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A GENERAL ASYMPTOTIC FORMULA 
FOR PARTITION FUNCTIONS 

NELSON A. BRIGHAM 

1. Introduction. Practically all partition functions that have been 
considered have generating functions of the form 

no1 'k10 
(1) 1~~~ (1 - 6eJn).Y(n) 

E ()r* 

where the real part of s is positive and 

(2) F,(x) = E y(n) --..Kxu logv x, y(n) 0, K > 0, u > 0. 
n9x 

Here ay(0) =1 and for k positive 

at(k) 

()a n (n)[y(n) +1]* [y(n) + kn -1J 
(3 ) = E 

k=-1k+2k+-k. . ,kZ,k$O n1 kni 

Thus the partition k = lki+2k2+ +Ikt of k into ki ones, k2 twos, 
and so on, is weighted in a certain way by the product shown, and 
various partition functions are obtained by choosing the function 
'y(n) appropriately. For example, if 'y(n) =1 for all n, then ay(k) be- 
comes the unrestricted partition function; if 'y(n) = n for all n, then 
a,,(k) becomes the plane partition of Wright [2];' if 'y(n) =1 for rth 
powers and 0 otherwise, then a.,(k) is the number of partitions of k 
into rth powers; and so on. 

The purpose of this paper is to establish the asymptotic formula 

1 
log A.1(k) - { Kur(u + 2) (u + 1) } 1/(U+1) 

*u + I}I C-v) / (u+1) kuI (u?+1) { log k }v / (u+1) 

where 

(5) Ay(k) = E a,,(n). 
n=O 

We prove (4) by a method used by Hardy and Ramanujan [1] to 
obtain some special cases thereof, namely, we first prove that for s 

Received by the editors December 8, 1948. 
' Numbers in brackets refer to the references at the end of the paper. 
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ASYMPTOTIC FORMULA FOR PARTITION FUNCTIONS 183 

tending to zero through positive values 

(6) log g.,(s) K (?)(log -) r(U + 1)?(u + 1), 

and then apply a Tauberian theorem proved by Hardy and Ramanu- 
jan in their paper. 

If a,(k) is nondecreasing with increasing k from a certain point on, 

Ay(k) + 0(1) < ay(k) ! A (k) 

and hence (4) is true for log ay(k). This is the case, for example, if 
sy(1) > 1. Formula (4) is obviously true for a.(k) under wider condi- 
tions than monotonicity, but on the other hand it is not always true 
for a.,(k); for example, it is obviously false if 'y(n) is 1 for even n and 
O for odd n. 

Furthermore:2 Suppose that y(n) _1 whenever it is nonzero. Sup- 
pose that the set S of positive integers for which 'y(n) z-0 has the prop- 
erty that all positive integers not less than c can be partitioned into 
integers from S. Then (4) is also true for log a,(k). 

To prove this observe that ay (k) ?a.(m) for k -c>m _1. Hence 

Ay(k - c)/(k - c) ! ay (k) ? A. (k) for k > c 

and the conclusion follows from (4). 
As a result of this, one can deduce asymptotic formulas for the 

logarithm of any unweighted partition function, provided only that 
the set of integers used is such that all sufficiently large integers can 
be partitioned into integers from the set. In particular, this is cer- 
tainly true if the set of positive integers contains two coprime integers. 

An important lacuna in the literature on partitions is the absence 
of an exact or asymptotic formula for the number T(k) of partitions 
of k into primes. From (4) and the prime number theorem we get 
only 

2 k \1/2 

(8) log T(k) t1% ig 
31 /2 log k/ 

which is given by Hardy and Ramanujan (formula 5.281 of [1]). 
In the paper following this one we consider a weighted partition 

function a(k) involving primes, namely that obtained by choosing 
'y(n) in (1) as the A(n) of prime number theory. We obtain there an 

2 The author is indebted to the referee for this observation, which materially ex- 
tends the scope of the paper. 
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184 N. A. BRIGHAM (April 

asymptotic formula for A (k) = ? O a(n) under the assumption of 
the Riemann hypothesis. From (4) follows the weaker result 

(9) log A (k) --' r(2k/3)112 

without any unproved hypothesis. Since proof of monotonicity of 
a(k) would seem to be extremely difficult (if true), we cannot assert 
(9) for log a(k). Note that (9) is the same as the asymptotic formula 
for log p(k), where p(k) is the number of unrestricted partitions of 
k. The correspondence follows from the fact that 

f, A (n) x ,E F 1. 
n;5 x n;5 x 

Since also 

l log p x, 
pSx 

the powers of the primes may be disregarded in (9). 
Besides (8) and (9) we give some further applications of (4) at the 

end of the paper. 

2. Proof. In the following s is real and positive. Both "o" and "0" 
refer to s tending to zero. 

From (1) we obtain 

log gy(s) = - y(n) log =1 - a m (ms) 
n=1 I -8 C m_1 M 

where 
00 

+(s) = E #(n)easn. 
n=1 

We find an asymptotic formula for O(s) for s tending to zero, and 
use it to find an asymptotic formula for log g,(s). This is the previ- 
ously mentioned technique of Hardy and Ramanujan [1, pp. 245- 
261]. 

= 7(1)e- + y(2)e-28 + y(3)e-38 + y(4)e49 + * 

-- (1) { e2 - - 
I 7(1) + 7y(2)} { e-3-e-2@ 

- {y(1) + 'y(2) + 7(3)} {e" e-'s - * - 

so q (q+1 d(e92) 
= - , : , (n)I dy 

Q.nl -I J dy 
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1950] ASYMPTOTIC FORMULA FOR PARTITION FUNCTIONS 185 

00 pq?1 

= I J F,(y)se-8Ydy 

Thus= f ?F(y)se-8ydy = fF e ()Cxdx. 

Thus 
p 81/2 Ix\ 

(10) c(s) = Fl e-xdx + fFy (-)exdx. 

F,(x) is an increasing function, hence in the first integral of (10), 

x~~~~~~~~~~ 
F(-) <F-y (-2)< Cs--ull log"- for s <- 

s s ~~~~~~~~~~~~~e 

and so 
p81/2 1x( 

F7 (-) e-xdx = O s(1-u)/2 log'-p for s tending to zero. 

s may be taken so small that, in the second integral of (10), 

F7 (-)= K () (log) (1 + p1(x)) 

where pi (x) <e uniformly in x, x _ s112. Then: 

c(s) = O{s(1-u)12 logyv 

(1 1) x+ (1+ o (1))Kf log)erzdx. 
11l2 ( S)( S) 

Put 

= J (s)-),l o )ge-xdx = J + f = l(S) + 42(S). 81/2 s s 1 /l 
For bi(s), -1/2?<log x/log (1/s) _ 1/2 and 

x I1\ logx \ 
logyv - = loglv -lI1+I 

s ( s log (1/s) 

(l I\( log x =wlog"r_p(1+ g TP2(xf) 

where I P2(X) | C. Therefore, 
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186 N. A. BRIGHAM (April 

1 sI= (i)U(logi) fJ lu ( + og x P2(X)) 

- (i1)(logI) f xuezdx S- i)(log eix fx 

/1\u/ 1\'/ l 

+ (\)Qeog 7) fd x(log x)p2(x)eedx. 

We find: 

s= (-3~)t&(log + ue( + 1) + 0 {s(1u)12 log' 

+ o(l) +0{0 X)Px d 

Also, 12(s) =o(1). 
Substituting b(s) = 4'(s) +I2(s) into (11), we have 

4(s) = 0 {S(1-u)12 log' 

+ { 1 + o(I)} {K (-) (log-)r(u + 

+ O {s(1)12 log r + o(1) 

+ ? {(-s ) (lo+ -) } + o(1). 

Hence 

A(s) ,2K (S) (log -) ( + 1). 

Now 

logSgu(s)t = -i (ms) X nt + 1 + wh +av 

= uI(s) + k2(S) + K ( l) + r4(S), 

where M is such that E2m>M1/mu+1 <e (M(e) is fixed). 
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1950] ASYMPTOTIC FORMULA FOR PARTITION FUNCTIONS 187 

First: 
Mi1 

(s) -= c(ms) 
m=. m 

m =1 m = m{1 + o(l)) }K (- log -); r (u + i)} 

But log m/log (1/s) < 1/2 for t1(s) and 

(gms) (os ) - log (1/s)) 

I ~log m 

( S ) ( log (Is) )S 

where I R,(m) |< Cv. 

Thus 

(lu(lI + 1 M I+ o(1) 
1(s) =K(- (log-) r(u + i) E P?,1 

I u I v-1 m= Rvmu?lom 

+K () (log - r(u + 1) E R-(m l 1m o(1)}. 
Si m=1 mU+1 { / 

But M is fixed, and so 

c1(s) = K ( l)U(iog r(u + i)r(u + 1) { 1 + o(1) 

+0 { (E ) (log } +0 {( l)U(log+)v}. 

Secondly, for qb2(S) we have 

+(Ms) < Cu v ( log 1) 
msms 

and since M < m < 1/s112 

(log --) < cv (log +) for all v. 

So, 

4)2(S) = {E( s o) (g -s} 
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188 N. A. BRIGHAM [April 

Thirdly, for qS3(s) we observe from the original definition that 
q(ml s) <qO(m2s) if ml> m2. Hence we may use for all m the estima- 
tion for the smallest m, namely m = -s112, and find 

/1 \u/2/ v 1/8 

03 (S) < CUE^ ) {og E-- 

or, 

{/'u/2/ V\+1 

413(S) = 0 {log + 

Finally, in q4(S), is> 1, and the definition of q(ms) readily yields 
q54(S) = 0(1). See (3.544) of Hardy-Ramanujan. 

This gives 

log g8(s) = K (i)U(log +Yr(u + 1)i(u + 1) { 1 + o(1)} 

{(s )( s) } ? {e(?1)U( I gj} 

{ U/2/ X1 

+ 0 {i)U log?7l} 

+ o{ 1I)Qg 

and we have 

(6) log g,(s) K (?)U(iog +Yr(u + 1)i(u + 1). 

Now we quote, for reference, Hardy and Ramanujan's Theorem 
A [l, p. 252]: 

"Suppose that 

Xn 
2 ae i s Xn t fo s; an 2 ,A > O, a >0; 

Ea.e-N'ns is convergent for s>O; 
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19501 ASYMPTOTIC FORMULA FOR PARTITION FUNCTIONS 189 

f(s) = Eae-X" = exp [{1 + o(1) } As-e{log-} 

when s-+O. Then 

An = a, + + an = exp [{ 1 + o(1) } Bxan (logA) ]n ? 

where B A l/(l+a)a-a/(l+a) (1 +a) 1+(l/(1+a)J when n-> oo." 

Applying this theorem with: 

f(s) = g,,(s), A = Kr(u + 1)v(u + 1), 

Xn = n = k, =-v, 
a = U, 

we obtain (4) at once from (6). 

3. Further applications. A few applications were indicated in the 
introduction. 

As a matter of interest we give some further applications. 
A fairly general type of partition is obtained by using only com- 

ponents of the form: 

(12) n = ao + aim + a2m2 + *+ amr, ar > 0, r _ 1, 

where the a's are such as to give positive integral n for positive inte- 
gral m. For simplicity we also assume the polynomial to yield fl> f2 

for M1 > M2. The m's themselves may be restricted in various ways. 
Let m1 be the largest integer.which gives n_?x in (12). Then 

1 r 
ao + a r- a,_lm1 + arMl 

<!! x < ao + ***+ a,-,(ml + l)r-I + ar(Mi + l)tr. 

As x-* oo, mr-+ oo , and so for x tending to infinity we have 

x = ar+ arm (I1 + O(I)) = armn(1 + o(1)), 

/ X h lr 

ar=t- 
1 (1) 

Let m be restricted in some manner such that 

(13) E 1 -KM"(10g ml), > ?. 

Obviously, ,u 1. But when only the restricted m's of (13) are used 
in (12), Emgmn 1 = E 1. Thus: 
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190 N. A. BRIGHAM [April 

(14) E 1 = (log x) { 1 + o(1)}. 

We put y(n) = 1 when n is of the form (12), and y(n) =0 otherwise. 
Comparing (14) with (2) and (4), we have the theorem: 

If A,(k) is the summatory function for the number of partitions 
of k into components of the form 

n=ao+ aim+ a2m2+ + am a, > 0, r j 1, n > 0, m > O0 

n1 > n2 for ml > M2, 

wherej:2m1 1'-.Km'(log mj)v, ,u>O, then 

log A ( k) y-y-,l-I(r+,,)(r + r t) (j -rv)/(r+pi) 

{ /p \ /p \\ r/(r+#) kl /(r+,o) 

*iKr -+ 2) -+ 1) [ 
r> log k) 

r} t/(r+,O) r r ~~~~arf 

We apply this theorem to the following cases: 
(A) Let m be unrestricted. Then K=1, M= 1, P=O and 

log A7(k) 
- ( + 1) {"(rl ( 

- + 2) -( + i)1 I+ k /r1 {(r )(r )} {ar 

Hardy and Ramanujan's result for partitions into rth powers of 
positive integers [1, p. 259], is a special case of this. (Wright [3] gives 
more detailed results.) 

(B) Let m be restricted to primes. Then K=1, U=1, v= -1 and 

1 1 r/~{k /(r+1) 
lo A,(k) - (r 1){ r - + 2 + l)1 /rl 

r ~ ~~~~~ r /tl 

- ar t { log kV -r/ (r+l) 

Again, Hardy and Ramanujan's result for partitions into rth powers 
of primes [1, p. 260] is included as a special case. 

(C) Let m be square-free. Then Em?l 1-6m,/72 and 

log Ay(k) 
6 /1 r /(r+l) k I/ l(r+l 

(r + )1/(r+l) (-r 
+ ) (1 +) 1 '(r+i) {k} 

In particular, for partitions into square-free numbers: 

log ay(k) - 2k12. 
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I950] ASYMPTOTIC FORMULA FOR PARTITION FUNCTIONS 191 

(D) Let m be a polygonal number of order q+2 (q> 1): 

m = + q( l- 1)/2; 1 = 1, 2,3,- 

Then 

E 2m, 1/2 

mSm1 q 

and 

log Ay(k) '- (2r + 1) 1/ (2r+1) 

~j2\)lI2 1\'2T/ (2T+l)k(' 2r 

{( q ) 2r )(r )} {a,} 

In particular, for partitions into triangular numbers: 

log a,(k) 4 {- (6r)l (1)2 } k" l3. 

(E) Various combinations may be taken, with the answer of higher 
order dominating. For instance, partitions into square-free numbers 
and triangular numbers, with duplications omitted or not, as desired, 
gives the result: 

log ay(k) - 2k"2. 
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