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Linear Model Selection by Cross-Validation 
JUN SHAO* 

We consider the problem of selecting a model having the best predictive ability among a class of linear models. The popular leave- 
one-out cross-validation method, which is asymptotically equivalent to many other model selection methods such as the Akaike 
information criterion (AIC), the Cp, and the bootstrap, is asymptotically inconsistent in the sense that the probability of selecting 
the model with the best predictive ability does not converge to 1 as the total number of observations n -s o. We show that the 
inconsistency of the leave-one-out cross-validation can be rectified by using a leave-n,-out cross-validation with nv, the number of 
observations reserved for validation, satisfying no/n -1 I as n s* xoo. This is a somewhat shocking discovery, because ne/n -* 1 is 
totally opposite to the popular leave-one-out recipe in cross-validation. Motivations, justifications, and discussions of some practical 
aspects of the use of the leave-n,-out cross-validation method are provided, and results from a simulation study are presented. 

KEY WORDS: Balanced incomplete; Consistency; Data splitting; Model assessment; Monte Carlo; Prediction. 

1. INTRODUCTION 

Cross-validation is a method for model selection according 
to the predictive ability of the models. Suppose that n data 
points are available for selecting a model from a class of 
models. The data set is split into two parts. The first part 
contains n, data points used for fitting a model (model con- 
struction), whereas the second part contains n, = n - n, data 
points reserved for assessing the predictive ability of the 
model (model validation). Strictly speaking, model validation 
is carried out using not just ni, but all the n = n, + n, data. 
There are (n ) different ways to split the data set. Cross-val- 
idation, as its name indicates, selects the model with the best 
average predictive ability calculated based on all (or some) 
different ways of data splitting. 

Clearly, the computational complexity of this method in- 
creases as n, increases. That is why the simplest cross-vali- 
dation with n, 1 has been the main focus of researchers' 
attention over the past 30 years. Discussions and theoretical 
studies about the cross-validation method with n,e 1 under 
various situations can be found, for example, in Allen (1974), 
Stone (1974, 1977a,b), Geisser (1975), Wahba and Wold 
(1975), Efron (1983, 1986), Picard and Cook (1984), Herz- 
berg and Tsukanov (1986), and Li (1987). 

Throughout this article I assume that the number of pre- 
dictors in each model under consideration does not change 
as n increases. In this case, it is known to many statisticians 
(although a rigorous statement has probably not been given 
in the literature) that the cross-validation with nv, 1 is 
asymptotically incorrect (inconsistent) and is too conserva- 
tive in the sense that it tends to select an unnecessarily large 
model. 

There are other methods for model selection, such as the 
Akaike information criterion (AIC) (Akaike 1974; Shibata 
1981), the Cp (Mallows 1973), the jackknife, and the boot- 
strap (Efron 1983, 1986). All these methods are asymptot- 
ically equivalent to the cross-validation with n-, 1 (Stone 
1977a; Efron 1983), however, and thus they share the same 
deficiency; that is, they are inconsistent. 

In this article I show that in the problem of selecting linear 
models, this deficiency of the cross-validation with n-, 1 
can be rectified by using a cross-validation with a large n, 
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(depending on n). Our result is somewhat surprising; to have 
an asymptotically correct cross-validation procedure, we need 
to select n, having the same rate of divergence to infinity as 
n; that is, nv/n - 1 as n -o 00. The reason why such a large 
n, is needed is explored, after taking a close look at the 
asymptotic behavior of the cross-validation procedures. 

When n, is large, the amount of computation required to 
use the cross-validation may be impractical. We consider a 
"balanced incomplete" cross-validation; that is, only a much 
smaller part of( (n) splits are made according to a systematic 
manner. Two other alternatives-a Monte Carlo approxi- 
mation and an analytic approximation to the leave-nt-out 
cross-validation-are also considered. Their performances 
are examined in a simulation study. 

The issue of using more than one observation at a time 
in validation against leave-one-out was also raised by other 
researchers. Herzberg and Tsukanov (1986) did some sim- 
ulation comparisons between the cross-validation procedures 
with n, 1 and n, 2. They found that the leave-two-out 
cross-validation is sometimes better than the leave-one-out 
cross-validation, although the two procedures are asymp- 
totically equivalent in theory. See also Geisser (1975), Bur- 
man (1989), and Zhang (1991). In the context of jackknife 
variance estimation for nonsmooth statistics (such as the 
sample quantiles), Shao and Wu (1989) showed that the in- 
consistency of the leave-one-out jackknife variance estimator 
can be rectified by using a leave-n,-out jackknife. The dif- 
ference is that here we require that nV,/ n -- 1, whereas in 
Shao and Wu (1989) the rate of n, diverging to infinity was 
related to the smoothness of the given statistic. 

It should be noted that the story is quite different in the 
cases where the number of predictors in one of the models 
under consideration increases as n increases. In such cases, 
Li (1987) showed that under some conditions, the leave-one- 
out cross-validation is consistent and is asymptotically op- 
timal in some sense. 

2. MODEL SELECTION AND PREDICTION ERROR 

Consider a linear model 

y=x',B+e, (2.1) 
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where y is a response variable, x is a p vector of covariates 
(predictors), x' denotes the transpose of x, ,B is a p vector of 
unknown parameters, and e is a random error with mean 0 
and variance o2. Because some of the components of,B may 
be 0, a more compact model might be 

y = x'aIl,a + e, (2.2) 

where a is a subset of d,a distinct positive integers that are 
less or equal to p and ja (or xa) is the dca vector containing 
the components of ,B (or x) that are indexed by the integers 
in a. There are 2P - 1 possible different models of the form 
(2.2), each of which corresponds to a subset a and is denoted 
by Aa. The dimension (or size) of Ata. is defined to be da, 
the number of predictors in .Ma. Let A denote all nonempty 
subsets of { 1, ... , p }. If we know whether each component 
of # is 0 or not, then the models Ala can be classified into 
two categories: 

* Category I: At least one nonzero component of / is not 
in,B,a. 

* Category II: ,3 contains all nonzero components of /3. 

Clearly, the models in Category I are incorrect models, and 
the models in Category II may be inefficient because of their 
unnecessarily large sizes. The optimal model, denoted by 
AJ*, is the model in Category II with the smallest dimension. 
Note that model selection under this framework is the same 
as variable (predictor) selection. Selecting a model from Cat- 
egory I means missing at least one important predictor, 
whereas selecting the most compact model from Category 
II means eliminating all the variables that are unrelated to 
the response variable. 

In statistical analysis, model selection is carried out by 
using data pairs (yi , xi), i = 1, . . . , n, satisfying 

Y = xtfl + ei, 

with iid errors el, . . , en. Under model Ala, the least squares 
estimator of 18a is 

Oa = (X' Xa aYX'ay, 

where y = (Yi, .- , YJ)' is an n X 1 response vector, Xa 
= (Xla, ..., xna)' is an n X da matrix assumed of full rank 
for any a& E A, and xia is the d,a vector containing the com- 
ponents of xi that are indexed by the integers in a. Denote 
Xa with a = , ..., p} by X. 

We mainly consider the case of deterministic predictors. 
When xl, . . ., xn are random, the results are still valid almost 
surely for given sequences xi, x2, . .. , provided that (a) for 
given xl, ... , xn, el,. . . , en are iid with mean 0 and variance 
a2; and (b) all the conditions on xl, . . , x, stated in Theo- 
rems 1 and 2 in Section 3, hold almost surely for given se- 
quences xi, X2, . - - - 

Suppose that zi is the future value of the response variable 
to be predicted when the prediction variable is equal to xi. 
Using model Ala fitted based on the data (yi, xi), i = 1, .... 
n, the average squared prediction error is 

- E (Z~ - Xta/3)2. 
ni 

Given y, the conditional expected squared prediction error 
is 

2 + 1 i(Xi: - Xi 2 
ni 

The overall unconditional expected squared prediction error 
(conditional on xi, . . ., xn for random predictor case) is 

r = (J2 + n"'4-ld2 + A (2.3) 

where 

Aa,n = n -VTX'(In - Pa)X/, 

P = Xa(X't Xa) f1X 

is the projection matrix under model A, and Ik is the identity 
matrix of order k. Note that r,n consists of two components: 
the variability of the future observations and n-' dfa2 + Aa,n, 
which reflects the error in model selection and estimation. 

When MO, is in Category II, X,8 = Xc,,#i and hence 

ra,n = O2 + n-l1dar2. (2.4) 

Because P. is the projection matrix of a submatrix Xa of X, 
Aa,n > 0 for any fixed n if AM is in Category I. 

Assuming that p is the same for every n and that n is large, 
some asymptotic results can be established under the follow- 
ing condition: 

liminf A\,n > 0 for AMc in Category I. (2.5) 
n-,ioo 

For any M, in Category I and .M in Category II with d"a 
= d., the ratio oa,ln/ ,n may be arbitrarily close to 1, al- 
though P,n/ r7,n > 1 for all n. If limhn1n O,,,n / Pa ,n = 1, then, 
asymptotically, models */a, and .Ml have no difference in 
terms of their predictive ability. Because liminfn, ] P,,n/ Py,n 
> 1 if and only if liminfnO, A,,, > 0, (2.5) is a type of asymp- 
totic model identifiability condition and is very minimal for 
asymptotic analysis. 

3. THE CROSS-VALIDATION METHOD: MOTIVATION 
AND THEORY 

Similar to other model selection methods, the cross-vali- 
dation method selects a model by minimizing estimated Ta,n 
over all a. Suppose that we split the data set into two parts: 
{ (yi, xi), i E s} and {(yi, xi), i E sc}, where s is a subset 
of { 1,. . . , n } containing n, integers and SC is its complement 
containing n, integers, n, + n, = n. The model J*, is fitted 
using the construction data { (yi, xi), i E sC } and the pre- 
diction error is assessed using the validation data { (yi, xi), 
i E s }, treated as if they were future values. The average 
squared prediction error is 

fl1 1lys - a,CII 

= v1 (In, - Qas)-I (Ys - Xas/a) 11 2, (3.1) 

where llail = (a'a)1/2 for a vector a; ys is the nv vector con- 
taining the components of y indexed by i E s; Xa,s is the nv 
X dar matrix containing the rows of Xa indexed by i E s; 
Ya,sC is the prediction of Ys using the construction data 
and the least squares method under model 4a<, Qa,s 
= Xa,s( X ~Xa) - 'X >; 13a is the least squares estimator of /Oa 
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using all n observations; and the equality follows from a 
straightforward matrix algebra. 

There are (n,) different subsets s of size n,. For each model 
AMa, the cross-validation estimate of r,,,n is obtained by av- 
eraging the quantities in (3. 1) over all or some different sub- 
sets s of size n,. The model selected by cross-validation is 
then the model that minimizes the cross-validation estimates 
over all a E A. I shall call this method the leave-n,-out 
cross-validation, abbreviated as CV(n,). The error rate of 
using the CV(n,) for selecting the optimal model A* is 

P (the selected model is not A* ). (3.2) 

3.1 The CV(1) Method 

From the computational point of view, the simplest 
CV(nv) is the one with nv 5 1; that is, the CV(1). Letting s 
= {i} and averaging the squared prediction errors over all 
i, I conclude from (3.1) that the CV(1) estimate of rP,,n is 

a,n= I [(1 
- 

Wia) 1(Yi 
- xaI )]2, 

where w, is the ith diagonal element of the projection matrix 
PaX. Under the conditions 

X'X = 0(n) and (X'X)-' = O(n-'), (3.3) 

and 

lim max win = 0 for any a E A, (3.4) 
-on oifn 

it is shown in the Appendix that if ., is in Category I, then 

tcv = ra,n + op(l), (3.5) 

and if 4/a is in Category II, then 

a,n= n'e'e + 2n-'da2 - n'e'Pae + op(n'), (3.6) 

where e = (el, ..., en)'. Because n-'e'e converges to cr2 
almost surely, fcv is consistent for Pa,n. But this does not 
ensure that the error rate given in (3.2) vanishes as n -- oo. 
As pointed out by Stone (1 977b), this type of consistency is 
not of great interest, because if Ma is in Category II, then 
ra,fn -0 a2, which is independent of a. In fact, when (2.5), 
(3.3), and (3.4) hold, the model selected by using CV(1), 
denoted by .cv, satisfies 

lim P(.*cv is in Category I) = 0. (3.7) 
n-o-co 

But if A* is not of size p, then 

lim P(Mcv = X*) $' 1. (3.8) 

If A, is in Category II but Ma, / A*, then, by (3.6), 

P(Ma is preferable to A* by the CV(1)) 

= P(2(da - da*)or2 < e'(Pa - Pa*)e) + o(l), (3.9) 

where Ar is the subset corresponding to *M and dAo > da*. 
If e is distributed as N(0, ar2In), then the probability in (3.9) 
equals 

P(2k < X2(k)) + o(l), 

where k = d, - d,* and x2(k) is the chi-square random 
variable with k degrees of freedom. Clearly, P(2k < x2(k)) 

0 foranyk? 1. 
In view of (3.7) and (3.8), the CV(l) is asymptotically 

incorrect and is too conservative in the sense that it may 
select a model of excessive size, unless the optimal model is 
the one with size p. 

Let me explain why the CV( 1) is asymptotically incorrect. 
From (2.4), the difference between two models in Category 
II appears in the second-order term n-1 d,a f2 , a term of order 
n-. From (3.6), the term in P cv affected by the model dif- 
ference is 

-lId a2 + 6a,nl, 

where 

ba,n = n-ldao2 - n 1e'Pae (3.10) 

is the error in assessing the differences of the models in Cat- 
egory II by using CV(1). Note that the error n, has mean 
0 but has the same order of magnitude as n-1 doY2. Hence 
the CV( 1) fails to distinguish the models in Category II. The 
story is different for the models in Category I. From (2.3), 
the term in r,n that distinguishes the models is Ao,,n, a term 
that does not vanish as n -- oo. From (3.5), the error in 
assessing the models in Category I by CV(1) is P cv -P,,n 
= op( 1), a term of lower order than Aa,n and hence the result 
(3.7) holds. 

3.2 The Balanced Incomplete CV(n,) Method 

In this section I show and explain why the deficiency of 
CV(1) can be rectified by the CV(n,) with a large n,. It is 
impractical and also unnecessary to carry out the validation 
for all different splits when n, > 1. Let 13 be a collection of 
b subsets of { 1, . . ., n } that have size n,. 13 is selected ac- 
cording to the following "balance" conditions: (a) every i, 1 
< i < n, appears in the same number of subsets in 13; and 
(b) every pair (i, j), 1 < i < j < n, appears in the same 
number of subsets in 13. 

The cross-validation estimate of ra is then obtained by 
averaging the quantities in (3. 1) over the subsets s E M3. This 
method will be called the balanced incomplete CV(n,), ab- 
breviated as BICV(ne), because 13 is in fact a balanced in- 
complete block design (BIBD) if each subset is treated as a 
"block" and each i as a "treatment." Examples of BIBD can 
be found in John (197 1). The repetition size b ? n is usually 
a linear function of n; that is, b = 0(n). The BICV(n,) 
selects a model by minimizing 

fBICV - 1 II1-Y5CII2 a,fl nvb s sE a, 

over all a E- A. 
The following result shows that the BICV(nv) is asymp- 

totically correct if n, - oo and nv /n -- 1. 

Theorem 1. Suppose that (2.5), (3.3), and (3.4) hold and 

lim max |-, x1xi-- x1xts| =0O. (3.11) 
no sE3 nV iEs nc jESC 
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Suppose also that n, is selected so that 

nv/n -- and n,=n-nV n--ooo. (3.12) 

Then we have the following conclusions: 
(a) If Ata is in Category I, then there exists Rn 2 0 such that 

1BICV = n-1ee + I a,n + op(l) + Rn. (3.13) 
a,nfl 

+A, 

(b) If M,M is in Category II, then 

aBnCV 
= n'e'e + nc-'d,o, + op(n-7'). (3.14) 

(c) Consequently, 

lim P(the selected model is .*M) = 1. (3.15) 
n--cco 

The proof of Theorem 1 is given in the Appendix. The 
following is an explanation of why the BICV(nv) improves 
over the CV(1) and why nv should be chosen according 
to (3.12). 

Efron (1986) pointed out that the CV(1) estimates the 
expected squared prediction error based on a sample of size 
n - 1, rather than n; that is, P CV estimates ]Pa,n-I, not 'a,n, 
This has been neglected by most researchers, because the 
difference between ra,n-i and ra,n is asymptotically inap- 
preciable. The difference between Pa,n, and ]Pa,f is not neg- 
ligible if and only if nc/ n does not tend to 1. Recall that the 
cross-validation selects a model in two steps: (1) fitting a 
model using nc data, not n data, and (2) validating the fitted 
model using nv data. Naturally, the BICV(nv) estimates 
ra,nc. This is also justified by (3.14). 

We do not necessarily need a very accurate model fitting 
in step (1) of the cross-validation, but we do need an accurate 
assessment of the prediction error in step (2), because the 
overall purpose of cross-validation is to select a model and 
the selected model will then be refitted using the full data 
set for the prediction purpose. From this standpoint, we do 
not need to use an nc close to n in step (1). It is actually wise 
to use a relatively small nc, because for the models in Category 
II, 

ra,nc=a 2 + nc-1daU2 

is flat (as a function of a) if nc is large. Therefore, it is difficult 
to find the minimum Of ra,nc with a large nc, using a small 
nv for validation. Using the CV( 1) method can be compared 
to using a telescope to see some objects 10,000 meters away, 
whereas using the BICV (n,) method is more like using the 
same telescope to see the same objects only 100 meters away. 
Of course, the latter method can see the differences among 
these objects more clearly. But n, -- oo is still needed to 
ensure the consistency of the model fitting in step (1). 

The previous argument shows heuristically the necessity 
of having a large n, and a relatively small nc. Hence the 
result in Theorem 1 is not so surprising as it seems at first 
glance. But why is ne/n 1 needed? 

By considering the following special case, I show that if 
nv/n does not converge to 1, the same problem occurs as 
when CV(l) is used. 

Suppose that a particular 13 can be selected such that 

1E 1,t - ifrals .(.6 
nviEs nci~ESC 

An example is when 

X = block diagonal (1, ..., 1), 

where 1 is an m vector of I s. Under (3.16), it can be shown, 
by some algebraic calculations, that 

BICV IIS - XI,fiaI2 
nvb SEf 

+ n2b sE | - Qa,s(Ys - Xa,soBa) 

=lyI - Xafll2 
n 

+ 
n 

Wia( yi - X <al )2. (3.17) 
nc(n- 1) I 

If Ma is in Category II, then, by (3.17), 
jBICV = n-lete - n-lePae 

+ nC-j(n - l)-<(n + nc)[daa2 + op(l)] 

= nlee+n) da02 +16a,n, 

where 

Cea,n =nc1 (n - 1)-'(1 + njc)da 2 

-n 'e'P,e + op(nc-1). (3.18) 

Similar to the ba in (3.10), the ea,n in (3.18) is the error in 
assessing the model difference by using the BICV(nv), be- 
cause the term in ra,nc that distinguishes the models in Cat- 
egory II is n-Z d,a12. If nv/ n does not converge to 1, then C,,n 
has the same order of magnitude as n-' daa2 because 

ta,n/(fC-'dO) -a C [1 - (daL2 -'e'Pae] + op(l). (3.19) 

Therefore, like the CV (1), the BICV (nv) with nv /n not con- 
verging to 1 cannot distinguish the models in Category II 
and thus is inconsistent. From (3.19), the only situation 
where Ca,n is of a lower order than n7-l1da2 is when ne/n 

0; that is, nv/n -- 1. 
This example shows that the condition nv/ n -- 1 is nec- 

essary for the consistency of the BICV( nv). 

3.3 Other CV(n,) Methods 

Using the BICV(nv) requires a "balanced" collection A 
of subsets. If such a JM is not available or is hard to obtain, 
the following two alternatives may be used. 

3.3.1 A Monte Carlo CV(nv). A simple and easy 
method is to use Monte Carlo. Randomly draw (with or 
without replacement) a collection i? of b subsets of { 1,..., 
n } that have size nv and select a model by minimizing 

fMccv - 1 1 Ys_ "sc 12. (3.20) a,fl nvb -Ya,CI. (.0 

This method will be called the Monte Carlo CV(nv), abbre- 
viated as MCCV ( nt) . The Monte Carlo cross-validation was 
also considered in Picard and Cook (1984), because (3.20) 
is obtained by randomly splitting the data b times and av- 
eraging the squared prediction errors over the splits. 
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This yields the following result, which is similar to Theo- 
rem 1. The proof is given in the Appendix. The probability 
statements in Theorem 2 are with respect to the joint prob- 
ability corresponding to y and the Monte Carlo selection of 
the subsets. 

Theorem 2. Suppose that (2.5), (3.3), (3.4), and (3.12) 
hold and 

max - xix - xix = op(l), (3.21) 
sefR nv jes ncic 

where i? contains b subsets selected randomly with b satis- 
fying 

b-1n-2n2 _. 0. (3.22) 

This yields the following conclusions: 

(a) If A'ta is in Category I, then there exists Rn ? 0 such 
that 

MV = ees + Aa,n + op(1) + Rn, (3.23) 
nvb se, 

where es = YS - XsSI 
(b) If -*a is in Category II, then 

fMCCV = 1 I e'es + n-daf + op(nr-l). (3.24) a,n nvb es ncc 

(c) Consequently, (3.15) holds. 

Condition (3.22) imposes some restrictions on b and nc. 
The fewer data used in model construction, the more splits 
are needed. (3.12) and (3.22) imply that b -- oo as n -- oo. 
If nc is selected such that n -2n -- 0, then b ? n is enough 
for (3.22). 

3.3.2 An analytic approximate CV(nv). Another alter- 
native to the BICV(nv) is the leading term in aBICV 

APCV =-|Y- XI : 112 
n 

++ - n 
Wia(Yi -XWiaa)Q -(3.25) 

nc(n-1) i 

This method will be called the approximate CV(nv), abbre- 
viated as APCV(nv). From (3.17), APCV = BICV exactly 
in the special case where (3.16) holds. Under (2.5), (3.3), 
(3.4), and (3.12), results (3.13)-(3.15) hold with aBInV re- 
placed by PAPcv. In fact, from the proof of Theorem 1 in 
the Appendix, (3.13) holds for i'APCV, with Rn being the 
second term on the right side of (3.25); and when -*a is in 
Category II, 

APCV 1- nn [dac2 +o0(1)]. afn =- e'(In- Pa)e i (nI) a 

The APCV( n) is consistent and requires less computation 
than does either the BICV(nv) or the MCCV( nv). But unlike 
the BICV( nv) and the MCCV( no), the APCV( nv) depends 
on the special nature of the linear models, and its extension 

to other models is not straightforward. Also, from the sim- 
ulation study in Section 5, it seems that the performance of 
the APCV(nv) is not as good as that of the MCCV(n,), which 
indicates that to have a good performance, the APCV(nv) 
requires a larger n than the MCCV(nt). 

4. FURTHER DISCUSSIONS 

4.1 Model Selection From a Given Class 

In the previous sections I considered the selection of a 
model from all possible models 

@ = {A.a, oa E A}. 

& is a very large class if p is large. From computational and 
other practical considerations, sometimes we may restrict 
our attention to a smaller class of models &I C @. For ex- 
ample, @ may contain only two models. It is clear that 
the CV (n,) -for example, BICV (n,), MCCV (n,) and 
APCV( n,) -can be used to select the best model within & 1. 
That is, if @I contains some models in Category II, then the 
probability that the CV (n,) selects the model in @ and in 
Category II with the smallest size tends to 1 as n - oo. If 
all the models in 1 are in Category I, then the CV( n,) selects 
the model that minimizes Aa,n, provided that the Rn in (3.13) 
or (3.23) satisfies 

Rn= op(l). (4.1) 

Condition (4.1) will be discussed later. 
A similar situation is where some predictors, which should 

be included in the model, are overlooked by the data analyst. 
Then the CV(n,) selects the best model within @. 

4.2 Computation Algorithms 

It is possible that using a good algorithm may preclude 
the need to compute aBICV (or f mlccv and ,APCV) for all 
2P- 1 subsets a when selecting a model from @. For example, 
a backward selection may be used: Suppose that ' aBIVni 
first computed for the subset y = { 1, . . I., p} and all the 
subsets a with da = p - 1. If 

min fBICV > sBICV 
a: da=p-1 

then the computation may be stopped and model A'L is se- 
lected. This is because if Aty is not the optimal model, then 

P( min fBICV > fBICV) _ 0. 
a: da=p-1 

A forward selection can be used similarly. Further discussion 
of computation algorithms is beyond the scope of this article. 

4.3 Extensions 

One advantage of the cross-validation method over other 
methods is that its extension to more complicated models, 
such as nonlinear regression and generalized linear models, 
is straightforward. One simply uses 

flvb sei 
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where Q(*, *) is a loss function, ya Sc is the prediction of Ys 
based on the construction data under model AL, L = M3 for 
BICV(n,), and L = 9? for MCCV(n,). 

4.4 Conditions (3.11) and (3.21) 

Condition (3.1 1) is a technical condition required for the 
consistency of BICV( n,). I illustrate here that it is a reason- 
ably weak condition. 

This condition requires some degree of resemblance be- 
tween the validation data { (yi, xl ), i E s } and the construc- 
tion data {(yi, xi), i E sC}. Note that xixt is the Fisher 
information matrix about , contained in the pair (yi, xl). 
Then condition (3.1 1) requires that 

11 
-E xix-- z xix>, (4.2) 
nv iEs nc iEsc 

which is the difference between the average Fisher infor- 
mation matrices based on the validation and construction 
data, vanishes as n -- oo uniformly over all splits used in 
cross-validation; that is, all s E 13. 

Clearly, (3.11) is implied by 

lim max x- ixi - - 2xix =0. (4.3) 
n- oo alls nV iEs c iEsc 

But (4.3) is much stronger than (3.1 1) because it requires 
that the differences of the form (4.2) be small uniformly over 
all subsets s and that M3 contains much fewer subsets. 

As an example, suppose that the (u, v)th element of 
xix' is ai = auv and that for any (u, v), {al, i = 1, 2, . . 
is a sequence of nonincreasing numbers satisfying 

lm 
- ai = t + 0(m-') m i=1 

for some 6 > 0. For any subset s, 

1 1 I nc 
n =' ai-n < E ai <n ai= + 0 (nc 6 
nc i=_- I n iesc nc j=1 

and 

In' n n1n n 

- 
X ai - = - ai n-1 an - 

nc i=nv+1I nc n__ nc nv j= ) 
= - O(n-6) + n O(n-2) = 0(n- n'- ), 

nc nc 

if nv/n 1. It is easy to select an nc satisfying (3.12) and 
n 1- /nc 0. Hence 

lim max | ai - 0= . 
n-oo alls nc i5sc 

Similarly, it can be shown that 

lim max |- ai - = 0, 
n-oo alls nvfly 

and thus (4.3) holds. 
If xl, ... ., Xn are random, then (3.1 1) holds in probability 

under weak conditions. Suppose that { xi } is a sequence of 

iid random vectors satisfying E(xi xi )2+T < 00 with a r > 0. 
Then, using a Berry-Esseen inequality (e.g., Shorack and 
Wellner 1986, thm. 3, p. 849), it can be shown that for any 
s,3 

(|| xixE n zE xixS > c) = ( (l?T)) 

Then 

Psmax | XX' xjx| 
> 

-0(bnc iE= 98 n rs nlc i(s 

Hence (3.1 1) holds for almost all x1, X2, ... if for some 6 
> 0, 

bn-('+T) < n-(1+6) (4.4) 

For example, n, can be chosen to be the integer part of 
n314. Then (3.12), (3.22), and (4.4) hold for b = O(n) and 
any r > -. This choice of nc is used in the simulation study 
in Section 5. 

The discussion for condition (3.21) is similar. 

Table 1. The Values of xk, 

X2, X3 X4, X5, 

.3600 .5300 1.0600 .5326 
1.3200 2.5200 5.7400 3.6183 
.0600 .0900 .2700 .2594 
.1600 .4100 .8300 1.0346 
.0100 .0200 .0700 .0381 
.0200 .0700 .0700 .3440 
.5600 .6200 2.1200 1.4559 
.9800 1.0600 2.8900 4.0182 
.3200 .2000 .7600 .4600 
.0100 .0000 .0700 .1540 
.1500 .2500 .5000 .6516 
.2400 .2800 .5900 .0611 
.1100 .3500 .4000 .1922 
.0800 .1300 .2800 .0931 
.6100 .8500 .4900 .0538 
.0300 .0300 .2300 .0199 
.0600 .1100 .5000 .0419 
.0200 .0800 .2500 .1093 
.0400 .2400 .0800 .0328 
.0000 .0200 .0400 .0797 
.0900 .1800 .5900 .1855 
.0200 .1600 .2400 .1572 
.0200 .1100 .2100 .0998 
.0500 .2400 .4300 .2804 
.1100 .3900 .2900 .2879 
.1800 .1100 .4300 .6810 
.0400 .0900 .2300 .3242 
.8500 1.3300 2.7000 2.6013 
.1700 .3200 .6600 .4469 
.0800 .1200 .4900 .2436 
.3800 .1800 .4900 .4400 
.1100 .1300 .1800 .3351 
.3900 .3800 .9900 1.3979 
.4300 .4600 1.4700 2.0138 
.5700 1.1600 1.8200 1.9356 
.1300 .0300 .0800 .1050 
.0400 .0500 .1400 .2207 
.1300 .1800 .2800 .0180 
.2000 .9500 .4100 .1017 
.0700 .0600 .1800 .0962 
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Table 2. Probabilities (Based on 1,000 Simulations) of Selecting Each Model 

Model Category CV(1) MCCV(nv) APCV(nv) 

,= (2, 0, 0, 4, 0)' 1, 4 Optimal .484 .934 .501 
1, 2,4 II .133 .025 .116 
1, 3, 4 11 .127 .026 .085 
1, 4, 5 11 .138 .012 .172 
1, 2, 3, 4 11 .049 .000 .038 
1, 2, 4, 5 11 .029 .001 .039 
1, 3, 4, 5 11 .030 .002 .037 
1, 2, 3, 4, 5 11 .009 .000 .012 

= (2, 0, 0, 4, 8)' 1, 4, 5 Optimal .641 .947 .651 
1, 2, 4,5 1 1 .158 .032 .161 
1, 3, 4, 5 11 .138 .020 .131 
1, 2, 3, 4, 5 11 .063 .001 .057 

i8=(2, 9, 0, 4, 8)' 1, 4, 5 1 .005 .016 .000 
1, 2, 4, 5 Optimal .801 .965 .818 
1, 3, 4, 5 1 .005 .002 .000 
1, 2, 3, 4, 5 11 .189 .017 .182 

=(2, 9, 6, 4, 8) 1, 2, 3, 5 1 .000 .002 .000 
1, 2, 4, 5 1 .000 .005 .000 
1, 3, 4, 5 1 .015 .045 .001 
1, 2, 3, 4, 5 Optimal .985 .948 .999 

4.5 Condition (4. 1) 
From the proof of (3.13) in the Appendix, for the 

BICV( n,), 

Rn =arj2n -- IIY-x,B12 (4.5) 
n 

Note that 

+C I w I) yi - XaI3a)2 = - max wi) . (4.6) 
nc(n -l)inci 

Then by (A.6), (A.7), and (A.9) in the Appendix, (4.1) holds 
if the right side of (4.6) is of the order op( 1), which is equiv- 
alent to [by (3.3) ] 

nj max xixi = o(l). (4.7) 
i?n 

Note that (4.7) holds if { II II } is bounded. For random 
iid xi, (4.7) holds almost surely if E(xxxi)2 < oo and nc 

3/4 

The discussion for the MCCV(n,) or the APCV(n,) is 
similar. 

5. A SIMULATION STUDY 
Now the finite sample performance of the cross-validation 

method is studied by simulation. The following model is 
considered: 

Yi= 3iXi + f2X2i + f3x3i + f4x4i + f5x5i + ei, 
where i = 1, ..., 40, ei are iid from N(0, 1), xki is the ith 
value of the kth prediction variable xk, x, i 1, and the 
values of xki, k = 2, ..., 5, i = 1, . . ., 40, are taken from 
an example in Gunst and Mason (1980) (see Table 1). Some 
of the fk may be 0. Therefore, some prediction variables are 
selected from five possible variables { xl, . . . , x5 }, and the 
model with the best predictive ability is chosen. Note that 
there are 31 possible models, and each model will be denoted 
by a subset of { 1, . . ., 5 } that contains the indices of the 
variables xk in the model. 

Three cross-validation methods are considered: the CV( 1), 

the MCCV(n,), and the APCV(n,) given in Section 3.3 with 
n, = 25 (n, = 15 - n314). For the MCCV(n,), b = 2n is 
used. Table 2 gives the empirical probabilities (based on 1,000 
simulations) of selecting each model in several different cases. 

The results in Table 2 can be summarized as follows: 

1. In terms of the probability of selecting the optimal 
model, the MCCV( n,) has the best performance among the 
three methods under consideration, except for the case where 
the largest model (the model with all the /k #0) is the optimal 
model. The APCV(n,) is slightly better than the CV(1) in 
all the cases. 

2. The probability of selecting a model from Category I 
(incorrect model) is negligible for all three methods in all 
cases under consideration. 

3. As expected, the CV(1) tends to select unnecessarily 
large models. The probability of selecting the optimal model 
by using the CV(l) can be very low (e.g., <.5). The more 
zero components the # has, the worse performance the CV( 1) 
has. On the other hand, the performance of the MCCV(n,) 
is stable and is much better than the CV(1) in the cases 
where the optimal model is not the largest model. 

4. The performance of the APCV(n,) is only slightly better 
than the CV(1), although the APCV(n,) is consistent and 
the CV( 1) is inconsistent. This indicates that to have a good 
performance, the APCV(n,) may require a larger sample 
size than the MCCV(n,). 

APPENDIX: PROOFS 
A. 1 Proof of (3.5) and (3.6) 

From (1 - Wja)-2 = 1 + 2wia + O(w?), 

ac,v =,ri2a +I [2wi,, + O( W2 )] r12a (A. 1 ) a n . Ice Ic 
n n 

where ra V = y,Xla$a. Let (a,n and ta,n be the first term and the 
second term on the right side of (A. 1). Then (3.5) follows from ta,n 
< O(max, Wia) ~,n and 

(a,n= n-1e'(In -Pa)e + A,,n + 2n-'e'(In - Pa)Xf,? 

= n-lete + Aa,n + op(l), 
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because E(e'Pae) = daJ2 and E[e'(I -Pa)X#]2 = 2,B'X'(In 
- Pa)Xfl = O(n). If .*ta is in Category II, then 7a,n = 2n-daa2 
+ op(n-1) and t,, = n-'e'(I1 - Pa)e. Hence (3.6) holds. 

A.2 Proof of Theorem 1 

From (3.1) and the balance property of 13, 

fBIV 1 ~ Xs~I 2 = -Illy~ - XafiaII 2 a,n n,b II11YS xa,sgja l n|Y a 

-a,n = n'e e + Aa,n + OpM(), 

where the last equality follows from the proof of (3.5). Hence (3.13) 
follows by letting Rn be as given by (4.5). 

From condition (3.1 1), for s E 13, 

X aXa X !X sXa,s [ X a,s-Xa,SC X asxa,sJ 

lnc 

which together with (3.3) implies that 

(X a,s, Xa,s<) n (Xa Xa)1 
= n ()X a s )Xa.s )I 

and, therefore, 

Pa,S =n Qa,s -+? OncPa,s, S 3 (A.2) 

where Pa,s = Xa,s(X'a,sXa,s)-'X',s. From (A.2) and condi- 
tion (3.12), 

Q.s =n + o(nc)lPa's s E 13. (A.3) 

From the balance property of 1, 

b rr SQasras = [- - 'i : w,ar a. 

where ra,s = Ys - Xa,soa. Then, by (A.3) and (3.12), 

Cn r12 =n nc ICn e r 
II: la,sra,siI = +U )J b 2 r a,S Qa,sra,s 

[ + (oC w,, r ,,z (A.4) 

where 

Cn = nv(n + nc)n-2. (A.5) 

Define 

Ua,s = (Inv - Qa,s)(Inv + CnPa,s)(Inv -Qa,s), 

A - r (I -Q -lUa,s(Inv - Qa,s)-ra,s, a nb a,S nv Qa,S a 

and 

Ba = I rs( Inv - Qa,s) (Inv - Ua,s)( Inv -Qa,s) 1ra,s. 
nv,b a, 

Then, by (3.1), 
BICV = Ac + Ba. (A.6) 

From the balance property of 13 and (A.4), 

Aa hr- - I- 1 IL1 a,Sra,s11 

=n IY-Xaall2[1+(-n ii n( I WjaK2a. (A-7) 

Assume that Aa is in Category II. Then, by (A.7) and the fact that 
1i w,ari = daa2 + op(l), we have 

n n Pa)e+[1 -nc]n(n - 1) [daO2+Op(1)] 

1 daa2 1 \ 
=-e'e+ + op _ . 

n nc nc 

It remains to show that Ba = op(nc- ). From (A.3), 

(I I- Qa,s)Pa,s(In - Qa,s) = - + ? n Pa,s(In- Qa,s) 

[ n Inc ) 2 

[ +o j) Pa's. 

n 
+ 

Hence 

(n )(In - Qa,s)Pa,s(In,, -Qa,s) 
= [1 + O(1)]2Pa's 

?j 
Pa,s 

for s E -B when n is sufficiently large. Then 

(in- Qa,s)<'Pa,s(Inv - Qa,s)l < 2 ) Pa,s. (A.8) 

Also, by (A.3), 

Ua,s {in, 
- + o( )]Pa,s}(In + CP s) 

* in, - n_ + o C Pa,s 

= 
(in, 

- v Pa,s) (In, + CnPa,s) (In, - Pas) 

+ [o(?-)] ( + Cn)Pa,s + 2[o(?)] (1 V-)( + Cn)Pa,s 

= (in, - n Pas) + C1 - n)Pa) s + [(n)] + cn)P,,s 

= in, + [0(- ) O1 + Cn)Pa,s, 

because 

c(1-n )=n (2 n) 

Then, by (A.8), 

(in- Qa,s)-1(Inv- Ua,s)(Inv -Qa,s) 

- [o(? )O(1 + Cn)(In, - Qa,s)Y1Pa,s(In,- Qa,s)f 

< o(l)(l + Cn)Pa,s- 

Therefore, 

Ba ? o(1)(l + 
cOn)( b I lPasrasll ) Pn, (A9) 

because from the previous proof, 

Cfl SE f1 Pa,sra,s112 = p- 

This proves (3.14). 
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A.3 Proof of Theorem 2 

Assume that .*, is in Category II. Let Ba be as given in the proof 
of Theorem 1, with $ replaced by R. Then (A.9) can be established 
using conditions (3.21) and (3.22) and the same argument as that 
in the proof of Theorem 1. Let c, be as given by (A.5), 

Aal =-bC e'Pa,ses, 
V~ 5E 

2(1 + c,) I - 
Aa,2 nb= eX.S(6 - 0 nvb = 

and 

Aa3 = b+c (Oa- a)'XIsXa,s(a-i6a)- 
nvb 

e 

Then 

JrM,CCV 
= 

-nb z e'es +A, Aa2 +Aa3 + op(nZ9). (A.l0) 

Using condition (3.21), (A.2) holds with $ replaced by R. Then 

Acal = C b: n -e'Q.ses + opt- nc cn e'Pa,ses. (A.I1) 
nvb s n n nvb a 

Denote the two terms on the right side of (A. 1 1) by BaI and Ba2 . 

Let E1w and VR be the expectation and variance with respect to the 
random selection of 1?. Using the equality 

b s E= /R nv all 

we obtain that 

E_w(Bal - Aa2 + Aa3) 

--" [ nv I e'Pae + wEae] 
nv n(n- 1) 

a 
n(nj- 1) 

2(1 + cn) e'Pae + 
1 + C, e'Pae 

n n 

cnn n daar2nc nclA 1 + en 

=n e fpe +r2 + )- n e'Pae 

= daa + op(n1). (A.12) 

Using the inequality 

V]?(>3as)< ?-E 2 
V(b b 

S -w fas2 

and letting tn = O[n2/(n 2b)], we obtain that 

VI?(fncBa1) < tnE]?(e'sQa,ses)2 

\2 21 
c 2tnE w we) + ( w J,e ej 

ic-s i, jE-s,i*j 

< 2tn[( Wiaei 2 +(n) ( wujaei e)] 
i ~~~~nv all s i,j(=s,i*j 

= 2tn[Op(l) + Op(l)] = Op(tn), (A.13) 

V]?(fncAa2) < tn(-a f-a)'ER (X',asese'sXa,s)(IBa - a) 

and 

V,( ncAa3) c tnE9?[(3a - 13a)'X'a,sXa,S(fla- B )]2 

? tn[(fa -./8a)Xa Xja(a - Ia)]2 Op(t) 

where wija is the (i, j)th element of Pa, (A. 13) follows from the fact 
that for any s, 

) 2 
E j Wuaeiej = W r4 < pU4 

i,JEs,i*-j i,jEs,i*j 

and (A. 14) follows from EEs(X ' ese'sXa,s) < a2X 'rXa. Because t, 
0 0 under (3.22), 

Vi?(Bal -Aa2 + Aa3) = op(nc7). (A.15) 

Hence (3.24) follows from (A. 10)-(A. 12), (A. 15), and the fact that 
Ee'sPa,ses = daa2 implies Ba2 = op(n-71). 

The proof for (3.23) is similar. 

[Received May 1991. Revised November 1991.] 
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