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Many algorithms have been proposed for tting network mod-
els with communities, but most of them do not scale well to lar ge
networks, and often fail on sparse networks. Here we proposea new
fast pseudo-likelihood method for tting the stochastic bl ock model
for networks, as well as a variant that allows for an arbitrar y degree
distribution by conditioning on degrees. We show that the al gorithms
perform well under a range of settings, including on very sparse net-
works, and illustrate on the example of a network of politica | blogs.
We also propose spectral clustering with perturbations, a m ethod
of independent interest, which works well on sparse networks where
regular spectral clustering fails, and use it to provide an i nitial value
for pseudo-likelihood. We prove that pseudo-likelihood pr ovides con-
sistent estimates of the communities under a mild condition on the
starting value, for the case of a block model with two communi ties.

1. Introduction. Analysis of network data is important in a range of
disciplines and applications, appearing in such diverse @&as as sociology,
epidemiology, computer science, and national security, tovame a few. Net-
work data here refers to observed edges between nodes, pb$gsiaccompa-
nied by additional information on the nodes and/or the edges for example,
edge weights. One of the fundamental questions in analysisf such data is
detecting and modeling community structure within the network. A lot of
algorithmic approaches to community detection have been poposed, partic-
ularly in the physics literature; see [15, 27] for reviews. These include various
greedy methods such as hierarchical clustering (se4] for a review) and
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algorithms based on optimizing a global criterion over all pssible partitions,
such as normalized cuts 33] and modularity [28]. The statistics literature
has been more focused on model-based methods, which posti@leand t
a probabilistic model for a network with communities. These include the
popular stochastic block model 0], its extensions to include varying degree
distributions within communities [ 22] and overlapping communities P, 4],
and various latent variable models L7, 19].

The stochastic block model is perhaps the most commonly usednd best
studied model for community detection. For a network with n nodes de ned
by its n  n adjacency matrix A, this model postulates that the true node

nomial distribution with parameter =( 1;:::; k), where ;> 0 for all i,
and K is the number of communities, assumed known. Conditional orthe
labels, the edge variablesAj for i<j are independent Bernoulli variables
with

(1) E[Aij jc]= Pg G

where P =[Pg] is aK K symmetric matrix. The network is undirected,
so Aji = Aj, and Aj =0 (no self-loops). The problem of community detec-
tion is then to infer the node labelsc from A, which typically also involves
estimating and P.

There are many extensions of the block model, notably to mixd mem-
bership models ], but we will only focus on one extension here that we use
later in the paper. The block model implies the same expectediegree for
all nodes within a community, which excludes networks with \hub" nodes
commonly encountered in practice. The degree-corrected btk model R2]
removes this constraint by replacing @) with E[Aj jc]= i jPg¢ , where 's
are node degree parameters which satisfy an identi abilityconstraint. If the
degree parameters only take on a discrete nhumber of valuesne can think
of the degree-corrected block model as a regular block modelith a larger
number of blocks, but that loses the original interpretation of communities.
In [22] the Bernoulli distribution for Aj; was replaced by the Poisson, primar-
ily for ease of technical derivations, and in fact this is a god approximation
for a range of networks B1].

Fitting block models is nontrivial, especially for large networks, since in
principle the problem of optimizing over all possible labelassignments is
NP-hard. In the Bayesian framework, Markov Chain Monte Carlo methods
have been developedd0, 34], but they only work for networks with a few
hundred nodes. Variational methods have also been develogeand studied
(see, e.g., 2, 8, 10, 23]), and are generally substantially faster than the
Gibbs sampling involved in MCMC, but still do not scale to the order of
a million nodes. Another Bayesian approach based on a beligiropagation
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algorithm was proposed recently by Decelle et al. 4], and is comparable
to ours in theoretical complexity, but slower in practice; see more on this in
Section 4.

In the non-Bayesian framework, a pro le likelihood approad was pro-
posed in B]: since for a given label assignment parameters can be estated
trivially by plug-in, they can be pro led out and the resulti ng criterion can
be maximized over all label assignments by greedy search. Brsame method
is used in R2] to t the degree-corrected block model. The speed of the pre
le likelihood algorithms depends on exactly what search méhod is used and
the number of iterations it is run for, but again these generdly work well for
thousands but not millions of nodes. A method of moments appoach was
proposed in [7], for a large class of network models that includes the block
model as a special case. The generality of this method is an santage, but
it involves counting all occurrences of speci ¢ patterns inthe graph, which
is computationally challenging beyond simple special case Some faster ap-
proximations for block model tting based on spectral representations are
also available p6, 32], but the properties of these approximations are only
partially known.

Pro le likelihood methods have been proven to give consistet estimates
of the labels when the degree of the graph grows with the numbreof nodes,
under both the stochastic block models §] and the degree-corrected ver-
sion [38]. To obtain \strong consistency" of the labels, that is, the proba-
bility of the estimated label vector being equal to the truth converging to
1, the average graph degree , has to grow faster than logn, where n is
the number of nodes. To obtain \weak consistency," that is, the fraction
of misclassi ed nodes converging to 0, one only needs, !'1 . Asymptotic
behavior of variational methods is studied in [LO] and [8], and in [14] this be-
lief propagation method is analyzed for both the sparse [, = O(1)] and the
dense (n!1 ) regimes, by nonrigorous cavity methods from physics, and
a phase transition threshold, below which the labels cannobe recovered, is
established. In fact, it is easy to see that consistency is imossible to achieve
unless ,!1 , since otherwise the expected fraction of isolated nodes és
not go to 0. The results one can get for the sparse case, such ], can
only claim that the estimated labels are correlated with the truth better
than random guessing, but not that they are consistent. In this paper, for
the purposes of theory we focus on consistency and thus nesesily assume
that the degree grows withn. However, in practice we nd that our methods
are very well suited for sparse networks and work well on grajps with quite
small degrees.

Our main contribution here is a new fast pseudo-likelihood #&orithm for
tting the block model, as well as its variation conditional on node degrees
that allows for tting networks with highly variable node de grees within
communities. The idea of pseudo-likelihood dates back tog], and in general
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amounts to ignoring some of the dependency structure of the ata in order
to simplify the likelihood and make it more tractable. The main feature of
the adjacency matrix we ignore here is its symmetry; we also @ply block
compression, that is, divide the nodes into blocks and onlydok at the like-
lihood of the row sums within blocks. This leads to an accura¢ and fast
approximation to the block model likelihood, which allows us to easily t
block models to networks with tens of millions of nodes. Anoher major con-
tribution of the paper is the consistency proof of one step othe algorithm.
The proof requires new and somewhat delicate arguments notrpviously
used in consistency proofs for networks; in particular, we ge the device of
assuming an initial value that has a certain overlap with the truth, and
then show the amount of overlap can be arbitrarily close to puely random.
Finally, we propose spectral clustering with perturbations, a new clustering
method of independent interest which we use to initialize psudo-likelihood
in practice. For sparse networks, regular spectral clusténg often performs
very poorly, likely due to the presence of many disconnectedomponents.
We perturb the network by adding additional weak edges to comect these
components, resulting in regularized spectral clusteringvhich performs well
under a wide range of settings.

The rest of the paper is organized as follows. We present thelgorithms
in Section 2, and prove asymptotic consistency of pseudo-likelihood irSec-
tion 3. The numerical performance of the methods is demonstrated o a
range of simulated networks in Sectior4 and on a network of political blogs
in Section 5. Section 7 concludes with discussion, and theAppendix contains
some additional technical results.

2. Algorithms.

2.1. Pseudo-likelihood. The joint likelihood of A and c could in princi-
ple be maximized via the expectation{maximization (EM) algorithm, but
the E-step involves optimizing over all possible label asgnments, which is

convenience we partition into the same number of groups as wassume to
exist in the true model, but in principle the same idea can be aplied with
a di erent number of groups; in fact dividing the nodes into n groups with
a single node in each group instead gives an algorithm equilent to that
of [29].

The main quantity we work with are the block sums along the colmns,

X
(2 bk =  Ajl(g =k)



PSEUDO-LIKELIHOOD METHODS FOR COMMUNITY DETECTION 5

K K matrix with entries fRyag given by
1
) Rka = o 1(e = k;¢ = a):

Let Ry be the kth row of R, and let P, be the Ith column of P. Let
k=nNRyP,and = f k9.
Our approach is based on the following key observations: foeach nodei,

(B) bk, a sum of independent Bernoulli variables, is approximate} Pois-
son with mean .

With true labels fcjg unknown, each b; can be viewed as a mixture of
Poisson vectors, identi able as long as has no identical rows.

By ignoring the dependence amond b;;i =1;:::;ng, using tge Poisson
assumption, treating fc¢g as latent variables, and setting | = |, |, we
can write the pseudo log-likelihood as follows (up to a consint):

|
X X ¥
(4) wL(; s fhig= log e
i=1 I=1 k=1

A pseudo-likelihood estimate of (; ) can then be obtained by maximizing
“pL(; ; fhyg). This can be done via the standard EM algorithm for mixture
models, which alternates updating parameter values with uglating proba-
bilities of node labels. Once the EM converges, we update thmitial block
partition vector e to the most likely label for each node as indicated by EM,
and repeat this process for a xqunumber of iterationsT.

For any labeling e, let ni(e) = ; 1f& = k), nii(€) = ni(e)ni(e) if k& I,
Nk (€) = nik(e)(nk(e) 1) and Ok (e) = i A 1(e = k; g = I). We suppress
the dependence one whenever there is no ambiguity. The details of the
algorithmic steps can be summarized as follows.

The pseudo-likelihood algorithm.lnitialize labels e, and let ~ = n;=n, R=
diag("1;::1;% ), Pk = Ok=ni, "k = nR« P, P = fPxg and "= g
Then repeat T times:

(1) Compute the block sumsfly g according to (2).
(2) Using current parameter estimates ~and *, estimate probabilities for
node labels by
Q
/\.I —_ PPL(Ci —_ IJb)_ D A| r}fr);]_ exp(hm IOgA|m Alm)
i = = i)— .
Ezl Ak \!r};:l eXp(hm IOg/\km Akm)




6 AMINI, CHEN, BICKEL AND LEVINA

(3) Given label probabilities, update parameter values as dllows:

xXn A
= % A o= P |/I\hk :
i=1 il

N

(4) Return to step 2 unless the parameter estimates have comvrged.
(5) Update labels by g =arg may A and return to step 1.
(6) Update P as follows: Py = (" Ajj “i "k )=ni (€).

In practice, in step 6 we only include the terms correspondig to *y greater
than some small threshold. The EM method ts a valid mixture model as
long as the identi ability condition holds, and is thus guar anteed to converge
to a stationary point of the objective function [36]. Another option is to

update labels after every parameter update (i.e., skip steg). We have found
empirically that the algorithm above is more stable, and corverges faster.
In general, we only need a few label updates until convergee¢ and even
using T =1 (one-step label update) gives reasonable results with a @pd
initial value. The choice of the initial value of e, on the other hand, can be
important; see more on this in Section2.3.

2.2. Pseudo-likelihood conditional on node degrees.For networks with
hub nodes or those with substantial degree variability within communities,
the block model can provide a poor t, essentially dividing the nodes into
low-degree and high-degree groups. This has been both obgsed empirically
[22] and supported by theory [38]. The extension of the block model designed
to cope with this situation, the degree-corrected block moel [22], has an
extra degree parameter to be estimated for every node, and \iting out
a pseudo-likelihood that lends itself to an EM-type optimization is more
complicated. However, there is a simple alternative: consier the pseudo-
likelihood conditional on the observed node degrees. Whethr these degrees
are similar or not will not then matter, and the tted paramet ers will re ect
the underlying block structure rather than the similaritie s in degrees.

The conditional pseudo-likelihood is again based on a simplobservation:

(C) If random variables Xy are independent Poisson with means , their
distribution conditional on | Xy is multinomial.

gistribution, conditional on labels ¢ with ¢ = | and the node degreed; =

« Bk, is multinomial with parameters (di; 11;:::; k), where | = '—‘|<
The conditional log pseudo-likelihood (up to a constant) isthen given by
I
. X X ¥ "
(5) CPL( - 1:blg) = |Og | |kk ,
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and the parameters can be obtained by maximizing this functon via the
EM algorithm for mixture models, as before. We again repeat he EM for
a xed number of iterations, updating the initial partition vector after the
EM has converged. The algorithm is then the same as that for uoonditional
pseudo-likelihood, with steps 2 and 3 replaced by:

(29 Based on current estimates ~and f’\|kg, let
n QKo
N = PepL (6 = 1jbi) = P10
k=1 kK m=1 km

(3) Given label probabilities, update parameter values as dllows:

N 1 X N A Pi"ilbk
1= = il Kk = P——!
n i M di

i=1

2.3. Initializing the partition vector.  We now turn to the question of how
to initialize the partition vector e. Note that the full likelihood, pseudo-
likelihoods “p. and “cpL, and other standard objective functions used for
community detection such as modularity 28] can all be multi-modal. The
numerical results in Section4 suggest that the initial value cannot be entirely
arbitrary, but the results are not too sensitive to it. We wil | quantify this
further in Section 4; here we describe the two options we use as initial
values, both of which are of independent interest as clustémng algorithms
for networks.

2.3.1. Clustering based on 1- and 2-degrees.One of the simplest possible
ways to group nodes in a network is to separate them by degresay by one-
dimensional K -means clustering applied to the degrees as irl]]. This only
works for certain types of block models, identi able from their degree dis-
tributions, and in general K -means does not deal well with data with many
ties, which is the case with degrees. Instead, we consider tadimensional
K -means clustering on the pairs (;; di(z)), where di(z) is the number of paths
of length 2 from nodei, which can be obtained by summing the rows ofA?.

2.3.2. Spectral clustering with perturbations. A more sophisticated clus-
tering scheme is based on spectral properties of the adjacey matrix A =

collecting node degrees. A common approach is to look at theigenvec-
tors of the normalized graph LaplacianL = D “2AD 2, choosing a small
number, sayr = K 1, corresponding tor largest (in absolute value) eigen-
values, with the largest eigenvalue omitted; see, for examip, [33]. These
vectors provide anr-dimensional representation for nodes of the graph, on
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which we can apply K -means to nd clusters; this is one of the versions of
spectral clustering, which was analyzed in the context of tke block model
in [32].

We found that this version of spectral clustering tends to dopoorly at
community detection when applied to sparse graphs, say, wit expected
degree < 5. The r-dimensional representation seems to collapse to a few
points, likely due to the presence of many disconnected congments. We have
found, however, that a simple modi cation performs surprisingly well, even
for values of close to 1. The idea is to connect all disconnected componesnt
which belong to the same community by adding arti cial \weak " links. To be
precise, we \regularize" the adjacency matrixA by adding =p  =n multi-
plied by the adjacency matrix of an Erdos{Renyi graph onn nodes with edge
probability p, where is a constant. We found that, empirically, =p =0:25
works well for the range ofn considered in our simulations, and that the re-
sults are essentially the same for alp > 0:1 Thus we make the simplest and
computationally cheapest choice ofp=1, adding a constant matrix of small
values, namely, 025(=n )1, 1] where 1, is the all-onesn-vector, to the orig-
inal adjacency matrix. The rest of the steps, that is, forming the Laplacian,
obtaining the spectral representation and applyingK -means, are performed
on this regularized version ofA. We note that to obtain the spectral repre-
sentation, one only needs to know how the rBatrix acts on a give vector;
since A +0:25(=n)1,11)x = Ax +0:25(=n )( i Xi)1n, the addition of the
constant perturbation does not increase computational corplexity. We will
refer to this algorithm as spectral clustering with perturbations (SCP), since
we perturb the network by adding new, low-weight \edges."

3. Consistency results. By consistency we mean consistency of node la-
bels (to be de ned precisely below) under a block model as thsize of the
graph n grows. For the theoretical analysis, we only consider the cse of
K =2 communities. We condition on the community labels fcg, that is,
we treat them as deterministic unknown parameters. For simpicity, here we
consider the case of balanced communities, each having = n=2 nodes. An
extension to the unbalanced case is provided in the supplemé&ary mate-
rial [3]. The assumption of balanced communities naturally leads & to use
the class prior estimates 4 =", =1=2 in (10). We call this assumption (E)
(for equal class sizes):

(E) Assume each class containsn = n=2 nodes, and set 1 =",=1=2.

Without loss of generality, we can takec; =1 for i 2f 1;2;:::;mg.

As an intermediate step in proving consistency for the blockmodel in-
troduced in Section 1, we rst prove the result for a directed block model.
Recall that for the (undirected) block model introduced earlier, one has

(6) (undirected) Aj Ber(Pc¢) and Aji = Aj fori |
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In the directed case, we assume that all the entries in the a@jcency matrix
are drawn independently, that is,

(7) (directed) A Ber(®) for all i;j:

We will use di erent symbols for the adjacency and edge-probaility matrices
in the two cases. This is to avoid confusion when we need to inbduce a
coupling between the two models. In both cases, we have asseh that
diagonal entries of the adjacency matrices are also drawn redomly (i.e., we
allow for self-loops as valid within-community edges). Ths is convenient in
the analysis with minor e ect on the results.

The directed model is a natural extension of the block model Wen one
considers the pseudo-likelihood approach; in particularjt is the model for
which the pseudo-likelihood assumption of independence Ids. It is also a
useful model of independent interest in many practical sitwations, in which
there is a natural direction to the link between nodes, for example, in email,
web, routing and some social networks. The model can be tradeback to the
work of Holland and Leinhardt [21] and Wang and Wong [35] in which it has
been implicitly studied in the context of more general exporential families
of distributions for directed random graphs.

Our approach is to prove a consistency result for the directd model, with
an edge-probability matrix of the form
1 ab

a

©) P b

Note that the only additional restriction we are imposing is that B has the
same diagonal entries. Botha and b depend onn and can in principle change
with n at di erent rates. This is a slightly di erent parametrizatio n from the
more conventional P, = S [6], where S (and ) do not depend onn, and

n= n 'S .We use this particular parametrization here because we oml
consider the caseK =2, and it makes our results more directly comparable
to those obtained in the physics literature, for example, 14].

A coupling between the directed and the undirected model tha we will
introduce allows us to carry the consistency result over to he undirected
model, with the edge-probability matrix

2 a b 1 a2 P
©) P= m b a m2 ¥ a
Asymptotically, the two edge-probability matrices have comparable (to rst
order) expected degree and out-in-ratio (as de ned by 14]), under mild
assumptions. The average degrees f@ and P area+ band 2(a+ b) %(a2+

b?), respectively. The latter is ~ 2(a+ b) as long as- a;’;gz aby 0. The
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condition is satis ed as soon as the average degree of the @icted model has
sublinear growth: a+ b= o(n). The same holds for out-in-ratios.

For our analysis, we consider an E-step of the CPL algorithm.It starts
from some initial estimates &, BHand ~= (™ 1; ™) of parametersa, band ,
together with an initial labeling e, and outputs the label estimates

( e ) )
(10) Gi(e)=arg max log”c+ b (e)log i (e) ;  i2[n];
k2f 1,29 o1

where "\ are the elements of the matrix obtained by row normalization of
"= nR(e)P]". Here R = R(e) is the confusion matrix as de ned in (3),
and P is given by either (8) or (9), depending on the model, witha and b
replaced with their estimates & and B.

The key assumption of our analysis is that the initial labeling has a certain
overlap with the truth (we will show later that the amount of o verlap is not
important). One situation where this might naturally arise is survey data,
when some small fraction of nodes has been surveyed about iheommunity
membership. Another possibility is to run some other crude #&orithm rst
to obtain a preliminary result. More formally, we consider an initial labeling
e=(¢g) 2f1;29", which is balanced (i.e., assigns equal number of nodes
to each label) and matches exactly m labels in community 1, for some

2 (0;1). We do not assume that we know which labels are matched, orhe
value of . Itis easy to see that this is equivalent toe matching exactly m
labels in each of the two communities. Assumingm to be an integer, let
E = E, denote the collection of such labelings,

( i >0 )
(11) E =E= e2fL29": lig-14= M = lig=2g

i=1 i=m+1

Our goal is to obtain a uniform result guaranteeing the consstency of CPL
iteration (10) for any initial labeling in E . In particular, this guarantees
consistency for any initial labeling of strength at least , even if it is obtained
by an algorithm operating on the same adjacency matrix used ¥ CPL. As
will become clear in the course of the proof of Theorent, although f "\ g
depend onR(e) (which in turn depends on ) and P, under the stated
(idealized) assumptions, we do not need to know their exact alues in order
to implement rule (10). In particular, we do not need to know . We can
plug in any number in (0;1) nf%g for and get the same estimates. Note
that the value of =1=2 corresponds to \no correlation" between the true
and the initial labeling, whereas =0 and =1 both correspond to perfect
correlation (the labels are either all true or all ipped).
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Let us consider the directed case rst. As our measure of pedgrmance
(i.e., the loss function), we take the following (directed€ase) mismatch ratio

1 — , 1 X .
(12) n(€) = Zf(rﬂ?:@l)gﬁi:l ife(e) 6 (ci)g;

where ¢ (e) are computed based on the directed adjacency matrix&, and
f(12);(21)g is the set of permutations off 1;2g, with  accounting for the
fact that the labels assigned to the communities are only degrmined up to a
permutation. The counterpart for the undirected case is demted by M, (e).
Note that the notion of consistency based on convergence ohis quantity
matches the \weak" consistency discussed in3g], rather than the \strong"

consistency used by§]. De ne

,_(a b?
(13) n~— a+b

and let h(p)= plogp (1 p)log(l p), p2[0;1] be the binary entropy
function. Let us also consider the collection of estimates4;®) which have
the same ordering as true parametersg;hb),

Par=f(aD:(a H(a b>0g:

Then, we have the following result.

Theorem 1 (Directed case). Assume (E), and let 2 (0;1) nf%g. Let

the adjacency matrix & be generated according to the directed modeV) with
edge-probability matrix (8), and assumea 6 b. Then, there exists a sequence
fung R+ such that

(14) logun +loglogu, log gh() - %1(1 2 )2 2
and
4h
1) P sup suple@ ) exp( nih() ()
(a;)2P o €2En 9Un

where (n):= %[Iog(”‘ﬁﬂ =]= o).
In particular, if ﬁ! 1 ,we haveuy!1l and the CPL estimate is uni-
formly consistent.

Remark 1. We think of as xed, but it is possibletolet = ! %
making the problem harder asn grows. We still get consistency as long as
1 2,)2%21
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Fig. 1.  The plots illustrate the interpretation of CPL iteration as neighborhood majority
voting, in the balanced case. Hereb=0 and only one community is shown. From left to
right, we have the initial labeling for a sparse graph Gi, the new labeling for Gi1 after
one CPL iteration, the initial labeling for a dense graph G2, and the new labeling for G2
after CPL iteration. Nodes with red labels are \infected," t hat is, their community label
is incorrect. For the sparse case, CPL iteration spreads the infection, while for the dense
case, it has the opposite e ect.

Remark 2. In the balanced case, the CPL iteration has a simple in-
tuitive interpretation, as will become clear during the proof of Theorem 1.
One starts with an initial assignment of labels to nodes. Tha&, each node
updates its label by taking a majority vote among its neighbas. In the case
where b= 0, it is intuitively clear that for a large enough, this procedure
increases the number of correct labels relative to the initl assignment. Fig-
ure 1 illustrates these ideas. In the general case wherb6 0, Theorem 1
states that ? is the key parameter that needs to grow for the procedure to
succeed.

Remark 3.  While the labels are of primary interest in community de-
tection, one may also be interested in consistency of the eshated parame-
ters. Under strong consistency in the sense o8], consistency of the natural
plug-in estimates of the block model parameters follows edy, but here we
only show weak consistency of the labels. However, in the décted model
the pseudo-likelihood function we de ned is in fact exactly the likelihood
of bi's. Parameter estimates (saya*and B) obtained by the EM algorithm
converge to a local maximum of this function. As a consequercof Theo-
rem 1, these estimates are also consistent (foa and b). Since the likelihood
is smooth with bounded derivatives, one may be able to use stalard argu-
ments to show that the estimated parameters are a unique lodamaximum
in a neighborhood of the truth, and even derive their asymptdic normality
along; see, for example, Theorem 6.2.1, page 384 &j.[We do not pursue
this direction here.

We now turn to the undirected case. Let
(16) a=a+(1 )b:
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Theorem 2 (Undirected case). Assume (E), and let 2 (0; l)nf%g. Let
the adjacency matrix A be generated according to the undirected modeb)
with edge-probability matrix (9), and assumea6 b. In addition, assume
a7 21+"a "(1 2)a b

for some " 2 (0;1). Then, there exist sequencesu,g;fva,g R+ such that
fung satis es (14), with 1 2 replaced with(1 ")(1 2 ) andfv,g satis es

4 "2
logvy +loglog v, log éh( ) o+ PPt
and
P sup supMp(e) 4h() 1 + 2
(2P . €2En " logun  logvp
(18)

3exp( n[h( ) (mD;

where (n)= 0o(1) is as de ned in Theorem 1.
In particular, if r?;a 1 , we haveu,;vy,!1 , and the CPL estimate
is uniformly consistent.

The proofs of both theorems can be found in Sectiorb.

Remark 4.  Condition (17) can be met for a xed " 2 (0; 1) by choosing
su ciently small and an upper bound on b=ain terms of . For example,
for"=2and < %, we have (L7) if

Remark 5. The parameter 2 controlling consistency is the same as
the one reported in [L4] and [24]. There the concern is with recovering a
labeling which is positively correlated with the truth, and the threshold of
success is observed to be 2. A similar lower bound was given in [L3] for
spectral clustering. Here, we are concerned with moving frm a positively
correlated labeling to one with an asymptotically vanishing mismatch ratio
[i.e., Mn(e) = 0p(1)], which is why we need 211

Remark 6. These results can be extended to the case of unbalanced
communities. Such an extension is provided for the directedlock model in
the supplementary material [3]. There we consider the model with two com-
munities of sizesn; and ny (not necessarily equal) and an edge-probability
matrix

B =

o

alb_
b &



14 AMINI, CHEN, BICKEL AND LEVINA

which relaxes our earlier assumptiora; = ay in (8). The class of initial label-

ings is also enlarged tg include those that have -overlap with community

k,thatis, E* 2:=fe: ;lig=kc=kg= kNk;K=1;2g9, with 16 ».Inthis

situation, one needs more assumptions on the initial estim@ P used in the
CPL iteration than in the balanced case. Supplementary mateial [3] gives
the details. While we do not discuss the undirected case in tis general set-
ting, ideas used in the proof of Theorem2 can be used to carry the results
from the directed to the undirected case.

4. Numerical results. Here we investigate the performance of both the
unconditional and conditional pseudo-likelihood algorithms on simulated
networks, as well as that of spectral clustering with pertutbations. We
simulate two scenarios, one from the regular stochastic blkk model and
one from the degree-corrected block model, to assess the p@mance in
the presence of hub nodes. Throughout this section, we xK =3 and

= (1=3;1=3;1=3). Conditional on the labels, the edges are generated as
independent Bernoulli variables with probabilities proportional to ; ; Pj .
The parameters j are drawn independently from the distribution of with
P(=0 :2)= ,P(=1)=1 . We do not enforce the identi ability scaling
constraint on  at this point as it is absorbed into the scaling of the matrix
P in (19 below. We consider two values of : =0, which corresponds to
the regular block model, and =0:9, which corresponds to a network where
10% of the nodes can be viewed as hubs.

The matrix P is constructed as follows. It is controlled by two param-
eters: the \out-in-ratio" [14], which we will vary from 0 to 0.2, and the
weight vector w, which determines the relative degrees within communities
We consider two values ofw: w=(1;1;1) (no information about commu-
nities is contained in node degrees) andv =(1;5;10) (degrees themselves
provide relevant information for clustering). If =0, we set P© =diag(w),
a diagonal matrix. Otherwise, we set the diagonal ofP©@ to  w and set
all o -diagonal elements to 1. We then x the overall expected network de-
gree , which is the natural parameter to control [6] and which we will vary
from 1 to 15. Then we rescaleP© to obtain this expected degree, giving
the nal P

19 P= pO:
49 (n D( PO )E) ?

To compare our results to the true labels, we will use normalied mutual
information (NMI). One can think of the confusion matrix R as a bivariate
probability distribution, and of its row and column sums Rj+ and R, as
th%corresponding maFr,ginaIs. Then the NMl is de ned by [37] as NMI(c;€) =

i Rij log Rfi‘fqﬂ_( i Ri logRjj ) 1 and is always a number between 0
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Fig. 2. The NMI between true and estimated labels as a function of \out-in-ratio"

and 1 (perfect match). It is useful to have a few benchmark vales of NMI
for reference: for example, for largen, matching 50%, 70% and 90% of the
labels correspond to values of NMI of approximately @12, 026 and Q58,
respectively.

All gures show the performance of the following methods:K -means clus-
tering on 1- and 2-degrees (DC), spectral clustering (SC),ectral clustering
with perturbations (SCP), unconditional pseudo-likelihood (UPL) initialized
with either DC or SCP, and conditional pseudo-likelihood (CPL), with the
same two initial values for labelings. The number of outer ierations for
UPL and CPL is setto T =20; n, , and the number of replications N
are speci ed in the gures.

Figures 2 and 3 show results on estimating the node labels with varying
and , respectively. Generally, smaller and larger make the problem eas-
ier, as we expect. In principle, degree-based clustering s no information
about the labels with uniform weights w, and only a moderate amount of
information with nonuniform weights, so it serves as an exarple of a poor
starting value for pseudo-likelihood. Regular spectral alistering performs
well with uniform weights, but very poorly with nonuniform w eights; we
conjecture that this is due to a limitation of K -means. Spectral clustering
with perturbation, on the other hand, performs very well in all scenarios.
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Fig. 3. The NMI between true and estimated labels as a function of aveage expected
degree .

Apart from being a useful general method on its own, it also se/es as an
example of a good starting value for pseudo-likelihood.

Figures 2 and 3 show that pseudo-likelihood achieves large gains over
a poor starting value, giving surprisingly good results eve when starting
from the uninformative degree clustering in the case ofw =(1;1;1). One
exception is unconditional pseudo-likelihood with =0:9 andw=(1;1;1),
which shows that conditioning is necessary to accommodate aviation in
degrees when the starting value is not very good. When spedt clustering
with perturbation is used as a starting value, which is alrealy very good,
UPL and CPL do not have much room to do better, although UPL still
provides a noticeable improvement, being overall the best mthod when
initialized with SCP. It appears that a good starting value overcomes the
limitations of the regular block model for networks with hubs, e ectively
ruling out the competing solution which divides nodes by degee.

Finally, Figure 4 shows run times for all the methods for the case of the
regular block model ( =0) with di erent community weights [ w=(1;1;1)
and w =(1;5;10)]. The times shown for UPL and CPL do not include the
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Fig. 4. The runtime in seconds as a function of the number of nodes (I@{log scale).

time to compute the initial value, which is shown separately For the case
w =(1;1;1), all methods take roughly the same amount of time. For the ase
w =(1;5;10), spectral clustering (SC) takes considerably more timethan
the rest. On the other hand, SCP takes nearly the same time ast itakes
for w=(1;1;1), and it slightly outperforms DC for larger values of n. This
might be explained, in part, by the sparse matrix multiplication required for
DC, which is both time and memory-consuming for largen. Generally, SCP
provides an excellent starting value, with low computational complexity in
a variety of situations.

We have also done some brief comparisons with the belief pragation
(BP) method of [14]. Direct fair comparison is di cult because of the di er-
ent platform for the belief propagation code and the di erent way in which
it handles initial values; generally, we found that while the computing time
of belief propagation scales withn at the same rate as ours, BP is slower by
a constant factor of about 10. In terms of accuracy of commuriy detection,
in the examples we tried BP was either similar to or a little worse than
pseudo-likelihood.

5. Example: A political blogs network. This dataset on political blogs
was compiled by Adamic and Glance ]] soon after the 2004 U.S. presidential
election. The nodes are blogs focused on US politics, and thedges are
hyperlinks between these blogs. Each blog was manually laker as liberal
or conservative in [1], and we treat these as true community labels. Following
[22], we ignore directions of the hyperlinks and analyze the lagest connected
component of this network, which has 1222 nodes and the avege degree
of 27. The distribution of degrees is highly skewed to the rigt (the median
degree is 13, and the maximum is 351).

The results in Figure 5 show that the conditional pseudo-likelihood pro-
duces a result closest to the truth, as one would expect in vig of highly
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Fig. 5. Political blogs data: true labels and unconditional and conditional pseudo-likeli-
hoods (UPL and CPL) initialized with spectral clustering wi th perturbations (SCP). Node
size is proportional to log degree.

variable degrees. Its result is also very close to those obitzed by pro le max-
imum likelihood for the degree-corrected block model and bytwo di erent
modularities [22, 38]. Unconditional pseudo-likelihood, on the other hand,
puts high-degree nodes in one group and low-degree nodes imetother. This
is very close to the block model solution 22]. This example con rms that
the unconditional and conditional pseudo-likelihood metlods are correctly
tting the block model and the degree-corrected block mode] respectively.

6. Proofs of consistency results. Due to symmetry, we can assume with-
out loss of generality that 2 (O; %). Similarly, we can assumea>b. Then,
for any (&;9) 2 P 5, we havea> B. These will be our standing assumptions
throughout the proofs. To see that the assumptions are not retrictive, one
can check that the proof goes through, without change, if 2 (%;l) and
b >a. For the other two cases, namely, 2 (0; %) and b>a, or 2 (%;l)
and a> b, the proof goes through by switching the estimated labels whn
matching them with the true labels. That is, we compare estimated com-
munity 1 to true community 2 and vice versa. These can seen by»amining
(21) and the discussion that follows.

6.1. Proof of Theorem 1 (directed case). Let us introduce the following
notation:
C=fi:g="g;
Sk = Sk(e)= fi:g = kg;
Se = Sk\(e): S\C-

for k;” =1;2. As long ase2E , we have|Cj=jSxj=m for all k;"=1;2
and

(20) JS11) = [S22 = m; JS12) = [S21j=(1  )m:
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Under the equal priors assumption (E), the CPL estimate (L0) simpli es

(o )
G(@=ar0 max En(@log k(€]

to

where 8, g are obtained by block compression of the directed adjacency
matrix A&.
Let us focus oni 2 C; from now on. Then ¢ (e) =1 if

1(€)

N N
e
(21) 81()log X + 8,(e)l0g 222 > 0
21(€) 22(€)
For e2E , we haver, (€)= n 1jS,j, implying that
_1 1 _
R(e) - z 1 ’

where R(e) is de ned in (3). It is then not hard to see that after row nor-
malization of "=[ nR(e)P]", we obtain "11(e) = "»(€) = 2@ ) b

a+b’
N N
and (€)= “u(e)= D+ )2
Since by assumptiona™> Hand 2 (0;2), it follows that "y < "1. Then,

(21) i%equivalent toBi(e) B2(e) < 0.RecallingthatBc(e)= |1, & ife =

kg= " .5, Aij, we can write the condition as

X0 1; e =1,

G (&)= A& j(©<0 where (= ). ej=2,

i=1
and (e)=( 1(e);:::; n(e). Let = p bethesetofall (e with e2E ,
that is,

( o )
= .= 2f 1,1g": 1f j=1g= m

i=1

P
For " =1;2, let If/ln; (e) = % ioc. 1f € (e) & ¢g be the fraction of mis-
matches over community *. Note that the overall mismatch is

(22) Mn(e)= 3[Mn1(e) + My2(0)]:

Since we are focusing ori 2 C, we are concerned withf1,,.1(€). In a slight
abuse of notation, Mn(e) in (22) is in fact an upper bound on the mismatch
ratio as de ned in (12), since here we are using a particular permutation|

the identity.
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Letusdene, for 2f 1;+1g" andr O,

xn
n1( 5r)= 1f &( ) ro:
i=1
Then we have

supfMy1(e)  sup Mna( 50) ;O);
e2E 2

where the inequality is due to treating the ambiguous casé§( ) =0 as error.
We now set out to bound this in probability. Let us start with a tail bound
on €( )for xed andi.

Lemma 1. Forany 2 andt 2 (0;3(a+ b)], we have
t2
4(a+ b)

(23) PIE() (@ 2)a b+1t)] exp

Proof. We apply the classical Bernstein inequality for sums of inde
pendent bounded random variables. Let j = E[A;]. Note that j&; ;

E[&; ;1 max( ;1 ) 1. Fori2Cy, we have
E&( )= i —(1)+ E( 1)+ E( 1)+ E(l)
j=1 j2su j2S2 j2S2 j2S1
=(a b +( atbh@ )= @ 2)a b;
where Sy is de ned based on labelinge which correspond to . In addition,
since var(&; ) i ,» we have

X X X a b
V= var(,&‘ij j) i + i = —+ m—=a+ b;
j=1 j2c; j2C, m m
Bernstein inequality implies
t2
e e + I
PEC) BRSO+ e g

Noting that for t=3 (a+ b), we have 2¢ + t=3) 4(a+ b) completes the
proof.

We also need a tail bound onM¥y.1( ;r). Let us de ne

1 X0
(24) p()=P&C) 1l p()=— p(r):
i=1
Note that these probabilities do not depend on the particula value of 2
due to symmetry. We have the following lemma.
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Lemma 2. For u> 1=¢
(5 P W n) eun(r)  exp( empi(rulogu):

Proof. Follows from Lemma 5 in the Appendix, by noting that
f1f€( ) rggt, are independent Bernoulli random variables.

Now we apply Lemmal with t=(1 2 )(a b) 3(a+ b). Note that

g+b R 2 ,for 2 (0,2) Noting that the RHS of ( 23) does not depend

on i, and using (24), we get

1 ,(a b?
p(0) exp (L 2)P
The cardinality of the set ~ is [ 2 (@) @mN2 whereh( ) is the
binary entropy function, and (2m)=  (n) is as de ned in the statement

of the theorem. (See Lemma 6 in the supplementary materiald] for a proof.)
Applying Lemma 2 with u = u, and the union bound, we obtain

1
P sup —M,.1( ;0) eunpi(0)
2 m

expfm[2h( ) ep1(O)unlogu, +2 (N)]g:
Pick upn such that

an( ) |
ep1(0)

uplogup =

It follows, using m = n=2, that

4h( )
(0)

logun

1
P sup —Nn1( :0) expf [h()  (n)Ing:
By symmetry the same bound holds for sup %I@n;z( ;0). It follows from
(22) that the same holds for sup My (€). This completes the proof of Theo-
rem 1.

6.2. Proof of Theorem 2 (undirected case). Recall that A and & are the
adjacency matrices of the undirected and directed cases, spectively. Let us
dene i( ), Mp-(e), Np-(;r)as WngId in the directed case, but based on
A instead of &. For example, i( )= ;. Aj j.

Our approach is to introduce adeterministic coupling betweenA and &,
which allows us to carry over the results of the directed caselet

(26) A=T(&/), [T(&); = (1)E fti#ezrvﬁe.: >
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In other words, the graph of A is obtained from that of & by removing
directions. Note that
Pu=P(Aj =1)=1 P(& =0)P(&; =0)=2Bq BF;

which matches the relation between 8) and (9). From (26), we also note
that

(27) Aij &ij for all i;j:

Let us now upper-bound i( ) in terms of €( ). Based on 27), only those
j that are equal to 1 contribute to the upper bound. More precisly, let

Dj =Aj A& 0, andtakei2C; from now on. Then

X X
i() §()= Dy j+ Dy |
j251 j2s;
X
(28) = Dy Dij
i2S: j2S2
Dijl
128,

We further notice that D  Aj + A&;i. To simplify notation, let us de ne
X

X
(29) A ()= A ; &Ri()= A;i;
j2s; j2s:
where the dependence on is due to S; being derived from [recall that
S1=Si( )=fj: j=1g]. Thus we have shown
(30) i() SO)+ & ()+&i():

Recall from de nition ( 16) that a = a +(1 )b:

Lemma 3. Fix "> 0. For i 2 C;, we have
"2

PIA ()> @+ Mal=PR()>@+"Ma]l exp za

Proof. The equality of the two probabilities follows by symmetry. L et
us prove the bound for&; ( ). We apply Bernstein inequality. Note that

X X X
=E &ij = E[/@ij ]+ E['Qij ]
j2S1 j2S11 j2S12

= E+ —=a +b(]_ ):a:
j2S11 j2S12
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P .
Since |, var(&jj) , we obtain
X £ t2
P i +t exp =
125, 2( +t=3)
Setting t =" completes the proof.

From (30), it follows that
i() 0 =) (8C) n_& () r=2)_(&i() r=2);

which _ is the logical OR. This can be seen (as usual) by noting that ithe
RHS does not hold, then€( )+ & ( )+ &i( )< 0, implying i( )<O.
Translating to indicator functions,

i () Og 12&() rg+1f& () r=2g+1f& () r=2g:
Averaging overi 2 C, (i.e., applying m ! ), we get

1 1 1 1

(31) ENn;l( ;0) PE'Qn;l( )+ E@ml( r=2)+ E@n; 1( ;r=2);
where @1 ( ;t)= O, A& () tg, and similarly for @, 1( ;t). Note
that @n.1 ( ;t) and @, 1( ;t), while not independent, have the same dis-

tribution by symmetry, so we can focus on bounding one of themThe key
is that each one is a sum of i.i.d. terms, for examplef &; gn .

We have a bound onm ,.1( ;r) from Lemma 2. We can get similar
bounds on the ®-terms. To start, let

1 X0
(32) G(=P& () r=2k @)= q);
i=1
similar to (24), and note that these quantities too are independent of the
particular choice of 2

Lemma 4. For u> 1=¢
(33) P %@n;l( ;r=2) euq(r) exp( ema(r)ulogu):

Proof. Follows from Lemma 5 in the Appendix, by noting that
f1fA () r=2gd?, is anindependent sequence of Bernoulli variables.

The same bound holds for%@n; 1( ;r=2). Recall the de nition of py(r)
from (24). Using (31) and Lemmas2 and 4, we get

P sUp =Nna( :0)  eunpa(r)+ 2vacu(r)]
2 m
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1 .
P séup Er@n;l( ;r)  eunpy(r)

+2P sup i@n;l( r=2)  evhou(r)
2 m

expfm[2h( ) epi(r)unlogun +2  (n)lg
+2expfm[2h( ) eq(r)vplogvy+2 (n)]g

as long asun; Vv, > 1=e Now, take r=2=(1+ ")a , so that Lemma 3 implies

w2
@) exp T ~-za

Now, in Lemma 1, take t=(1 2 )(a b 2(1+ ")a. Note that the
assumption
20+Ma "1 2)a b

impliest (1 ")1 2 )(a b>0.Inadditont (1 2 )(a b 3(a+b
as before. Thus, the chosert is valid for Lemma 1. Furthermore, (1
2 )a b+ t= r.Hence, the lemma implies

1 " 2(a b)?
pu(r) exp Gl A 2 )P
Pick u, and v, such that
4ah( ) 4ah( )
uploguy = ——=; vp logv, = :
= (MR- ()

The rest of the argument follows as in the directed case. Thisompletes the
proof of Theorem 2.

7. Discussion. The proposed pseudo-likelihood algorithms provide fast
and accurate community detection for a range of settings, icluding large
and sparse networks, contributing to the long history of emgrical success of
pseudo-likelihood approximations in statistics. For the theoretical analysis,
we did not focus on the convergence properties of the algotins, since stan-
dard EM theory guarantees convergence to a local maximum a®hg as the
underlying Poisson or multinomial mixture is identi able. The consistency of
a single iteration of the algorithm was established for an iitial value that is
better than purely arbitrary, as long as, roughly speaking,the graph degree
grows, and there are two balanced communities with equal exgcted degrees.
The theory shows that this local maximum is consistent, and wique in a
neighborhood of the truth, so in fact there is no need to assum that EM
has converged to the global maximum, an assumption which issually made
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in analyzing EM-based estimates. The theoretical analysican be extended
to the general two-community model with possibly unbalancel communi-
ties, as detailed in the supplementary material B]. Extending our argument
to more than two communities also seems possible, but that wald require
extremely meticulous tracking of a large number of terms wheh we did not
pursue.

We conjecture that additional results may be obtained underweaker as-
sumptions if one focuses simply on estimating the parameterof the block
model rather than consistency of the labels, just like one ca obtain results
for a labeling correlated with the truth (instead of consistent) under weaker
assumptions discussed in Remark. For example, in a very recent paper 12,
results are obtained under very weak assumptions for the measquared error
of estimating the block model parameter matrix P (which in itself does not
guarantee consistency of the labels). While the primary inerest in commu-
nity detection is estimating the labels rather than the parameters, we plan
to investigate this further to see if and how our conditions @an be relaxed.

While in theory any \reasonable" initial value guarantees convergence, in
practice the choice of initial value is still important, and we have investigated
a number of options empirically. Spectral clustering with perturbations,
which we introduced primarily as a method to initialize pseudo-likelihood,
deserves more study, both empirically (e.g., investigatig the optimal choice
of the tuning parameter), and theoretically. This is also a topic for future
work.

APPENDIX: POISSON-TYPE TAIL BOUND
Here is a lemma which we used quite often in proving consistery results

in Section 6.

Lemma 5. Consider X1:X2:1i3':Xm to be independelgnt Bernoulli vari-
ables with E[Xi]= pi. Let Sy = [, Xi, =E[Sm]= I, p and =
m 1 . Then, for any u> 1=¢ we have

1
P ESm >eu exp( emu logu):

Proof.  We apply a direct Cherno bound. Let S, Bin(m; ). Then,
by a result of Hoe ding [18] (also see 16]), Eg(Sm) EJ(S;,) for any convex
function g:R! R. Letting g(x)= e*, we obtain for > 0,

P(Sm>t) e 'E(eSm)=e '@+ (& 1)"

e Yexpfm (¢ 1)g;
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where we have used (1 #)™  exp(mx). The iRHS is the Cherno bound

for a Poisson random variable with mean = ;p;, and can be optimized
to yield
e (e)t
P(Sm >t) % for t> :
Letting t = eu for u> 1=eand noting that e 1, we getP(Sy >eu )

(1=u)®“ which is the desired bound.
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SUPPLEMENTARY MATERIAL

Extension to unbalanced communities(DOI: 10.1214/13-A0S1138SUPP
.pdf). This supplement contains an extension of Theoreml to the case of
unbalanced communities.
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