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Efficient Variational Bayes Learning of Graphical
Models With Smooth Structural Changes
Hang Yu ,Member, IEEE, Songwei Wu, and Justin Dauwels, Senior Member, IEEE

Abstract—Estimating a sequence of dynamic undirected graphical models, in which adjacent graphs share similar structures, is of

paramount importance in various social, financial, biological, and engineering systems, since the evolution of such networks can be

utilized for example to spot trends, detect anomalies, predict vulnerability, and evaluate the impact of interventions. Existing methods

for learning dynamic graphical models require the tuning parameters that control the graph sparsity and the temporal smoothness to be

selected via brute-force grid search. Furthermore, these methods are computationally burdensome with time complexity OðNP 3Þ for P
variables andN time points. As a remedy, we propose a low-complexity tuning-free Bayesian approach, named BASS. Specifically, we

impose temporally dependent spike and slab priors on the graphs such that they are sparse and varying smoothly across time. An

efficient variational inference algorithm based on natural gradients is then derived to learn the graph structures from the data in an

automatic manner. Owing to the pseudo-likelihood and the mean-field approximation, the time complexity of BASS is onlyOðNP 2Þ.
To cope with the local maxima problem of variational inference, we resort to simulated annealing and propose a method based on

bootstrapping of the observations to generate the annealing noise. We provide numerical evidence that BASS outperforms existing

methods on synthetic data in terms of structure estimation, while being more efficient especially when the dimension P becomes high.

We further apply the approach to the stock return data of 78 banks from 2005 to 2013 and find that the number of edges in the financial

network as a function of time contains three peaks, in coincidence with the 2008 global financial crisis and the two subsequent

European debt crisis. On the other hand, by identifying the frequency-domain resemblance to the time-varying graphical models, we

show that BASS can be extended to learning frequency-varying inverse spectral density matrices, and further yields graphical models

for multivariate stationary time series. As an illustration, we analyze scalp EEG signals of patients at the early stages of Alzheimer’s

disease (AD) and show that the brain networks extracted by BASS can better distinguish between the patients and the healthy controls.

Index Terms—Graphical models, structural changes, variational inference, simulated annealing, inverse spectral density matrices

Ç

1 INTRODUCTION

THE recent decades have witnessed a rapid development of
graphical models, since they provide a refined language

to describe complicated systems and further facilitate the deri-
vation of efficient inference algorithms [2].While an extensive
literature revolves around learning static graphical models
that are time-invariant (see [3], [4], [5], [6], [7], [8], [9], [10], [11]
and references therein), the change of interdependencies with
a covariate (e.g., time or space) is often the rule rather than the
exception for real-world data, such as friendships between
individuals in a social community, communications between
genes in a cell, equity trading between companies, and

computer network traffic. Furthermore, suchdynamic graphi-
cal models can be leveraged to spot trends, detect anomalies,
classify events, evaluate the impact of interventions, and pre-
dict future behaviors of the systems. For instance, estimating
time-varying functional brain networks during epileptic seiz-
ures can show how the dysrhythmia of the brain propagates,
and analyzing the network evolution can help to detect epi-
lepsy and assess the treatment of epilepsy [12]. We therefore
focus on learning dynamic graphicalmodels in this study.

In the case where all variables follow a joint Gaussian
distribution, the graphical model structure is directly
defined by the precision matrix (i.e., the inverse covariance
matrix). Specifically, a zero element corresponds to the
absence of an edge in the graphical model or, equivalently,
the conditional independence between two variables.
Therefore, our objective is to learn a time-varying precision
matrix. Existing works on learning the time-varying preci-
sion matrices can be categorized into three groups. The first
one [13], [14], [15], [16] considers the temporal dependence
by smoothing the empirical covariance matrix across time
using kernels. Given the temporally dependent covariance
matrix, the sparse precision matrix is then estimated indi-
vidually at each time point. The estimation problem can be
solved by maximizing the likelihood with an ‘1-norm pen-
alty on the precision matrix. However, unexpected variabil-
ity may arise between two adjacent networks since each
network is estimated independently [17]. To mitigate this
issue, the second group of dynamic network models [17],
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[18], [19], [20], [21], [22], [23], [24] further captures the tem-
poral dependence by enforcing ‘1, ‘2, or Frobenius norm
constraints on the difference between two consecutive preci-
sion matrices. As an alternative, instead of imposing sepa-
rate constraints for the sparsity and the smoothness across
time on the precision matrices, the third group [25] employs
the local group lasso penalty to promote sparsity and
smoothness together.

Unfortunately, the dynamic graphical models inferred by
all three categories of methods are sensitive to the tuning
parameters, including the kernel bandwidth and the pen-
alty parameters that control the sparsity and smoothness.
Classical brute-force grid search approaches for selecting
these parameters are cross validation (CV), Akaike informa-
tion criterion (AIC) and Bayesian information criterion
(BIC) [14], [15], [17], [18], [22], [23], [24], [25]. However,
heavy computational burdens come along with these meth-
ods; the learning algorithm needs to be run once for every
combination of all possible values of the tuning parameters
in a predefined candidate set before the one associated with
the largest score is chosen. Moreover, it has been demon-
strated in [26] that these parameter selection approaches
yield unsatisfactory results for graphical model selection,
especially when the number of variables is large. Apart
from the large number of runs for parameter selection, the
computational cost in each run is also large. The time com-
plexity of the current three groups of methods is OðNP 3Þ,
where P denotes the dimension (i.e., number of variables)
and N denotes the sample size. In practice, these methods
are fraught with difficulties of daunting computational cost
when tackling problems with more than 100 variables.

To address these problems, we propose a novel approach
named BASS (BAyesian learning of graphical models with
Smooth Structural changes) to learn the time-varying graph-
ical models that is free of tuning while having a low time
complexity of OðNP 2Þ. In particular, we focus on Gaussian
graphical models, and consequently, our objective is to infer
the time-varying precision matrix. To this end, we impose a
temporally dependent spike and slab prior [27], [28] on the
off-diagonal entries of the precision matrix at each time
point. Specifically, each off-diagonal entry of the precision
matrix can be factorized as the product of a Bernoulli and a
Gaussian distributed variable; the former is coupled over
time via a binary Markov chain while the latter a Gauss-
Markov chain (i.e., a thin-membrane model [29]). To facili-
tate the derivation of the variational inference algorithm,
we replace the exact likelihood of the precision matrix at
each time instant by the pseudo-likelihood that consists of
the conditional distributions of one variable conditioned on
the remaining variables. We then develop an efficient varia-
tional inference algorithm based on natural gradients to
learn the variational distribution of the time-varying preci-
sion matrix. Due to the use of the pseudo-likelihood and the
mean-field approximation in the variational inference, the
time complexity of BASS is only OðNP 2Þ. To cope with the
problem of local maxima during the variational inference,
we resort to simulated annealing [30] and propose a method
based on bootstrapping to generate the annealing noise.
Numerical results show that when compared with the three
groups of frequentist methods, BASS achieves better perfor-
mance in terms of structure estimation with significantly

less amount of computational time. We further apply BASS
to construct financial networks from the stock return data of
78 banks worldwide during the 2008 Great recession. We
find that the network becomes denser during the crisis,
with clear peaks during the Great financial crisis and each
wave of the subsequent European debt crisis.

Interestingly, BASS can be extended to inferring graphi-
cal models for multiple stationary time series in the fre-
quency domain in a straightforward manner. Before
explaining this approach, we briefly review the relevant lit-
erature on graphical models for stationary time series
below. In [31], it is shown that for jointly Gaussian time
series, the conditional independencies between time series
are encoded by the common zeros in the inverse spectral
density matrices at all frequencies. Given this insight,
hypothesis tests are then performed in [31], [32], [33], [34] to
test the conditional independence between every pair of
time series. However, such methods are limited to problems
with low dimensions and the true graphical model cannot
be very sparse. On the other hand, Bach and Jordan [36] fur-
ther show that by leveraging the Whittle approximation [35]
the Fourier transform of the time series at a certain fre-
quency can be regarded as samples drawn from the com-
plex Gaussian distribution whose covariance matrix is the
spectral density matrix at the same frequency. As a result,
an appealing approach is to first estimate the smoothed
spectral density matrix given the Fourier transform of the
time series and then to infer the sparse inverse spectral den-
sity matrix by maximizing the ‘1 norm penalized likeli-
hood [37]. However, this approach requires extensive
tuning. A variant of this approach for autoregressive pro-
cesses is proposed in [38]. Apart from the frequentist meth-
ods, Bayesian methods have also been proposed in [39].
Unfortunately, this method can only learn decomposable
graphs from the data. It is also quite time-consuming since
Monte-Carlo Markov Chain is used to learn the Bayesian
model. Note that the time complexity of all aforementioned
methods is at least OðNP 3Þ for P -variate time series with
length N . In this paper, in analogy to estimating the time-
varying inverse covariance matrix, we learn the frequency-
varying inverse spectral density matrix using BASS based
on the Fourier transform of the time series, and then define
the graphical model for the multivariate time series by iden-
tifying the common zero pattern of all inverse spectral den-
sity matrices. Different from the aforementioned methods,
BASS is tuning free and scales gracefully with the dimen-
sion with time complexity OðNP 2Þ. We compare BASS with
the frequentist method GMS (graphical model selection)
proposed in [37] on synthetic data. Similar to the results in
the time domain, BASS can better recover the true graphs
while being more efficient. We further apply BASS to the
scalp EEG signals of patients at early stages of Alzheimer’s
disease (AD), and build a classifier based on the estimated
graphical models to differentiate between the AD patients
and age-matched control subjects. The classification accu-
racy resulting from BASS is higher than that from GMS.

This paper is structured as follows. We present our
Bayesian model for time-varying graphical models in Sec-
tion 2 and derive the natural gradient variational inference
algorithm in Section 3. We then extend the proposed model
to the frequency domain to infer graphical models for
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stationary time series in Section 4. In Section 5, we show the
numerical results for both synthetic and real data. Finally,
we close this paper with conclusions in Section 6.

2 TIME-VARYING GRAPHICAL MODELS

We are concerned with undirected graphical models G ¼
ðV; EÞ in this paper, where V denotes a set of vertices relat-
ing to variables and E denotes the edge set that encodes the
conditional dependencies between the variables. Each node
j 2 V is associated with a random variable xj. An edge
ðj; kÞ 2 E is absent if and only if the corresponding two vari-
ables xj and xk are conditionally independent: pðxj; xkj
x�jkÞ ¼ pðxjjx�jkÞpðxkjx�jkÞ, where �jk denotes all the
nodes in V except j and k. When all variables xx ¼
½x1; . . . ; xP �0 are jointly Gaussian distributed, the resulting
graphical model is referred to as a Gaussian graphical
model. Let Nðmm;SÞ denote a Gaussian distribution with
mean mm and covariance S. The distribution can be equiva-
lently parameterized as NðK�1hh;K�1Þ, where K ¼ S

�1 is
the precision matrix (the inverse covariance) and hh ¼ Kmm is
the potential vector. The density function is

pðxxÞ / detðKÞ12exp
�
� 1

2
xx0Kxxþ hh0xx

�
; (1)

where xx0 denotes the transpose of xx. Under this scenario, the
conditional dependencies are characterized by the precision
matrix, that is, xj and xk are conditionally independent if
and only if Kjk ¼ 0. As a result, for Gaussian graphical
models, we target at inferring a sparse precision matrix.

For time-varying graphical models, we assume that the
observation xxðtÞ at time t is drawn from the graphical model
with precision matrix KðtÞ for t ¼ 1; . . . ; N , andKðtÞ changes
smoothly with t. Without loss of generality, we further
assume that mmðtÞ ¼ 0 in our model, and so hhðtÞ ¼ 0. The like-
lihood ofKðtÞ can then be expressed as

pðxxðtÞjKðtÞÞ / detðKðtÞÞ12exp
�
� 1

2
xxðtÞ0KðtÞxxðtÞ

�
: (2)

To facilitate the derivation of the variational inference
algorithm, we propose to use the pseudo-likelihood instead
of the exact likelihood (2) in the Bayesian formulation. More
specifically, the pseudo-likelihood is derived from the con-
ditional distributions of one variable xj conditioned on the
remaining variables xx�j:

pðxðtÞ
j jxxðtÞ

�j;K
ðtÞ
jj ;K

ðtÞ
j;�jÞ

/
ffiffiffiffiffiffiffiffiffi
K

ðtÞ
jj

q
exp

h
� 1

2
K

ðtÞ
jj

�
x
ðtÞ
j þK

ðtÞ
jj

�1
K

ðtÞ
j;�jxx

ðtÞ
�j

�2i
;

/
ffiffiffiffiffiffiffiffiffi
K

ðtÞ
jj

q
exp

h
� 1

2
K

ðtÞ
jj x

ðtÞ
j

2 � x
ðtÞ
j K

ðtÞ
j;�jxx

ðtÞ
�j

� 1

2
K

ðtÞ
jj

�1�
K

ðtÞ
j;�jxx

ðtÞ
�j

�2i
; (3)

where Kj;�j denotes row j in K excluding Kjj, and
�K

ðtÞ
jj

�1
K

ðtÞ
j;�jxx

ðtÞ
�j and K

ðtÞ
jj

�1
are respectively the mean and

the variance of the conditional distribution pðxjjxx�jÞ. Here,
we regard (3) as a Gaussian distribution of xj whose mean
and variance are parameterized by K

ðtÞ
jj and K

ðtÞ
j;�j. In other

words, it is a likelihood function of K
ðtÞ
jj and K

ðtÞ
j;�j. This

pseudo-likelihood of K has been frequently explored in the
literature [3], [4], [5], [6], [7], [18], [25], for Gaussian graphi-
cal model selection. It simplifies the determinant term in (2)
that typically leads to heavy computational burden of
OðP 3Þ, and so improves the computational efficiency.
Indeed, the time complexity of the proposed method BASS
is only OðP 2Þw.r.t. (with regard to) P , owing to the pseudo-
likelihood. Furthermore, the pseudo-likelihood typically
results in more accurate and robust results when learning
the graph structure [6], [7], [25]. Different from previous
works [3], [4], [5], [6], [7], [25] that allow Kjk to be different
fromKkj, we assume thatKjk ¼ Kkj in our paper. Addition-
ally, we infer the distribution of the diagonal elements Kjj

explicitly from the observed data xx rather than settingKjj ¼
1 as in [3], [4], [5], [6], [7], [25]. For compactness in notation,
we denote the distribution in (3) as pðxðtÞ

j jKðtÞ
jj ;K

ðtÞ
j;�jÞ in the

sequel.
Next, we impose priors on bothK

ðtÞ
jj andK

ðtÞ
j;�j in order to

construct a full Bayesian model. We first focus on the off-
diagonal elements K

ðtÞ
jk . To guarantee that the off-diagonal

parts of the precision matrices KðtÞ are sparse while varying
smoothly across time, we resort to the temporally depen-
dent spike and slab prior [27], [28]. Concretely, a spike and
slab prior onK

ðtÞ
jk can be defined as [40]

K
ðtÞ
jk � p

ðtÞ
jkNðmðtÞ

jk ; n
ðtÞ
jk Þ þ

�
1� p

ðtÞ
jk

�
d0; (4)

where NðmðtÞ
jk ; n

ðtÞ
jk Þ is a Gaussian distribution with mean m

ðtÞ
jk

and variance n
ðtÞ
jk , d0 is a Kronecker delta function, and p

ðtÞ
jk 2

½0; 1� determines the probability of K
ðtÞ
jk ¼ 0 (i.e., the spike

probability). By decreasing p
ðtÞ
jk to 0, this prior would shrink

K
ðtÞ
jk to 0, thus encouraging sparsity in KðtÞ. The above

expression can also be equivalently written as [27]

K
ðtÞ
jk ¼ s

ðtÞ
jk J

ðtÞ
jk (5)

J
ðtÞ
jk � N

�
m
ðtÞ
jk ; n

ðtÞ
jk

�
; (6)

s
ðtÞ
jk � Ber

�
p
ðtÞ
jk

�
; (7)

where BerðpðtÞ
jk Þ is a Bernoulli distribution with success

probability p
ðtÞ
jk . To obtainKðtÞ that changes smoothly with t,

we impose smoothness priors on both s
ðtÞ
jk and J

ðtÞ
jk . For s

ðtÞ
jk ,

we assume that it is drawn a binary Markov chain defined
by the initial state and the transition probabilities

p
�
ss
ð1:NÞ
jk

�
¼ pðsð1Þjk Þ

YN
t¼2

p
�
s
ðtÞ
jk jsðt�1Þ

jk

�
; (8)

where

p
�
s
ð1Þ
jk

�
¼ p

dðsð1Þ
jk

¼1Þ
1

�
1� p1

�dðsð1Þ
jk

¼0Þ
; (9)

p
�
s
ðtÞ
jk jsðt�1Þ

jk

�
¼ A

dðsðt�1Þ
jk

¼0;s
ðtÞ
jk

¼0Þ
00 ð1�A00Þdðs

ðt�1Þ
jk

¼0;s
ðtÞ
jk

¼1Þ

� Adðsðt�1Þ
jk

¼1;s
ðtÞ
jk

¼1Þ
11 ð1�A11Þdðs

ðt�1Þ
jk

¼1;s
ðtÞ
jk

¼0Þ
; (10)

and dð�Þ denotes the indicator function that yields 1 when
the condition in the bracket is satisfied and 0 otherwise. We
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further assume p1, A00, and A11 follow uniform distribu-
tions Beð1; 1Þ, where Beð1; 1Þ denotes a Beta distribution
with shape parameters one.

On the other hand, we assume that J
ðtÞ
jk forms a Gauss-

Markov chain, in particular, a thin-membrane model [29].
The resulting prior on J

ðtÞ
jk can be expressed as

p
�
J
ð1:NÞ
jk

�
/ a

N�1
2

jk exp

"
� ajk

2

XN
t¼2

�
J
ðtÞ
jk � J

ðt�1Þ
jk

�2
#
;

/ a
N�1
2

jk exp
�
� ajk

2
J
ð1:NÞ
jk

0
KTMJ

ð1:NÞ
jk

�
; (11)

where ajk is the smoothness parameter and ajkKTM is the
precision matrix of this Gaussian graphical model. We fur-
ther impose a non-informative Jeffrey’s prior on ajk, that is,
pðajkÞ / 1=ajk. The difference between J

ðt�1Þ
jk and J

ðtÞ
jk at

every two consecutive time points t� 1 and t is controlled
by the smoothness parameter ajk, suggesting that ajk deter-
mines the smoothness of J

ðtÞ
jk across t. We also notice that

KTM is the graph Laplacian matrix corresponding to the
Markov chain: the diagonal entry ½KTM�jj equals the number
of neighbors of node j, while the off-diagonal entry ½KTM�jk
equals �1 if node j and k are adjacent and 0 otherwise. As a
result, KTM is a tri-diagonal matrix in our case. Further-
more, it follows from the properties of the Laplacian matrix
thatKTM11 ¼ 0, where 11 denotes a vector of all ones. In other
words, the thin-membrane model is invariant to the addi-
tion of c11, where c is an arbitrary constant, and it allows the
deviation from any overall mean level without having to
specify the overall mean level itself. Such desirable proper-
ties make the thin-membrane model a popular smoothness
prior in practice.

For diagonal entries in the time-varying precision matrix,
since they can only take positive values, we reparameterize
K

ðtÞ
jj as K

ðtÞ
jj ¼ expðkðtÞj Þ. To promote the smooth variation of

k
ðtÞ
j across t, we assume that kk

ð1:NÞ
j follows a thin-membrane

model with smoothness parameter b. We also impose the
Jeffrey’s prior on b.

Altogether, the proposed Bayesian model is summarized
as a graphical model in Fig. 1. The joint distribution of all
variables can be factorized as

pðxxð1:NÞ; ssð1:NÞ; J ð1:NÞ; kkð1:NÞ;p1; A00; A11;aa;bÞ

¼
YP
j¼1

YN
t¼1

pðxðtÞ
j jkðtÞj ; J

ðtÞ
j;�j; ss

ðtÞ
j;�jÞ

�
YP
j¼1

YP
k¼jþ1

h
pðssð1:NÞ

jk jp1; A00; A11ÞpðJ ð1:NÞ
jk jajkÞpðajkÞ

i

�
YP
j¼1

pðkkð1:NÞ
j jbÞpðp1ÞpðA00ÞpðA11ÞpðbÞ: (12)

3 VARIATIONAL INFERENCE

In this section, we develop a variational inference algorithm
to learn the above Bayesian model. We first derive the low-
complexity variational inference algorithm for BASS. Since
the variational inference algorithm is often sensitive to local
maxima, we further present how to utilize simulated
annealing to help the algorithm escape from local maxima.
We refer the readers to the summary of variational inference
and natural gradients in Section A in the supplementary
material, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2022.3140886, before diving into the calculations in
the sequel.

3.1 Variational Inference for BASS

Our objective is to approximate the intractable posterior dis-
tribution pðssð1:NÞ; Jð1:NÞ; kkð1:NÞ;p1; A00; A11;aa;bjxxð1:NÞÞ by a
tractable variational distribution, that is, qðssð1:NÞ; J ð1:NÞ;
kkð1:NÞ;p1; A00; A11;aa;bÞ. Specifically, we apply the mean-
field approximation and factorize the variational distribu-
tion as

qðssð1:NÞ; J ð1:NÞ; kkð1:NÞ;p1; A00; A11;aa;bÞ

¼
YP
j¼1

YP
k¼jþ1

h
q
�
ss
ð1:NÞ
jk

�
q
�
J
ð1:NÞ
jk

�
qðajkÞ

iYP
j¼1

q
�
kk
ð1:NÞ
j

�
qðp1Þ

qðA00ÞqðA11ÞqðbÞ: (13)

For ease of exposition, we present the proposed algorithm
from the perspective of message passing [41]. In a hierarchi-
cal Bayesian model, the update for each node only requires
information (i.e., messages) from the nodes in its Markov
blanket, including this node’s parents, children, and co-
parents of its children.

Given the Bayesian model in Fig. 1, the update rule of
qðssð1:NÞ

jk Þ can be derived by passing messages in the direc-
tions of the red dashed arrows in Fig. 2a, resulting in

q
�
ss
ð1:NÞ
jk

�
/ exp

	XN
t¼1

’s
V
�
s
ðtÞ
jk

�
þ
XN
t¼2

’s
E
�
s
ðtÞ
jk ; s

ðt�1Þ
jk

�

;

(14)

where the node potential ’s
V and edge potential ’s

E are
defined in (S.14)1 and (S.15) in Table S.1 in the supplementary
material, that are functions of those nodes in the Markov
blanket of ss

ð1:NÞ
jk . Moreover, it is apparent that qðssð1:NÞ

jk Þ can be
factorized as a binary Markov Chain. As such, the marginal

Fig. 1. Graph representation of BASS.

1. S stands for equations, tables, and figures in the supplementary
material.
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and pairwise densities, qðsðtÞjk Þ and qðsðtÞjk ; sðt�1Þ
jk Þ, can then be

computed via message passing in the binary Markov chain
(i.e., the forward-backward algorithm) with time complexity
OðNÞ. Given qðsðtÞjk Þ and qðsðtÞjk ; sðt�1Þ

jk Þ, the variational distribu-
tions of the initial state p1 and the transition probabilitiesA00

and A11 can be derived by receiving messages from s
ðtÞ
jk (see

blue dotted arrows in Fig. 2a)

qðp1Þ ¼Beða; bÞ; (15)

qðA00Þ ¼Beðc0; d0Þ; (16)

qðA11Þ ¼Beðc1; d1Þ: (17)

where the shape parameters a, b, c0, d0, c1, and d1 of the Beta
distributions can be updated as in (S.22)-(S.27).

Similarly, as denoted by the red dashed arrows in Fig. 2b,
qðJ ð1:NÞ

jk Þ can be updated by collecting messages from nodes
in its Markov blanket, that is

q
�
J
ð1:NÞ
jk

�
/ exp

	XN
t¼1

’J
V
�
J
ðtÞ
jk

�
þ
XN
t¼2

’J
E
�
J
ðtÞ
jk ; J

ðt�1Þ
jk

�

;

(18)

where the node potentials ’J
VðJðtÞ

jk Þ and edge potentials
’J
E ðJ ðtÞ

jk ; J
ðt�1Þ
jk Þ are defined in (S.16) and (S.17) in the supple-

mentary material. The above expression corresponds to a
Gauss-Markov chain, and therefore, the mean and variance
for each J

ðtÞ
jk and the pairwise covariance of J

ðtÞ
jk and J

ðt�1Þ
jk

can be obtained via message passing (a.k.a. belief propaga-
tion) with complexity OðNÞ. We can then update the varia-
tional distribution of ajk by receiving messages from J

ð1:NÞ
jk

(see blue dotted arrows in Fig. 2b) as

qðajkÞ ¼ Ga

�
N � 1

2
;

PN
t¼2hðJ ðtÞ

jk � J
ðt�1Þ
jk Þ2i

2

�
; (19)

where Gaða; bÞ denotes a Gamma distribution with shape
parameter a and rate parameter b.

Finally, let us turn our attention to kkð1:NÞ. The message
updates for kk

ð1:NÞ
j are indicated by the red dashed arrows in

Fig. 2c. Note that the prior and likelihood are not conjugate
in this case. As mentioned in the Section A in the supple-
mentary material, we need to specify the functional form of

qðkkð1:NÞ
j Þ, compute the natural gradients, and then update

the natural parameters of qðkkð1:NÞ
j Þ following (21). Here, we

choose qðkkð1:NÞ
j Þ to be Gaussian. Owing to the thin-mem-

brane priors on kk
ð1:NÞ
j , qðkkð1:NÞ

j Þ is also associated with a
Gauss-Markov chain, in the same fashion as qðJ ð1:NÞ

jk Þ. There-
fore, we can parameterize qðkkð1:NÞ

j Þ as

q
�
kk
ð1:NÞ
j

�
/ exp

	XN
t¼1

’k
V
�
k
ðtÞ
j

�
þ
XN
t¼2

’kE
�
k
ðtÞ
j ; k

ðt�1Þ
j

�


/ exp

	XN
t¼1

�
�Vt;t

2
k
ðtÞ
j

2 þ htk
ðtÞ
j

�
�
XN
t¼2

Vt;t�1k
ðtÞ
j k

ðt�1Þ
j



; (20)

where V denotes the N �N tri-diagonal precision matrix
and hh is the N-dimensional potential vector. In light of (21),
V and hh can be updated as in (S.19)-(S.21). Note that the
step size r in (S.19)-(S.21) is chosen via line search. After
obtaining the mean, the variance and the pairwise covari-
ance of kk

ð1:NÞ
j via message passing in the Gauss-Markov

chain, we can update qðbÞ as qðbÞ ¼ GaððN � 1ÞP=2;
PP

j¼1PN
t¼2hðkðtÞj � k

ðt�1Þ
j Þ2i=2Þ. Detailed derivation of the varia-

tional inference algorithm can be found in Section B in the
supplementary material.

3.2 Time Complexity

We notice that the most expensive operations in the update
rules in Table S.1, are the products hKðtÞ

j;�jkixxðtÞ
�jk and

hKðtÞ
k;�jkixxðtÞ

�jk in (S.12) and hKðtÞ
j;�jixxðtÞ

�j in (S.18). The time com-
plexity of these operations is OðP Þ. The last product is used
for updating the diagonal element k

ðtÞ
j , and hence, the time

complexity for updating all NP diagonal elements in Kð1:NÞ

is OðNP 2Þ. On the other hand, the first two products are
used for updating one off-diagonal element K

ðtÞ
jk . Take into

account all OðNP 2Þ off-diagonal elements in Kð1:NÞ, and the
overall time complexity of BASS should be OðNP 3Þ. How-
ever, instead of computing these products every time when
updating an off-diagonal element K

ðtÞ
jk , we can first keep a

record of hKðtÞ
j;�jixxðtÞ�j for j ¼ 1; . . . ; P at the beginning of

BASS. Next, for each off-diagonal elementK
ðtÞ
jk , the products

can be computed as hKðtÞ
j;�jkixxðtÞ

�jk ¼ hKðtÞ
j;�jixxðtÞ

�j � hKðtÞ
jk ixxðtÞ

k

and likewise for hKðtÞ
k;�jkixxðtÞ

�jk. After updating the variational
distribution of this off-diagonal element, we can then

update the record as hKðtÞ
j;�jixxðtÞ�j ¼ hKðtÞ

j;�jkixxðtÞ
�jk þ hKðtÞ

jk ixxðtÞ
k

and likewise for hKðtÞ
k;�kixxðtÞ

�k. As a consequence, we can cycle
through all off-diagonal elements in Kð1:NÞ without recom-
puting the products every time. The resulting time complex-
ity of BASS can be reduced to OðNP 2Þ.

3.3 Simulated Annealing

As introduced in Section A in the supplementary material,
the update rules derived in Section 3.1 can also be written in
the manner of natural gradient ascent as

uufiþ1g ¼ ð1� rÞuufig þ rrhhL1

�
uufig

�
; (21)

where uu denotes the parameters to be updated, i denotes the
number of iterations rhhL1

�
uufig

�
denotes the natural gradi-

ent of the evidence lower bound (ELBO) w.r.t. uu, and 0 <
r < 1 is the step size. Since the ELBO is non-convex, the

Fig. 2. Message passing scheme for updating (a) qðssð1:NÞ
jk Þ (the red

dashed arrows), qðp1Þ, qðA00Þ, and qðA11Þ (the blue dotted arrows), (b)
qðJJ ð1:NÞ

jk Þ (the red dashed arrows) and qðajkÞ (the blue dotted arrow), and
(c) qðkkð1:NÞ

j Þ (the red dashed arrows) and qðbÞ (the blue dotted arrow).
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above variational inference algorithm suffers from the issue
of local maxima. To counteract this problem, we employ
simulated annealing and modify the update rule of the vari-
ational inference in (21) as [30]

~uu ¼ ð1� rÞuufig þ r

	
1

T fig rhhL1

�
uufig

�þ�
1� 1

T fig

�
��fig



;

(22)

where T fig denotes the annealing temperature in iteration i,
and ��fig denotes the annealing noise vector. Note that T fig !
1 as i ! 1. The update ~uu is acceptedwith the probability

pðuufiþ1g ¼ ~uuÞ ¼ min

�
1; exp

	Lð~uuÞ � LðuufigÞ
1� 1=T fig


�
; (23)

otherwise uufiþ1g ¼ uufig. When the temperature T fig is high, ~uu
is sufficiently volatile to avoid shallow local maxima. As
T fig decreases to 1 , the algorithm mimics the original varia-
tional inference and converges.

Next, we discuss how to build the noise vector ��fig.
Currently, there is no generic rule for specifying the
noise distribution. In this work, we only add noise when
updating the natural parameters of qðssð1:NÞ

jk Þ, qðJ ð1:NÞ
jk Þ,

and qðkkð1:NÞ
j Þ, since the update rules for these parameters

are more complicated than the others and so the result-
ing estimates are more likely to converge to local max-
ima. Let rhhL1ðuufigÞ denote the natural gradient of L1

in (S.11) w.r.t. the natural parameters uu of qðssð1:NÞ
jk Þ,

qðJ ð1:NÞ
jk Þ, and qðkkð1:NÞ

j Þ. It can be observed from the
corresponding update rules (cf. Eqs. (S.12)-(S.21) in
Table S.1) that rhhL1ðuufigÞ can be decomposed into
two terms: rhhL1ðuufigÞ ¼ rhhL1ðuufig; xxð1:NÞÞ þ rhhL1ðuufig; ��Þ,
where rhhL1ðuufig; xxð1:NÞÞ is a function of the observations
xxð1:NÞ, and rhhL1ðuufig; ��Þ is a function of the hyperpara-
meters �� ¼ fp1; A00; A11;aa;bg. Correspondingly, we
decompose the noise vector as ��fig ¼ ��figðxxð1:NÞÞ þ ��figð��Þ.

For the hyperparameters ��, we utilize their variational
distributions to obtain the noise ��figð��Þ. Concretely, we
draw a random sample ~�� of �� from the variational distribu-
tion in each iteration, and compute the noise vector as
��figð��Þ ¼ rhhL1ðuufig; ~��Þ. On the other hand, for the function of
the observations, let rhh

~L1ðuufig; xxð1:NÞÞ ¼ rhhL1ðuufig; xxð1:NÞÞ=
T fig þ ð1� 1=T figÞ��figðxxð1:NÞÞ denote the noisy gradient that
is corrupted by the annealing noise. As T fig ! 1, rhh

~L1

ðuufig; xxð1:NÞÞ becomes less noisy and converges to the exact
gradient rhhL1ðuufig; xxð1:NÞÞ. Here, instead of proposing a dis-
tribution for ��figðxxð1:NÞÞ, we specify the noisy gradient
rhh

~L1ðuufig; xxð1:NÞÞ directly by replacing the observations
xxð1:NÞ in rhhL1ðuufig; xxð1:NÞÞ with its bootstrapped sample set
~xxð1:NÞ. Such bootstrapped sets are often used for time-invari-
ant graphical model selection [26], [42], [43] so as to find a
network that is robust to bootstrapping. We borrow this
idea and provide an empirical distribution for xxð1:NÞ by
bootstrapping the original observations. More specifically,
for each time point t, we set ~xxðtÞ ¼ xxðtÞ by sampling t uni-
formly from a window around t with width w, namely, ft�
w; t� wþ 1; . . . ; tþ wg. The noisy gradient can then be com-
puted asrhh

~L1ðuufig; xxð1:NÞÞ ¼ rhhL1ðuufig; ~xxð1:NÞÞ. Furthermore,
we set w ¼ ð1� 1=T figÞN=2 such that the variance of the
noisy gradient rhh

~L1ðuufig; xxð1:NÞÞ decreases with the

decreases of T and rhh
~L1ðuufig; xxð1:NÞÞ converges to the exact

gradientrhhL1ðuufig; xxð1:NÞÞ as T fig ! 1.
In practice, we increase Rfig ¼ 1=T fig instead of decreas-

ing T fig as i increases. Concretely, we first specify the num-
ber of iterations for annealing as Na. We then begin the
algorithm with Rf1g ¼ 0 (i.e., T f1g ¼ 1) and increases Rfig

by 10=Na in every 10th iteration. AfterNa iterations, R
fNag ¼

1 (i.e., T fNag ¼ 1). In our experiments, we set Na ¼ 500
unless stated otherwise. A brief summary of the proposed
BASS algorithm is presented in Algorithm 1. For the
detailed implementation of the proposed simulated anneal-
ing technique, we refer the readers to Algorithm S.1 in the
supplementary material.

Algorithm 1. BASS

Input: The observations xx
ð1:NÞ
1:P and the number of iterations

for annealing Na.
Output: The estimated precision matrices hKð1:NÞi.
for i = 1 to Na do
- Compute w ¼ ð1�RfigÞN=2.
- Generate ~xx

ð1:NÞ
1:P by bootstrapping from xx

ð1:NÞ
1:P with window

width w.
- Sample ~p1, ~A00, ~A11, ~ajk, and ~b from their variational

distributions.
- Update qðsð1:NÞ

jk Þ, qðJ ð1:NÞ
jk Þ, and qðkð1:NÞ

j Þ following the pro-
posed simulated annealing mechanism in Section 3.3.

- Update qðp1Þ, qðA00Þ, qðA11Þ, qðajkÞ, qðbÞ following their
update rules as in Section 3.1.
end for
repeat
- Update all variational distributions following their

update rules as in Section 3.1.
until convergence.

In order to demonstrate the usefulness of the proposed
simulated annealing approach, we depict the convergence
results of BASS without and with simulated annealing in
Fig. 3. Here, we consider a synthetic data set. The true time-
varying graph corresponding to this data set is given. We
then randomly select 100 true edges (cf. red dashed lines)
and 100 absent edges (cf. green solid lines) from the true
graph and check how the corresponding hsðtÞjk i changes as
the algorithm proceeds. The initial values for all parameters
are the same in both cases. We can tell from Fig. 3a that the
true and false edges are partially mixed with each other in
the original variational inference algorithm without anneal-
ing. By contrast, in Fig. 3b, after using the proposed simu-
lated annealing approach, the red dashed lines clearly stand
above the green lines as BASS proceeds. Note that hsðtÞjk i
denotes the existence probability of edge ðj; kÞ at time t. The
estimated hsðtÞjk i given by BASS with annealing is close to 1
for true edges and 0 for the false ones, successfully separat-
ing the true and false edges in an automated manner.

4 GRAPHICAL MODELS FOR STATIONARY

TIME SERIES

In this section, we discuss how to exploit BASS to learn
interactions among P univariate stationary Gaussian pro-
cesses (i.e., time series) yy

ð1:NÞ
1:P . A graphical model G ¼ ðV; EÞ
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for yyðtÞ can be constructed by letting an abscent edge ðj; kÞ 62
E denote that the two entire time series yy

ð1:NÞ
j and yy

ð1:NÞ
k are

conditionally independent given the remaining collection of
time series yy

ð1:NÞ
�jk [44], that is

cov
�
yy
ðtÞ
j ; yy

ðtþtÞ
k jyyð1:NÞ

�jk

�
¼ 0; 8t: (24)

In other words, the lagged conditional covariance equals 0
for all time lags t. On the other hand, the conditional depen-
dence can also be defined in the frequency domain of the
time series. Concretely, we first define the spectral density
matrix as the Fourier transform of the lagged covariance
matrix covðyyðtÞ; yyðtþtÞÞ

SðvÞ ¼
X
t

covðyyðtÞ; yyðtþtÞÞexpð�ivtÞ; (25)

for v 2 ½0; 2p�. Let KðvÞ ¼ ½SðvÞ��1, the conditional indepen-
dence between yy

ð1:NÞ
j and yy

ð1:NÞ
k holds if and only if [37], [44]

K
ðvÞ
jk ¼ 0; 8v: (26)

This suggests that one common zero entry in the inverse
spectral density matrices across a certain frequency band is
equivalent to the conditional independence between the
corresponding two time series in this frequency band.
Therefore, for a multivariate time series, we aim to infer the
inverse spectral density matricesKðvÞ.

Here, we follow the state-of-the-art Whittle approxima-
tion framework [35]: Suppose that ff

ðvÞ
1:P is the discrete Four-

ier transform of yy
ð1:NÞ
1:P at frequency v

f
ðvÞ
j ¼

X
t

ytjexpð�ivtÞ; (27)

then ff
ðvÞ
1:P are independent complex Gaussian random varia-

bles with mean zero and precision matrix given by the
inverse spectral density matrixKðvÞ at the same frequency

ff
ðvÞ
1:P � N c

�
00; KðvÞ�1

�
: (28)

As a result, we can learn KðvÞ that changes smoothly with v

from ff ðvÞ using BASS. In this scenario, the covariate is the
frequency v. It should be stressed that the complex Gauss-
ian distribution in (28) can be written as

pðff ðvÞjKðvÞÞ / detðKðvÞÞexp�� ff ðvÞ�KðvÞff ðvÞ�; (29)

where ffðvÞ
�
denotes the complex conjugate transpose of ff ðvÞ.

The above density function does not have the operation of
square root as in the density function of the Gaussian distri-
bution for real numbers (2). The corresponding pseudo-like-
lihood ofKðvÞ can then be expressed as

pðf ðvÞ
j jKðvÞ

jj ;K
ðvÞ
j;�jÞ / K

ðvÞ
jj exp

h
�K

ðvÞ
jj f

ðvÞ
j f

ðvÞ
j

� f
ðvÞ
j K

ðvÞ
j;�jff

ðvÞ
�j � f

ðvÞ
j K

ðvÞ
j;�jff

ðvÞ
�j

�K
ðvÞ
jj

�1
K

ðvÞ
j;�jff

ðvÞ
�j K

ðvÞ
j;�jff

ðvÞ
�j

i
; (30)

where f
ðvÞ
j is the complex conjugate of f

ðvÞ
j . In addition, the

prior distribution on J
ðvÞ
jk is also a complex Gaussian distri-

bution. We therefore modify the ELBO L and the corre-
sponding update rules accordingly. The detailed update
rules are summarized in Table S.2 in the supplementary
material.

5 EXPERIMENTAL RESULTS

In this section, we compare the proposed BASS algorithm
with the state-of-the-art methods in the literature. Specifi-
cally, for the problem of learning time-varying graphical
models, we consider three benchmark methods:

1) KERNEL [13], [14], [15], [16]: Kernel-smoothed
covariance matrices SðtÞ are first estimated, and then
a graphical model is inferred at each time point by
solving the graphical lasso problem

KðtÞ ¼ argmin
KðtÞ	0

trðSðtÞKðtÞÞ � log detKðtÞ þ �1kKðtÞk1;

where �1 controls the sparsity ofKðtÞ.
2) SINGLE [17], [19], [20]: It further controls the

smoothness of KðtÞ over t by imposing penalty on
the difference between the precision matrices at
every two consecutive time points

KðtÞ ¼ argmin
KðtÞ	0

XN
t¼1

h
trðSðtÞKðtÞÞ � log detKðtÞ

þ �1kKðtÞk1
i
þ �2

XN
t¼2

kKðtÞ �Kðt�1Þk1: (31)

3) LOGGLE [25]: It exploits the local group lasso pen-
alty to promote the sparsity of KðtÞ and the smooth-
ness across time simultaneously

KðtÞ ¼ argmin
KðtÞ	0

X
t

trðSðtÞKðtÞÞ � log detKðtÞ

þ �1

X
j6¼k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t2Dðt;dÞ

K
ðtÞ
jk

2
s

; (32)

where Dðt; dÞ ¼ ft : jt � tj 
 dg denotes neighbor-
hood around t with width d. The exact likelihood in
the above expression is replaced by the pseudo-like-
lihood in the implementation to achieve better
performance [25].

The time complexity of the above three methods is
OðNP 3Þ. On the other hand, for the problem of learning

Fig. 3. Estimation of 200 randomly selected hsðtÞjk i (i.e., zero pattern of the
off-diagonal elements in Kð1:T Þ) as a function of iteration number i for
BASS when applying to synthetic data with P ¼ 20 andN ¼ 1000 without
and with simulated annealing. Half of the selected off-diagonal elements
correspond to the absent edges in the true graph and the other half cor-
respond to the true edges.
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graphical models for stationary time series in frequency
domain, we compare BASS with the GMS approach pro-
posed in [37], which can be regarded as the counterpart of
KERNEL in the frequency domain.

5.1 Time-Varying Graphical Models (Time Domain)

5.1.1 Synthetic Data

Given the dimension P , the number of time points N , and
the average number of edges Ne, we simulate synthetic
Gaussian distributed data from time-varying graphical
models as follows. We first generate the off-diagonal ele-
ments in the precision matricesKð1:NÞ as

K
ðtÞ
jk ¼Ajk sin

�
pt

2N

�
þBjk cos

�
pt

2N

�

þ Cjk sin

�
p
� t

N
þDjk

��
; (33)

where for all j and k Ajk, Bjk, and Cjk are drawn uniformly
from ½�1;�0:5� [ ½0:5; 1�, and Djk follows a uniform distri-
bution in ½�0:25; 0:25�. We then set a threshold and zero out
the off-elements whose magnitude is smaller than the
threshold such that the average number of edges in Kð1:NÞ is
Ne. Next, we compute the diagonal entries as K

ðtÞ
jj ¼P

k6¼j jKðtÞ
jk j þ 0:1 to guarantee the positive definiteness of

Kð1:NÞ. Finally, we draw a sample xxðtÞ at each time point t
fromNð00; KðtÞ�1Þ.

We compare all methods in terms of precision, recall,
F1-score, and computational time. Precision is defined as
the proportion of correctly estimated edges to all the edges
in the estimated graph; recall is defined as the proportion of
correctly estimated edges to all the edges in the true graph;
F1-score is defined as 2�precision�recall/(precision+recall),
which is a weighted average of the precision and recall. For
the benchmark methods, since the ground truth is given, we
first select the tuning parameters that maximize the F1-score

and refer to the results as oracle results (a.k.a. optimal
results). We also show the results when the tuning parame-
ters are selected via cross validation (CV), which is com-
monly used in existing works [14], [17], [23], [24], [25]. More
specifically, for all three frequentist methods, we choose the
kernel bandwidth h from 5 candidates fexpð�4ÞN; exp
ð�3ÞN; . . . ; Ng and �1 from 5 candidates fexpð�4Þ; expð�3Þ;
. . . ; 1g. We further select �2 from fexpð�4Þ; expð�2Þ;
. . . ; expð4Þg for SINGLE and d from fexpð�4ÞN; exp
ð�3ÞN; . . . ; Ng for LOGGLE. We show the results for graphs
with different dimensions P , different sample sizes N , and
different graph densities (characterized by the average
number of edges Ne) respectively in Tables 1, 2, and 3. The
results are averaged over 5 trials and the standard deviation
is presented in the brackets. All methods are implemented
using R and Rcpp.

We observe that BASS typically obtains the highest
F1-score with the shortest period of computational time,
regardless of the dimension, the sample size, and the graph
density. In other words, BASS can well recover the time-vary-
ing graph structure in an automated fashion. On the other
hand, the oracle results of LOGGLE and SINGLE are compa-
rable to that of BASS. However, in practice, we have no infor-
mation on the true graphs and therefore cannot choose the
tuning parameters that maximize the F1-score (i.e., minimize
the difference between the true and estimated graphs). As
mentioned before, one practical approach to choosing the tun-
ing parameters is CV. Unfortunately, as can be observed from
Tables 1, 2, and 3, the CV results are typically worse than the
oracle results, indicating that CV cannot always find the opti-
mal tuning parameters. Since we only consider 5 candidates
for each tuning parameter and so the distance between every
two combinations of tuning parameters is relatively large, the
wrong choice of the optimal parameters may lead to a large
gap between the CV and the oracle results. Additionally, we
can see that LOGGLE and SINGLE outperform KERNEL in

TABLE 1
Graph Recovery Results From Different Methods for Synthetic Data With Different Dimensions

(P ¼ 20; 100; 500, N ¼ 1000, Ne ¼ P )

The standard deviations are shown in the brackets.

TABLE 2
Graph Recovery Results From Different Methods for Synthetic Data With Different Sample Size

(P ¼ 20,N ¼ 500; 1000; 2000,Ne ¼ P )

The standard deviations are shown in the brackets.
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terms of F1-score after capturing the temporal dependence
across KðtÞ. Nevertheless, they become prohibitively slow
when P � 100, severely hindering their application to large-
scale problems. By contrast, BASS improves the estimation
accuracy while being more efficient. Indeed, as shown in
Fig. 4, the computational time of BASS approximately
increases quadraticallywith P , whereas that of the other meth-
ods is approximately a cubic function ofP . These observations
are in agreement with the theoretical time complexity. On the
other hand, the computational time of all methods increases
linearlywithN (see Table 2), while the graph density does not
have much effect on the computational time (see Table 3).
Finally, we find that the performance of BASS and all oracle
results in terms of F1-score improves as the dimension P
decreases, the graph density Ne decreases or the sample size
N increases. In general, more information is required to reli-
ably estimate the true graphs when P orNe increases, but the
sample size N remains invariant in these cases, thus degrad-
ing the performance of these methods. On the other hand,
according to Eq. (33), the precision matrix KðtÞ changes more
slowlywith t as the sample sizeN increases, and so it becomes
easier to estimate the time-varying graphs. This explains the
improvement of the F1-scorewith increasingN .

5.1.2 Stock Return Data of 78 Banks

We infer time-varying financial networks from the daily
stock return data during the 2008 Great Recession (from
2005 to 2013) of 78 banks in 25 countries around the world.
Learning financial networks from data greatly helps to

model the system risk in a financial market [45]; such net-
works can be utilized to find the interactions between finan-
cial institutions for risk contagion that impair the system
stability as well as to determine which institutions are more
contagious or subject to contagion. The 78 banks are those
in the world’s top 150 (by assets) whose data are publicly
available at Yahoo Finance (https://finance.yahoo.com/)
from 2005 to 2013. In total, we have 2348 observations for
each of the 78 variables. 6:49% of the data are missing at ran-
dom. The proposed Bayesian method, BASS, can deal with
the missing data, by inferring their variational distributions
along with the distribution of the precision matrices,
whereas the frequentist methods cannot. As such, we use
the data imputed by BASS as the input to KERNEL, SIN-
GLE, and LOGGLE. The tuning parameters in these meth-
ods are selected by CV. Before applying all methods, we
normalize the data to have unit variance. The time-varying
variance for data normalization is inferred via kernel
smoothing, and the kernel bandwidth is chosen via CV.

The estimated number of edges in the time-varying net-
works as a function of time resulting from different meth-
ods is summarized in Fig. 5a. The critical point during the
2008 global financial crisis is the Lehman bankruptcy on
Sept. 15, 2008 when the US government started to imple-
ment a huge stimulus package so as to alleviate the influ-
ence of the financial crisis [46]. As demonstrated in Fig. 5a,
the number of edges resulting from all methods tends to
increase before the Lehman bankruptcy and then decreases
gradually after it. In the viewpoint of system risk, all banks
in the financial system would progressively suffer from the
financial crisis due to the risk contagion, leading to similar
stock price movement and more connections in the net-
works during the financial crisis [47]. Apart from the major
peak in 2008, BASS further yields another two peaks in 2010
and 2011. These two peaks correspond to the Greek debt cri-
sis of 2009-2010 and the subsequent sovereign debt crisis of
2011 in Europe. Interestingly, Demirer et al. [48] analyzed
the volatilities of 96 banks in the world’s top 150 and further
constructed time-varying networks by inferring sparse vec-
tor autoregressive approximation models in sliding win-
dows of the volatility data. The three peaks were also
observed in their experiment; the range of the three peaks
in [48] is shown in Fig. 5a. Here we learn networks from the
stock return data by means of BASS, instead of extracting
them from volatilities, yet we obtain similar results. As
opposed to BASS, the three peaks are not very obvious for
KERNEL, SINGLE, and LOGGLE. The results of these
methods may become better by selecting the tuning parame-
ters from a larger set of candidates, at the expense of

TABLE 3
Graph Recovery Results From Different Methods for Synthetic Data With Different Density (P ¼ 20,N ¼ 1000,Ne ¼ 10; 20; 40)

The standard deviations are shown in the brackets.

Fig. 4. Computational time as a function of dimension P . We fit a straight
line to the logarithm of average run time in Table 1 versus the logarithm
of P , and compute the slope. The slope provides an empirical measure
of the time complexity.
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increased computational time. Unfortunately, the computa-
tional time for KERNEL, SINGLE, and LOGGLE is already
1.48e5, 4.90e7, and 8.06e6 seconds respectively, and testing
more candidates of the tuning parameters will make these
methods distressingly slow. On the other hand, BASS only
takes 3.08e4 seconds to converge. In summary, BASS can
better capture the changes in the financial networks in less
amount of run time.

Next, let us delve into the results given by BASS. We plot
the estimated financial networks at the beginning of each
year from 2005 to 2013 in Fig. 6. In this figure, the banks are
clustered according to their regions automatically, as banks
in the same region are expected to have more interactions.
We further choose the cluster of US, Europe (including UK),
and Asia-Pacific and depict the average number of connec-
tions for banks in each cluster as a function of time in
Fig. 5b. Both Figs. 5b and 6 tell us that number of connec-
tions for US and European banks is larger than that of banks
in Asia-Pacific. In light of the theory of system risk, the
financial institutions with more connections are called cen-
tral institutions (i.e., sit in the center of the financial system).
Such institutions are more sensitive to financial crises, and
conversely, their failure can lead to the breakdown of the
entire system with a larger probability [45]. With this theory
in mind, we can now analyze how the networks changed
during the financial crisis. Before the Lehman bankruptcy,
the average number of connections for US banks first
increased in 2006, due to the Government’s unexpected
decision to tighten monetary policy in May and June that

year [48]. There was no other major shock in 2006 though,
and therefore, the average number of connections for US
banks decreased later in 2006 [48]. In early 2007, the collapse
of several mortgage originators led to the sharp increase of
connections in US [46]. Due to the large number of connec-
tions between banks in US and Europe, the European banks
also lost a tremendous amount on toxic assets and from bad
loans. Consequently, the connections for European banks
also increased. In late 2007 and 2008, the 2007 subprime
mortgage crisis in US finally led to the global financial cri-
sis [46], since US sat in the center of the network. We can
see that the entire financial network in 2008 (see Figs. 6d
and 6e) is much denser than the one before and after the cri-
sis (see Figs. 6a and 6j). In the post-Lehman period, the US
market calmed after the government injected a massive
amount of capital into major US banks [46]. Thus, the num-
ber of connections for US banks decreased correspondingly.
On the other hand, the European debt crisis occurred in
Greece in late 2009 and further spread to Ireland and Portu-
gal [49]. The delay of the rescue package for Greece caused
the second peak of connections for European banks in May
2010. Later in 2011, the debt crisis further affected Spain
and Italy [49], leading to the third peak for Europe from
June to August in 2011 in Fig. 5b. Note that the number of
connections for US banks was low when the debt crisis first
happened in 2009. However, due to risk contagion in the
financial network, the number of connections for US banks
also reached another peak in 2011. On the other hand, since
there is a fewer number of connections between Asia-Pacific
countries and US and Europe (see Fig. 6), the financial crisis
did not impact Asia-Pacific countries as severely as US and
Europe.

5.2 Graphical Models for Time Series
(Frequency Domain)

5.2.1 Synthetic Data

To test the proposed method for inferring graphical models
in the frequency domain, we consider simulated time series
with length N generated from a first order vector autore-
gressive process for P variables. Specifically, we simulate
data from the model

yyðtÞ ¼ Ayyðt�1Þ þ ��ðtÞ; (34)

where yyðtÞ 2 RP , A 2 RP�P , and ��ðtÞ � N ð00; IÞ. The inverse
spectral density of the process is then given by [38]:

KðvÞ ¼ I þA0Aþ expð�ivÞAþ expðivÞA0: (35)

We consider time series with different dimensions, sample
sizes, and graph density, and compare the results given by
BASS with those of GMS [37]. The graph density is charac-
terized by the number of non-zero elements in A, which is
denoted as Ne in the sequel. For GMS, the kernel bandwidth
h is selected from fexpð�4ÞN; expð�2ÞN; . . . ; expð4ÞNg and
�1 is chosen from fexpð�4Þ; expð�3Þ; . . . ; 1g. Again, we
select the tuning parameters by maximizing the F1-score
between the estimated and true graphs (i.e., the oracle
results) as well as using CV. Before applying these methods,
we first normalize the data yy

ð1:NÞ
1:P to have unit variance. We

then apply the normalized Fourier transform to obtain the

Fig. 5. Results of the stock return data of 78 banks: (a) the number of
edges as a function of time resulting from different methods; (b) the aver-
age number of connections for banks in US, Europe, and Asia-Pacific
given by BASS.
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Fourier coefficients ff
ð1:NÞ
1:P such that the variance of ff

ð1:NÞ
1:P

does not increase with N . The results averaged over 5 trials
are summarized in Tables 4, 5, and 6.

The results are similar to those in the time domain.
Hence, we only provide a brief summary of the results
here. BASS yields the best performance in the terms of
the F1-score with the least amount of computational time
in all cases. The oracle results are the second best. CV
cannot always select the optimal tuning parameters, and
so the CV results are worse than the oracle results. We
can also observe that the increase of dimension P or the
graph density Ne deteriorates the performance, whereas
the increase of the sample size N improves the perfor-
mance, as expected. The computational time of BASS

and GMS is approximately a linear function of NP 2 and
NP 3 respectively.

5.2.2 Scalp EEG of AD Patients

In this section, we consider the problem of inferring functional
brain networks from scalp EEG recordings. Specifically, we
analyze two data sets. The first one contains 22 patients with
mild cognitive impairment (MCI, a.k.a. pre-dementia) and 38
healthy control subjects [50]. The patients complained of the
memory problem, and later on, they all developed mild AD
(i.e., the first stage of AD). The second data set consists of 17
patients with mild AD and 24 control subjects [51]. For more
details, please refer to SectionC in the supplementarymaterial.

Fig. 6. Financial networks resulting from BASS from 2005 to 2013. The networks are time-varying. The banks are clustered according to their regions
in an automatic fashion.

TABLE 4
Graph Recovery Results From BASS and GMS for Synthetic Time Series With Different Dimensions

(P ¼ 20; 100,N ¼ 1000, Ne ¼ P )

Methods P ¼ 20 P ¼ 100

Precision Recall F1-score Time(s) Precision Recall F1-score Time(s)

BASS 0.90 (3.14e-2) 0.88 (4.23e-2) 0.89 (3.09e-2) 2.18e2 (2.10e1) 0.88 (4.90e-2) 0.71 (3.92e-2) 0.78 (4.20e-2) 4.75e3 (2.85e2)
GMS (orcale) 0.83 (1.05e-1) 0.72 (8.27e-2) 0.76 (7.17e-2) 3.36e3 (5.13e1) 0.71 (1.94e-2) 0.79 (2.02e-2) 0.75 (7.21e-3) 4.16e5 (6.20e3)
GMS (CV) 0.63 (1.02e-1) 0.78 (1.20e-1) 0.69 (8.18e-2) 4.32e3 (7.93e2) 0.71 (7.69e-2) 0.68 (2.53e-2) 0.69 (3.69e-2) 5.05e5 (9.34e3)

The standard deviations are shown in the brackets.

TABLE 5
Graph Recovery Results From BASS and GMS for Synthetic Time Series With Different Lengths

(P ¼ 20,N ¼ 500; 1000; 2000,Ne ¼ P )

Methods N ¼ 500 N ¼ 1000 N ¼ 2000

Precision Recall F1-score Time(s) Precision Recall F1-score Time(s) Precision Recall F1-score Time(s)

BASS 0.90
(6.51e-2)

0.81
(9.32e-2)

0.85
(6.74e-2)

1.11e2
(8.26)

0.90
(3.14e-2)

0.88
(4.23e-2)

0.89
(3.09e-2)

2.18e2
(2.10e1)

0.89
(8.40e-2)

0.94
(3.60e-2)

0.91
(5.74e-2)

4.44e2
(5.56e1)

GMS
(orcale)

0.90
(1.15e-1)

0.70
(1.09e-1)

0.78
(9.26e-2)

1.70e3
(9.68)

0.83
(1.05e-1)

0.72
(8.27e-2)

0.76
(7.17e-2)

3.36e3
(5.13e1)

0.80
(2.74e-2)

0.73
(1.12e-1)

0.76
(6.04e-2)

7.28e3
(5.12e2)

GMS (CV) 0.50
(3.17e-1)

0.76
(1.61e-1)

0.53
(1.94e-1)

2.76e3
(1.55e2)

0.63
(1.02e-1)

0.78
(1.20e-1)

0.69
(8.18e-2)

4.32e3
(7.93e2)

0.75
(7.56e-2)

0.73
(1.03e-1)

0.74
(7.36e-2)

9.01e3
(9.79e2)

The standard deviations are shown in the brackets.
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Although AD cannot be cured at present, existing symptom-
delaying medications are proven to be more effective at early
stages of AD, such as MCI and mild AD [50]. On the other
hand, scalp EEG recording systems are inexpensive andpoten-
tiallymobile, thusmaking it a useful tool to screen a large pop-
ulation for the risk of AD. As a result, it is crucial to identify
the patients from scalp EEG signals at early stages of AD.
Learning functional brain networks can help to distinguish
between patients and healthy people [52].

We first perform the normalized Fourier transform on all
channels of EEG signals to obtain ff ðvÞ. We only consider
ff ðvÞ in the frequency band 4� 30Hz in order to filter out the
noise in the signal. KðvÞ is then inferred from ffðvÞ by apply-
ing the proposed BASS algorithm. We further split KðvÞ into
three frequency ranges: 4� 8Hz, 8� 12Hz, and 12� 30Hz,
as suggested by previous works on the same data sets [50],
[51]. For each frequency band, we infer the corresponding
graphical models by finding the common zero patterns of
all KðvÞ for v in this band. We compare BASS with GMS
(CV) in this experiment to check which method can yield
graphs that can better distinguish between the patients and
the control subjects. The candidate set of the kernel band-
width h and the penalty parameter �1 for GMS (CV) is
respectively fexpð�3ÞN; expð�2:5ÞN; . . . ; expð�1ÞNg and
fexpð�5Þ; expð�4:5Þ; . . . ; expð�0:5Þg.

First, we count the number of edges in the graphical
models, which can be regarded as a measure of synchrony
between different EEG channels. We observe that gra-
phical models in 4� 8Hz can best distinguish between
patients and controls for both data sets and both methods.
We depict in Figs. 7 and 8 the boxplots of the number of
edges in the graphical models. Clearly, the graphical mod-
els for patients are more sparse than those for healthy

people, and this phenomenon becomes more pronounced
for Mild AD patients. Such findings are consistent with
the loss of synchrony within the EEG signals for AD
patients as reported in the literature [50], [51]. We further
conduct the Mann-Whitney test on the number of edges in
the two sets of graphical models, respectively for the
patients and the controls. The resulting p-value given by
BASS for the two data sets is respectively 7:55� 10�3 and
1:49� 10�3, which are statistically significant. As a com-
parison, the p-value resulting from GMS is 3:99� 10�1 for
the MCI data and 9:26� 10�2 for the Mild AD data. Next,
we further train a random forest classifier based on the
estimated brain networks to differentiate between the
patients and the controls. The input to the classifier is the
adjacency matrices associated with the networks. We then
use the leave-one-out CV to evaluate the performance of
the classifier. The accuracy yielded by BASS for the two
data sets is 80:00% and 85:37% respectively, whereas that
of GMS is 65:85% and 70%. On the other hand, the compu-
tational time averaged over all subjects is 3:50� 102 sec-
onds for BASS and 1:40� 104 seconds for GMS.
Apparently, BASS can better describe the perturbations in
the EEG synchrony for MCI and mild AD patients, while
being more efficient.

6 CONCLUSION

In this paper, we propose a novel Bayesian model BASS to
solve the problem of estimating dynamic undirected graphi-
cal models. In contrast to the existing methods that have a
high time complexity of OðNP 3Þ and require extensive
parameter tuning, the time complexity of BASS is only
OðNP 2Þ and it is free of tuning. Specifically, we develop a

TABLE 6
Graph Recovery Results From BASS and GMS for Synthetic Time Series With Different Graph Density

(P ¼ 20, N ¼ 1000,Ne ¼ 10; 20; 40)

Methods Ne ¼ 10 Ne ¼ 20 Ne ¼ 40

Precision Recall F1-score Time(s) Precision Recall F1-score Time(s) Precision Recall F1-score Time(s)

BASS 0.93
(1.16e-1)

0.97
(6.88e-2)

0.95
(6.49e-2)

2.28e2
(1.18e1)

0.90
(3.14e-2)

0.88
(4.23e-2)

0.89
(3.09e-2)

2.18e2
(2.10e1)

0.93
(4.20e-2)

0.72
(2.89e-2)

0.81
(2.37e-2)

2.04e2
(7.90)

GMS
(orcale)

0.90
(6.87e-2)

0.81
(2.64e-2)

0.85
(3.77e-2)

3.46e3
(9.44e1)

0.83
(1.05e-1)

0.72
(8.27e-2)

0.76
(7.17e-2)

3.36e3
(5.13e1)

0.74
(7.61e-2)

0.68
(2.10e-2)

0.71
(4.12e-2)

3.68e3
(3.32e1)

GMS
(CV)

0.79
(1.62e-1)

0.80
(3.60e-2)

0.79
(8.35e-2)

4.70e3
(7.87e2)

0.63
(1.02e-1)

0.78
(1.20e-1)

0.69
(8.18e-2)

4.32e3
(7.93e2)

0.74
(7.61e-2)

0.68
(2.10e-2)

0.71
(4.12e-2)

5.03e3
(7.12e2)

The standard deviations are shown in the brackets.

Fig. 7. Boxplots of the number of edges given by BASS and GMS for the
first data set with MCI patients.

Fig. 8. Boxplots of the number of edges given by BASS and GMS for the
second data set with Mild AD patients.
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natural gradient based variational inference algorithm to
learn the Bayesian model. To deal with the problem of local
maxima, we resort to simulated annealing and propose to
use bootstrapping to generate the annealing noise. Com-
pared with the existing methods, BASS can better recover
the true graphs with the least amount of computational
time. We then apply BASS to analyze the stock return data
of 78 banks worldwide, and observe that the resulting finan-
cial network becomes denser during the 2008 global finan-
cial crisis and the subsequent European debt crises. On the
other hand, we find the resemblance between inferring
time-varying inverse covariance matrices and frequency-
varying inverse spectral density matrices, and extend BASS
to learn graphical models among a multitude of stationary
time series in the frequency domain. Results from EEG data
of MCI and mild AD patients show that the proposed model
may help to diagnose AD from scalp EEG at an early stage.

As BASS can only tackle Gaussian distributed data at
present, we intend to extend it to non-Gaussian data by
means of Gaussian copulas [53] in future work. Addi-
tionally, it is interesting to extend BASS to deal with
piece-wise constant graphical models [52]. In this case,
the data can be partitioned into a certain number of time
segments. The graph within each segment remains
unchanged, but the graphs for every two consecutive
segments can be completely different. Such piece-wise
constant graphical models also find wide applications in
practice [12], [52].
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