α �φα
�φT
α . (1)
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TABLE I. Information availability in our investigation.

Quantity Symbol Known/unknown

original graph G = (N , E ) partially known (via G(D) )
incomplete graph G(D) = (N , E ′) known
eigenvectors of G �φα partially known
eigenvalues of G �α unknown
eigenvectors of G(D) �φ (D)

α known
eigenvalues of G(D) �(D)

α known

Since L is a negative semidefinite matrix, the coefficient
�α associated to �φα in the eigen-decomposition always keeps
the same negative sign for α = 1 . . . N .

C. Matching coefficients

In order to select coefficients of the truncated spectral
decomposition, we need to find the eigenvalue among the
�(D)

α , which is likely to be most similar to the (unknown)
eigenvalue �α corresponding to the eigenvector �φα of the
original network (which is given as an observed pattern). This
is done by computing the (Pearson) correlation coefficient
between the eigenvector �φα and all N eigenvectors �φ(D)

β . The
index β∗, which gives the maximal correlation with the given
eigenvector �φα , is then allowing us to select �

(D)
β∗ as the miss-

ing coefficient of �φα in the truncated spectral decomposition.
For α = 1 . . . N , we estimate the Pearson correlation coef-

ficients [49]

C
( �φα, �φ(D)

β

) =
N

∑
i φiαφ

(D)
iβ

− ∑
i φiα

∑
i φ

(D)
iβ√

N
∑

i(φiα )2 − ( ∑
i φiα

)2
√

N
∑

i

(
φ

(D)
iβ

)2 − ( ∑
i φ

(D)
iβ

)2

between �φα and all N �φ(D)
β for β = 1 . . . N and select the

maximally correlated �φβ∗ . After matching each α with the cor-
responding β∗ = argmaxβ |C( �φα, �φ(D)

β )|, we write the inferred

Laplacian L(I ) = (l (I )
i j ) according to

L(I ) = �

(
N∑

α=1

�
(D)
β∗ �φα

�φT
α , τ

)
, (2)

where � is the Heaviside function applied element-wise such
that �(li j, τ ) = {1 if li j � τ

0 if li j < τ with τ serving as binarization
threshold.

After estimating L(I ) and its corresponding adjacency
matrix A(I ) = (a(I )

i j ) = l (I )
i j (1 − δi j ), we fully reconstruct the

graph denoted as G(R) by writing its adjacency matrix denoted
as A(R) as a combination of A(I ) and A(D). A(R) = (a(R)

i j ) such
that

a(R)
i j =

{
1 if a

(I )

i j = 1 ∨ a(D)
i j = 1

0 if a
(I )

i j = 0 ∧ a(D)
i j = 0

.

D. Pairwise correlations from eigenvectors

For comparison of pattern view with standard inference
methods based on pairs of nodes, we use the following
correlation-based classifier: We extract pairwise correlations
from the eigenvectors, or interchangeably from measured Tur-
ing patterns, and use them to reconstruct the original graph.
Having { �φα}, a set of k eigenvectors, as a starting point, for
every pair of nodes i, j = 1 . . . N , we compute the Pearson
correlation C(�ϕi, �ϕ j ) such that �ϕi = (φi1 , φi2 , . . . , φik ) a vector
made of the ith component of every eigenvector available.

Shuffling nS times every vector �ϕi and �ϕ j into �ϕ(si )
i and �ϕ(s j )

j
with si, s j = 1 . . . nS , we compute a list of mutual correlation
coefficients of length nS × nS and z-score the correspond-
ing C(�ϕi, �ϕ j ) according to it. We construct a matrix A(P) =
(a(P)

i j ), where a(P)
i j is the aforementioned z-transformed pair-

wise correlation coefficient between i and j. After applying

a binarization threshold and including the information from
A(D), we obtain an adjacency matrix for G(R).

E. Turing patterns

Turing patterns emerge from reaction-diffusion systems
[50] described on a graph G = (N ,E ) by a set of 2N equa-
tions modeling the populations of activators and inhibitors
[51,52] such that in every node i = 1 . . . N [37], the following
dynamical equations hold:

∂

∂t
ui(t ) = f (ui, vi ) + ε

N∑
j=1

Li ju j, (3)

∂

∂t
vi(t ) = g(ui, vi ) + σε

N∑
j=1

Li jv j . (4)

The diffusive mobility of the activator and the inhibitor
species are given by Dact = ε and Dinh = σε, respectively.
Hence, σ is the ratio of the inhibitor and activator diffusion
coefficients, σ = Dinh/Dact. The functions f (u, v) and g(u, v)
represent the local interaction terms of both species. f (ū, v̄) =
0 and g(ū, v̄) = 0 correspond to the uniform stationary state
(u, v) = (ū, v̄). In the case of the Gierer-Meinhardt model
[52], the reaction terms are formulated with two kinetic pa-
rameters a and b as f (u, v) = a − bu + u2/v and g(u, v) =
u2 − v, and for which (ū, v̄) = ( a+1

b , ( a+1
b )2).

Then, following the same formalism described by Nakao
and Mikhailov [37], we obtain the growth rates λα as

λα = 1

2

{
− b + 2b

a + 1
+ ε�α (1 + σ )

+
√

8b

a + 1
+

[
1 − b + 2b

a + 1
+ ε�α (1 − σ )

]2
}

.

To excite a narrow range of the graph eigenvectors around
the mode α corresponding to �φα , we follow the procedure
from Hütt et al. [38] and tune all four parameters, a, b, ε, and σ
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FIG. 2. (a) Dispersion relation for Gierer-Meinhardt (reaction-
diffusion) dynamics on an Erdös-Rényi graph of N = 100 nodes
and E = 300 edges, using the same parameters as in Fig. 5. The
dispersion relation indicates the relation between the growth rates λ

(representing dynamics) and the graph eigenvalues � (representing
network topology). In this case, Turing patterns are driven by the five
unstable modes α = {9, . . . , 13} verifying λα > 0. (b) Distribution
of the correlations between the graph eigenvectors and a single Tur-
ing pattern for the same graph and parameters as in (a), as a function
of the corresponding eigenvector index.

so that λα is located on top of the dispersion curve given by λα

as a function of log(−�) (see Fig. 2(a)). This is done by first
solving the system of equations {λα = 0, ∂λα

∂�α
= 0} and then,

incrementing σ by �σ to translate the curve upward and be
in the unstable regime. Note that the term ∂λα/∂�α is meant
in the following way: The mathematical expression yields a
curve λ(�) and the actual eigenvalues �α constitute a discrete
sampling of this curve (see [38] for a detailed discussion).

Projected on the { �φα} basis for α = 1 . . . N , ui(t ) time
evolution is proportional to eλα . Thus, only the unstable terms
αc with λαc > 0 do not vanish and contribute to the stationary
state, that is, the Turing pattern �u = (u1, . . . , uN ) ∝ �φα for all
λα > 0. The correlations between �u (i.e., the concentration of

TABLE II. ROC confusion matrix adapted to the network infer-
ence problem.

if a(D)
i j = 0 a(O)

i j = 1 a(O)
i j = 0

a(I )
i j = 1 True False True Positive Rate:

Positive Positive T PR = T P
T P+FN

a(I )
i j = 0 False True False Positive Rate:

Negative Negative FNR = FN
FN+T N

activators per node) representing the patterns, and the eigen-
vectors �φα are shown in Fig. 2(b).

III. RESULTS

As schematically illustrated in Fig. 1, augmenting an
incomplete knowledge of the network structure by the mea-
surement of a few Turing patterns, we can construct a partial
spectral decomposition of the graph’s Laplacian matrix and,
in this way, infer its missing edges. Detailed characterization
and explanation of this procedure, including the coefficients
matching process are given in Sec. III C.

The graph reconstruction problem can be represented as a
set of binary classifications, every pair of nodes can either be
linked by an edge (returns 1) or not (returns 0). A common
method to evaluate the performance of a classifier is by plot-
ting the receiver operating characteristic (ROC) curve which
describes the variation of the true positive rate (TPR) as a
function of the false positive rate (FPR) over a range of deci-
sion thresholds. Then, by computing the area under the ROC
curve (denoted as AUC [53]), we obtain the probability for a
classifier to rank a randomly chosen positive case higher than
a randomly chosen negative one. The quality of our inference
is assessed by comparing the original adjacency matrix A =
(a(O)

i j ) to the reconstructed adjacency matrix A(R) = (a(R)
i j ), the

edges already present in A(D) = (a(D)
i j ) being excluded from

the evaluation, according to Table II.
In the case, where an edge exists between i and j, we are

faced with two possibilities, when going from the original net-
work (where ai j = 1) to the deleted network: (i) The edge has
not been deleted and we can recover it given that we observe
a(D)

i j = 1 (even if we infer a(I )
i j = 0). (ii) The edge has been

deleted (a(D)
i j = 0) and we can recover it, in case we infer that

a(I )
i j = 1. Hence, the logical statement (a(D)

i j = 1 ∨ a(I )
i j = 1)

(i.e., a logical OR) covers the two cases for which we can
conclude that a(R)

i j = 1 is the correct assumption.
We consider an Erdös-Rényi graph G of N = 100 nodes

and E = 300 edges, and attempt reconstructing it after ran-
dom deletion of 50% of all its edges based on the information
contained in different sets of its eigenvectors. The resulting
ROC curves are given in Fig. 3. The role of the eigenvector
rank is later explored in Sec. III C.

A. Inferring from eigenvectors

The outlined method stands out by its resilience to
topological damage as observed in Fig. 4 depicting, for
three Erdös-Rényi graphs Gi of N = 100 nodes and Ei =
250, 300, 350 edges, the evolution of the AUC – that is, the
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FIG. 3. ROC curves of the reconstruction of an Erdös-Rényi
graph G of N = 100 nodes and E = 300 edges. We infer the orig-
inal graph structure after random deletion of 50% of all network
edges, using: a set of five nonadjacent eigenvectors from the intervals
�φ3 . . . �φ17 (blue curve with AUCb = 0.81), �φ8... �φ22 (orange curve
with AUCo = 0.76), �φ31 . . . �φ45 (green curve with AUCg = 0.56),
�φ84 . . . �φ98 (red curve with AUCr = 0.27) or the latter set after swap-
ping edges and nonedges of the inferred graph adjacency matrix
(purple curve with AUCp = 0.73). The grey line indicates random
predictions, curves covering an area superior (respectively, inferior)
to it, meaning AUC > 0.5 (respectively, AUC < 0.5) correspond to
better (respectively, worse) than random predictions.

accuracy of our predictions – as a function of the percentage
of deleted edges. As a proof of principle, in each of these
cases, the AUC is estimated starting from nR = 100 different
selections of a set of five eigenvectors randomly picked, in this
case, from the interval �φ3 . . . �φ17.

For comparison, we use a naive classifier where the eigen-
vectors are not considered as ‘patterns’, but rather as ‘data’,
from which we compute (Pearson) correlations among all
pairs of nodes, in order to predict missing edges. The results
are shown in Fig. 4 as well (pale colors). This numerical
experiment with pairwise correlations as a classifier following
traditional network inference paradigm highlights the sig-
nificant advantage of considering eigenvectors as collective
modes of the network (brighter colors). Details about this
process are given in Sec. II D.

We observe that performance tends to decrease as the con-
nectivity of the graph increases, as in the previous case, going
from E1 = 250 edges to E3 = 350 edges. This is intuitively
clear: The same number of five eigenvectors is provided in
both cases but is leveraged for different amounts of informa-
tion to cover the entire graph structure and compensate for the
increased number of missing edges.

We observe initial fluctuations of the AUC as a function of
the percentage of deleted edges. This is due to the significant
and statistically inevitable fluctuations of the number of true
positives (TP) when only a small number of edges are missing
from G (see Table II).

We conduct the same numerical experiments on regular
random graphs and scale-free graphs of different connectiv-
ities. The results are presented in Appendix B.

FIG. 4. AUC estimation of the reconstruction of three Erdös-
Rényi graphs Gi of N = 100 nodes and Ei = 250, 300, 350 edges
as a function of the percentage of deleted edges. In each case and
for a nR = 100 iterations each, we use a set of five eigenvectors
randomly picked from the interval �φ3 . . . �φ17. We infer the original
graph structures after random deletion of a single edge and up to 50%
of all network edges. For each graph, the resulting AUCs are depicted
as bands (standard deviation) of which average is indicated by a line
within each band. These values are compared with those drawn from
pairwise correlations, depicted in corresponding pale colors.

B. Inferring from collective patterns

Were all graph eigenvectors and eigenvalues empirically
available, graph reconstruction would ensue directly accord-
ing to Eq. (1) (see Sec. II). In practice, this is not the case.
Only collective patterns approximating eigenvectors will be
given, often only a small number of distinct patterns will be
available, and eigenvalues are unknown. These points will
be addressed in the following.

We resort to the use of measurable collective patterns
focusing on Turing patterns (see Sec. II E for a detailed de-
scription). We consider a Gierer-Meinhardt [52] system of
reaction-diffusion equations while keeping in mind that the
outlined method is model-independent. Using the method
from [38] for parameter selection to active a specific region
of the spectrum, we excite a narrow range of the graph eigen-
vectors around the mode α = 10 (see Fig. 2). The AUC as a
function of the percentage of deleted edges is given in Fig. 5.
As in the previous case, the reconstruction process remains
robust with regards to edge deletion, although, understand-
ably, our method overall works better with eigenvectors due
to their mutual orthogonality, they tend to collectively carry
more information about the latent structure than patterns do.
This can be largely compensated by the measurements of mul-
tiple patterns. Using the same previously considered network
configuration and parameters, and after random deletion of
50% of all the network edges, we estimate the AUC using
an increasing number of Turing patterns. The results are pre-
sented in Fig. 6.

So far, our analysis has focused on predictability in general,
by computing the AUC averaged over multiple runs. In practi-
cal applications, one would rather be confronted with a single
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FIG. 5. AUC estimation of the reconstruction of an Erdös-Rényi
G of N = 100 nodes and E = 300 edges, as a function of the per-
centage of deleted edges. We run a Gierer-Meinhardt model with
kinetic parameters obtained via the selection scheme from [38] (here,
a = 0.077 and b = 0.759, and diffusion parameters ε = 0.025 and
σ = 10.02) in order to excite a narrow range of the graph eigenvec-
tors around the mode α = 10. We obtain five Turing patterns and use
them to infer the original graph structure after random deletion of a
single edge and up to 50% of all the network edges. This process is
repeated for a nR = 100 iterations. The resulting AUCs are depicted
as a band (standard deviation) of which average is indicated by a line
within it (blue). These values are compared with those drawn from
pairwise correlations (orange).

incidence of a network, together with a few measured patterns.
In Appendix A, we provide two examples of such a practical
application, demonstrating that, indeed, our approach leads to
a good prediction of missing links, outperforming substan-
tially a simple heuristic based on pairwise correlations.

C. Eigenspace characterization of prediction quality

1. Eigenvector rank importance and network architecture

Not all eigenvectors contribute similarly to the recon-
struction process. Across all network architectures, those
associated with the largest eigenvalues lead to more accurate
predictions, represented in a higher AUC downstream. This
is outlined by Fig. 7 where the AUC is estimated from five
eigenvectors randomly picked from a moving interval of 15
eigenvectors, of which index ranges from 1 to N − 14. This
process is iterated for three different network topologies, for
nn = 100 networks each.

The trend is consistent in all three cases: There is an in-
creasing linear relation between the eigenvectors’ indices and
the resulting AUC. In other words, the eigenvectors associated
with the largest eigenvalues – those corresponding to the first
indices – lead to more accurate predictions. Additionally, we
observe increased performances going from a scale-free to
an Erdös-Rényi to a regular random graph. We hypothesize
that this is due to the differences in eigenvectors localiza-
tion: Widely distributed eigenvectors generally provide more
information about the overall graph structure than localized
eigenvectors. This results in the method – statistically –

FIG. 6. AUC estimation of the reconstruction of an Erdös-Rényi
graph G of N = 100 nodes and E = 250 edges, as a function of the
number of patterns used. Parameters for the Gierer-Meinhardt model
are the same in Fig. 5. We obtain np = 1 . . . 100 Turing patterns and
use them to infer the original graph structure after random deletion
of 50% of all the network edges. This process is repeated for a nR =
100 iterations. The resulting AUCs are depicted as a band (standard
deviation) of which average is indicated by a lighter color.

performing better for graphs with more widely distributed
eigenvectors, such as regular random graphs [54].

Less intuitive, however, is that the eigenvectors from the
other end of the spectrum provide precisely opposite informa-
tion, suggesting that placing the edges not in the slots derived

FIG. 7. AUC estimation of the reconstruction of three different
network architectures: A regular random graph GR of NR = 100
nodes, degree d = 6, and ER = 300 edges, an Erdös-Rényi graph
of NE = 100 nodes and EE = 300 edges, and a scale-free graph of
NS = 100 nodes, attachment parameter m = 3 and ES = 291 edges.
In all three cases, the method is applied after random deletion of 50%
of all network edges and taking as input a moving interval of five
eigenvectors. The resulting AUCs are depicted as bands (standard
deviation) of which average is indicated by a line within each band.
The grey line AUC = 0.5 indicates random predictions.
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FIG. 8. Coefficient matching panel: (a) AUC estimation of the reconstruction of three Erdös-Rényi graphs Gi of N = 100 nodes and
degrees di = 4, 5, 6 as a function of the percentage of deleted edges. In each case, we use a set of five eigenvectors randomly picked from
the interval �φ3 . . . �φ17. We infer the original graph structure after random deletion of a single edge and up to 50% of all network edges. Each
case (blue, orange and green lines) is then compared with a nr = 100 benchmark trials where we do not match eigenvalues but use random
numbers between −1 and 0 as coefficients (blue, orange and green bands). (b) AUC estimation of the reconstruction of an Erdös-Rényi graph
G of N = 100 nodes and E = 250 edges, as a function of the percentage of deleted edges. Parameters for the Gierer-Meinhardt model are the
same as in Figs. 5 and 6. We obtain five Turing patterns and use them to infer the original graph structure after random deletion of a single edge
and up to 50% of all the network edges (line). Benchmark comparison is performed as in (a). (c) Levenshtein edit-distance [55] between the
sequence of matched eigenvectors indices {α} and the ideal sequence of {1...N} as a function of the percentage of deleted edges. We consider
the same regular random graph G as in (a) and (b). The Levenshtein edit-distance between two sequences measures the minimal number of
single-character edits needed to transform one into another. Thus, its maximum possible value is equal to the length of the considered sequence
which is, in this case, N = 100. As a benchmark test assessing the precision of index matching, the Levenshtein edit-distance relative to the
matched indices (blue) is compared, at each step of the deletion process, with the same distance relative to a random sequence of integers
between 1 and N = 100 (orange). (d) Coefficient drift as a function of the percentage of deleted edges for the same Erdös-Rényi graph G as in
(a) and (b).

from these patterns is a better strategy for missing-edge de-
tection (see red and purple curves in Fig. 3). We believe that
this is due to the residual (but opposite) information about
large-scale patterns contained in the localized patterns coming
from the mutual orthogonality of eigenvalues.

2. Matching coefficients in the spectral decomposition

Inferring the original graph Laplacian involves associating
the measured eigenvectors �φα (or patterns) to the right co-
efficients, the exact values of which would be the Laplacian

eigenvalues �α . Having access, in practice, only to the incom-
plete graph Laplacian eigenvalues �(D)

α , we match the latter
with the former according to a process described in Sec. II C.

To assess the added performance of this matching pro-
cess, we compare, at each step of the deletion process, the
AUC derived using matched coefficients to the one using N
random real numbers uniformly distributed between −1 and
0. Repeating this process nr = 100 times, we obtain Fig. 8(a).
Conducting the same experiment using Turing patterns in-
stead of eigenvectors, we get Fig. 8(b).
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FIG. 9. Performance panel of graph reconstruction of: (1) an Erdös-Rényi graph G1 of N1 = 100 nodes, E1 = 248 edges and density
d1 = 0.05 on which we run a Gierer-Meinhardt model with kinetic parameters a1 = 0.06 and b1 = 0.72, and diffusion parameters ε1 = 0.029
and σ1 = 10.02, in order to excite a narrow range of the graph eigenvectors around the mode α1 = 10. We obtain five Turing patterns and
use them to infer the original graph structure after random deletion of 50% of all the network edges. (a1) Histogram of the inferred adjacency
matrix elements (ai j ) for i, j = 1 . . . N1. (b1) ROC curves: true positive rates as a function of false positive rates. (c1) Sensitivity and specificity
as a function of the applied (ai j ) threshold. (2) an Erdös-Rényi graph G2 of N2 = 100 nodes, E2 = 1485 edges and density d2 = 0.3 on which
we run a Gierer-Meinhardt model with kinetic parameters a2 = 0.09 and b2 = 0.79, and diffusion parameters ε2 = 0.007 and σ2 = 10.02,
in order to excite a narrow range of the graph eigenvectors around the mode α2 = 10. We obtain five Turing patterns and use them to infer
the original graph structure after random deletion of 50% of all the network edges. (a2) Histogram of the inferred adjacency matrix elements
(ai j ) for i, j = 1 . . . N2. (b2) ROC curves: true positive rates as a function of false positive rates. (c2) Sensitivity and specificity as a function
of the applied (ai j ) threshold. The prediction of missing links requires the selection of discrimination thresholds for the inferred adjacency
matrix elements (ai j ). In the two present examples, we select four thresholds, depicted as vertical lines: arbitrary 1 and arbitrary 2 are chosen
arbitrarily, closest is the threshold approximating the original graph connectivity, assuming this is known empirically, and Youden’s is the
threshold maximizing the Youden’s index, that is, the sum of sensitivity and specificity [75].

In both cases, we observe that, at any step of the deletion
process, AUCm � AUCr,i for i = 1 . . . nr , i.e., the reconstruc-
tion using matched eigenvalues performs almost consistently
as good as the best recorded reconstruction derived over
the accumulated nr = 100 trials using random coefficients.
As eigenvectors are randomly selected from a comparatively
small interval, the corresponding eigenvalues are not so dif-
ferent from each other. This explains why the matching
of coefficients enhances the AUC only by about 3.2% for
eigenvectors [see Fig. 8(a)] and 2.1% for patterns [see
Fig. 8(b)] on average, in the present case. We expect this
increase to be more significant if eigenvectors (or patterns)
are selected from a broader range.

3. Resilience to topological damage

As observed in Fig. 5, edge deletion causes increasingly
poor matching between the original eigenvectors �φ and the
eigenvectors of the incomplete graph �φ(D) [see Fig. 8(c)]. Yet,

its adverse effects on the AUC – beyond a certain limit –
remains minimal. The limited, though visible, importance of
coefficient matching is due to the selection of patterns from a
comparatively small region of the spectrum. As the spectrum
is locally rather flat, the impact of coefficient matching is
reduced.

Next, we define the ‘coefficient drift’ as �α (e) =
|�(D)

β∗ (e) − �α|/e for e deleted edges, that is, the difference

between the matched coefficients �
(D)
β∗ and the ideal original

eigenvalues �α normalized by the number of deleted edges
e. Its variation, as a function of the number of deleted edges,
is illustrated in Fig. 8(d). We argue that, although the matched
eigenvalues �

(D)
β∗ ranking can vary highly under edge deletion,

the amplitude of the coefficient mismatching remains con-
strained in the same narrow range even after the deletion of
a large proportion of the graph edges, an observation that can
be partly explained by the interlacing theorem [56]. Conse-
quently, increased mismatchings only have a limited negative
impact on the final prediction.
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TABLE III. Inference results for G1 using ‘collective patterns’ (AUC1 = 0.76) vs ‘pairwise correlations’ (AUC1∗ = 0.625). Bold text
indicates better predictions.

Arbitrary 1 Arbitrary 2 Closest Youden’s

Patterns Pairwise Patterns Pairwise Patterns Pairwise Patterns Pairwise

threshold 0.1 0.2 0.263 1.871 0.022 0.371
number of edges 707 2325 366 2179 247 248 1489 1937
sensitivity 0.484 0.629 0.274 0.589 0.202 0.081 0.728 0.629
specificity 0.889 0.543 0.956 0.575 0.979 0.977 0.728 0.629
balanced accuracy 0.686 0.543 0.615 0.582 0.59 0.529 0.719 0.601
precision 0.103 0.035 0.14 0.035 0.203 0.083 0.064 0.039
F1-score 0.17 0.066 0.186 0.067 0.202 0.082 0.118 0.073

IV. DISCUSSION

Network inference methods have been developed to esti-
mate missing edges, or even whole networks, from available
data. The bulk of network inference methods evaluates pair-
wise relationships between nodes. Here we formulate a
new paradigm of network inference evaluating data as self-
organized collective patterns. We illustrate this approach for
Turing patterns in reaction-diffusion dynamics on graphs, a
case where patterns are related to eigenvectors of the graph’s
Laplacian matrix.

In this instance, the task of inferring missing edges is
a truncated and inexact version of spectral decomposition
where accuracy is constrained by the segment of eigenvectors
available, as well as the rank stability of the eigenvalues as a
function of the percentage of missing edges.

We first show that this approach works in a stylized form,
where patterns are assumed to be eigenvectors. Then we illus-
trate how it can be operationalized also for (simulated) Turing
patterns. We observe only a weak dependence of inference
quality on global network architecture. However, the eigen-
value range (indirectly representing the spatial scale of the
patterns) available has a dramatic effect on the final output
(performance and/or quality).

Several limitations of our method need to be mentioned.
Our approach is restricted to undirected graphs, as we require
real eigenvectors and eigenvalues of the Laplacian matrix.
We acknowledge that, in many applications, graphs will be
directed (see, e.g., [57–60]). We anticipate, however, that our
approach might work for approximately symmetric interac-
tion matrices, like connectomes in neuroscience [61,62].

It would be interesting to further elaborate on possi-
ble generalizations of the approach to account for different
network settings such as non-normal [63], directed [64],
modular [65], and multilayer networks [66,67], as often en-
countered in real-world reaction-diffusion systems [68–72].

Additionally, our present framework stands on the validity
of the linear stability analysis. This limits the accuracy of the
inverse problem is two ways: (i) It neglects the contribution
of stable modes [see Fig. 8(b)]. (ii) Equating patterns and
eigenvectors is only possible close to the Turing instability.
Nonlinear combinations of eigenvectors become relevant with
increasing distance from the bifurcation point.

Moreover, specific topological features can hinder the qual-
ity of our predictions. As depicted in Fig. 7, eigenvectors – and
by extension, patterns – need to be ‘global’ enough to contain
network-wide information. Localized eigenvectors, such as
those observed in modular networks, are poorly informative.
Nonetheless, network architectural features might also facili-
tate such inference, e.g., in cases where the missing edges are
not uniformly distributed but degree-dependent or module-
based. Note that for a uniform random distribution of missing
edges (the case discussed in the present work) we have not
found a strong network dependence (see Appendix B).

While we are convinced that any type of self-organized
patterns could be operationalized in this way, we here fo-
cus on patterns approximating eigenvectors of the Laplacian
matrix of the graph. It is clear, of course, that eigenvectors
and spatial embeddings of networks (via ‘graph layout algo-
rithms’ like spring embedding) are not independent (see, e.g.,
[42] or a comparison of spring embedding and self-organized
excitation waves on graphs). In this sense, on a formal level,

TABLE IV. Inference results for G2 using ‘collective patterns’ (AUC2 = 0.649) vs ‘pairwise correlations’ (AUC2∗ = 0.519). Bold text
indicates better predictions.

Arbitrary 1 Arbitrary 2 Closest Youden’s

Patterns Pairwise Patterns Pairwise Patterns Pairwise Patterns Pairwise

threshold 0.2 0.5 0.257 1.155 0.02 −0.536
number of edges 1626 2550 1112 2218 1484 1483 2391 3356
sensitivity 0.371 0.443 0.197 0.348 0.327 0.177 0.575 0.709
specificity 0.825 0.576 0.936 0.65 0.856 0.826 0.648 0.354
balanced accuracy 0.598 0.51 0.566 0.499 0.592 0.501 0.612 0.531
precision 0.311 0.183 0.396 0.175 0.328 0.178 0.259 0.19
F1-score 0.338 0.259 0.263 0.233 0.328 0.178 0.357 0.3
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FIG. 10. AUC estimation of the reconstruction of: (a) Three regular random graphs Gi of N = 100 nodes, degree di = 4, 5, 6, and Ei =
200, 250, 300 edges, as a function of the percentage of deleted edges. In each case and for a nR = 100 iterations each, we use a set of five
eigenvectors randomly picked from the interval �φ3 . . . �φ17. We infer the original graph structures after random deletion of a single edge and up
to 50% of all network edges. For each graph, the resulting AUCs are depicted as bands (standard deviation) of which average is indicated by a
line within each band. These values are compared with those drawn from pairwise correlations, depicted in corresponding pale colors. (b) Three
scale-free graphs Gi of N = 100 nodes, attachment parameter mi = 2, 3, 4, and Ei = 196, 291, 384 edges, as a function of the percentage of
deleted edges. In each case and for a nR = 100 iterations each, we use a set of five eigenvectors randomly picked from the interval �φ3 . . . �φ17.
We infer the original graph structures after random deletion of a single edge and up to 50% of all network edges. For each graph, the resulting
AUCs are depicted as bands (standard deviation) of which average is indicated by a line within each band. These values are compared with
those drawn from pairwise correlations, depicted in corresponding pale colors.

we expect that our approach can help understand and refine
embedding-based edge prediction algorithms (see, e.g., [20]).

An important component of our pattern-based network
completion algorithm is the robustness of eigenvalue under
removal of edges, as these eigenvalues derived from the
incomplete network serve as coefficients in our truncated
spectral decomposition. This robustness (or, conversely, fluc-
tuation) of the rank under decreasing network information
[see Fig. 8(c)] is also of relevance to the fascinating topic of
ranking nodes in incomplete or evolving complex networks,
which has been addressed by [73,74].
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APPENDIX A

In this Appendix we present two worked-out examples
illustrating our method. Figure 9 summarizes our prediction
results. Tables III and IV provide the numerical details.

Graph sparsity entails a number of negative tests largely
outweighing the number of positive tests: Most pairs of nodes,

in the original graph, are not connected by an edge, thus, not
predicting any link leads to a significant number of T N and
therefore, a misleading large specificity, as pointed out in [76].
To better assess our results for the different chosen thresh-
olds, beyond the previously introduced (i) sensitivity T PR =
T P/(T P + FN ) and (ii) specificity T NR = T N/(T N + FP),
we measure:

(iii) The balanced accuracy BA = (T PR + T NR)/2, the
geometric average between sensitivity and specificity.

(iv) The precision, also called the Positive Predictive Value
PPV = T P/(T P + FP), which does not resort to T Ns and
outputs the proportion of T Ps out of the all positive calls.

(v) The F1-score F1 = 2PPV ∗ T PR/(PPV + T PR), the
harmonic average between precision and sensitivity.

APPENDIX B

This Appendix summarizes the statistics of our method for
different network architectures (beyond the ER graphs studied
in the main text): regular random (RR) graphs and scale-free
(SF) graphs (i.e., BA graphs, [77], generated via preferential
attachment). The results are given in Fig. 10. These support
our previous findings regarding the influence of network ar-
chitecture via eigenvectors localization, see Sec. III C).
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