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Summary Networks with a very large number of nodes appear in many application areas
and pose challenges for traditional Gaussian graphical modelling approaches. In this paper, we
focus on the estimation of a Gaussian graphical model when the dependence between variables
has a block-wise structure. We propose a penalized likelihood estimation of the inverse
covariance matrix, also called Graphical LASSO, applied to block averages of observations,
and we derive its asymptotic properties. Monte Carlo experiments, comparing the properties
of our estimator with those of the conventional Graphical LASSO, show that the proposed
approach works well in the presence of block-wise dependence structure and that it is also
robust to possible model misspecification. We conclude the paper with an empirical study on
economic growth and convergence of 1,088 European small regions in the years 1980 to 2012.
While requiring a priori information on the block structure – e.g. given by the hierarchical
structure of data – our approach can be adopted for estimation and prediction using very large
panel data sets. Also, it is particularly useful when there is a problem of missing values and
outliers or when the focus of the analysis is on out-of-sample prediction.

Keywords: Block-wise dependence, Graphical LASSO, Graphical modelling, Panels,
Spatial econometrics.

1. INTRODUCTION

Estimation of large covariance matrices and their inverse has several applications in various
areas, from economics and finance to health, biology, computer science and engineering. One
important technique developed by the statistical and computer science literature is the graphical
modelling approach, which aims at exploring the relationships among a set of random variables
through their joint distribution. Under this framework, the Gaussian distribution is often assumed
and, in this case, the dependence structure is completely determined by the covariance matrix,
or, equivalently, by its inverse, where the off-diagonal elements are proportional to partial
correlations (Lauritzen, 1996). Specifically, variables i and j are conditionally independent given
all other variables, if and only if the (i, j )th element of the inverse covariance matrix, referred
to as the precision matrix, is zero. One result in the Gaussian graphical modelling literature is
that there is a one-to-one correspondence between the joint Gaussian distribution of a vector
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of random variables and its conditional Gaussian distribution. Under the latter, the distribution
of a variable observed in a certain node, given values observed in all other nodes, depends
only on the observations in its neighbourhood; see, e.g. Mardia (1988) and Meinshausen and
Buhlmann (2006). Hence, the problem of estimating the (inverse) covariance matrix is equivalent
to a neighbourhood selection problem. This observation has led to efficient node-wise LASSO
approaches for sparse high-dimensional graphs; see, e.g. Meinshausen and Buhlmann (2006)
and Peng et al. (2009). In contrast to these approaches, Friedman et al. (2008) have developed
the Graphical LASSO (GLASSO) approach, where the inverse covariance matrix is directly
estimated via penalized likelihood.

Conditional Gaussian models are known in the spatial econometrics literature as conditional
autoregressive (CAR) models, representing data from a given spatial location as a function of
data in neighbouring locations; see, e.g. Cressie (1993) and Anselin (2010). In a CAR model,
the neighbourhood structure is represented by means of the so-called spatial weights matrix,
usually assumed to be known a priori using information on distance between units, such as the
geographic, economic, policy or social distance. It is interesting to observe that the problem of
estimating the spatial weights matrix in a CAR model is equivalent to a neighbourhood selection
problem in a graphical model; for more details, see Section 5. Hence, the spatial weights matrix
for CAR models can be estimated by using methods from the Gaussian graphical modelling
literature for estimating inverse covariance matrices. While the spatial econometrics literature
has been largely immune to the developments in Gaussian graphical modelling, these methods
may be useful for a large number of applications in the social sciences.

In this paper, we consider the case of networks with a very large number of nodes and we
focus on the estimation of Gaussian graphical models when the dependency between variables
has a block-wise structure. We assume that units can be split into a set of non-overlapping groups,
or blocks, in such a way that the dependence between units only varies across blocks, instead of
individual observations. Hence, rather than estimating the links between each pair of units in the
sample, we propose to estimate the dependence (links) between groups of cross-sectional units.
Our approach consists of applying the GLASSO methodology of Friedman et al. (2008) to block-
level averages of observations rather than to single observations. When the size of the group is
unity, our method collapses to the conventional GLASSO. A major advantage of this method
is that its computational cost is greatly reduced and hence it can be adopted for estimation and
prediction using very large, or huge, networks. Our approach is also particularly useful when
there is a problem of missing values and outliers or when the focus of the analysis is out-of-
sample prediction.

There exist several examples where it is reasonable to assume a block-wise dependence
structure between units. In economics, preferences for consumer goods of individuals belonging
to the same household may react similarly in response to consumption decisions of neighbouring
households. Companies belonging to the same sector of economic activity and located within the
same geographical area (e.g. the postcode, the region or the country) tend to behave similarly
because they have similar characteristics or face similar opportunities and constraints. Thus, it
is reasonable to assume that the way they interact with companies from other sectors and/or
geographical areas is similar. A block-wise dependence structure is also a realistic assumption
when the variable of interest displays an explicit hierarchical or group membership structure,
namely, clustering of units in an organized fashion, such as students within classrooms, members
of a household, General Practitioners in a clinic, etc. This is common, for example, when
dealing with large, individual-level, microeconomic or health data sets. Other examples are in
neuroscience, where the networks used to represent brain activity have a hierarchical structure,
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with billions of neurons connected to each other through hub nodes, called voxels, and with
connected voxels forming areas that are again connected with each other (Luo, 2015). In biology,
regulatory networks are thought to have a hub-type structure, with groups of genes having a
similar dependency structure and regulated by a small number of unobserved proteins (Hao et al.,
2012). When the grouping is not fully known a priori, we could use methods that allow us to
determine endogenously the optimal grouping of cross-sectional units, by employing techniques
from the clustering literature; see, e.g. Lin and Ng (2012), Bonhomme and Manresa (2015) and
Ando and Bai (2016).

Exploitation of a priori information on the group structure of variables is not new in the social
interaction literature and in the statistical and graphical modelling literature. Empirical works
from the social interaction literature typically assume that an individual reacts to the average of
others in a predefined group; see Durlauf and Young (2001) and Blume et al. (2013) for a review.
Such an assumption implies that the spatial weights matrix has a group-membership structure,
where the weights are identical for all units belonging to the same group, while they are set to zero
for the interaction between units belonging to different groups. Lee and Yu (2007) considered
the identification and estimation of interaction effects in the context of a spatial autoregressive
model where the spatial weights matrix (and the associated precision matrix) has such a block
diagonal structure with equal entries. Note that this is a more restrictive assumption to that used
in this paper, as it does not allow for dependences between groups. Nevertheless, this model has
been widely adopted in several different areas of the social sciences, such as education (Calvó-
Armengol et al., 2009), labour market outcomes (Bayer et al., 2008), crime (Sirakaya, 2006)
and welfare participation (Bertrand et al., 2000). Similar models have been proposed by the
statistical literature, where mixed effect models are commonly used to represent variables with a
hierarchical or known group membership structure (Goldstein, 2011). When the random effects
are assumed to be correlated, these models lead to a covariance matrix that has a block-wise
structure of the same type that we use in this paper, with equal correlation within groups and
equal correlation between any two elements of two specified groups (Laird and Ware, 1982).
Maximum likelihood approaches are typically used for parameter estimation in these models.
In the case of a large number of regressors, penalized approaches based on the L1 penalty are
used for estimation and variable selection (Schelldorfer et al., 2014). However, these methods
typically require a small number of random effects (blocks).

A number of authors in the literature on graphical modelling have proposed sparse estimation
of graphs with a block structure. These methods exploit a priori information on group
membership of observations to propose fast, sparse estimation algorithms. Guo et al. (2011)
consider a heterogeneous data set where variables, while independent across groups, have a
sparse dependency structure within group. The corresponding precision matrix has a block
diagonal structure, and the authors propose joint estimation of various blocks by maximizing
the corresponding penalized log-likelihood functions. A similar approach is taken by Mazumder
and Hastie (2012), who propose thresholding estimation of a sparse inverse covariance that is
a block diagonal matrix of connected components. Wit and Abbruzzo (2015) impose block
equality constraints on the parameters of an undirected graphical model to reduce the number
of parameters to be estimated. Vinciotti et al. (2016) discuss various forms of block structures
for dynamic networks and propose estimation of the associated precision matrix under sparsity
and equality constraints on parameters (also known as parameter tying). The inclusion of
equality constraints, while reducing the number of parameters, often increases the computational
complexity of the estimation procedures. For example, the general block structures considered by
Wit and Abbruzzo (2015) and Vinciotti et al. (2016) imply a computational cost of the estimation

C© 2016 The Authors. The Econometrics Journal published by John Wiley & Sons Ltd on behalf of Royal Economic Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/article/20/3/S61/5056392 by guest on 01 M

ay 2024



S64 F. Moscone, E. Tosetti and V. Vinciotti

procedure that is higher compared to the approaches of Guo et al. (2011) and Mazumder and
Hastie (2012), where the assumed block structure allows the large GLASSO problem to be split
into many, smaller tractable problems.

In this paper, we use block structures with the intent to achieve computational efficiency,
allowing us to infer networks of very large dimensions. Differently from Guo et al. (2011) and
Mazumder and Hastie (2012), our approach does not need to impose block-diagonality of the
precision matrix. However, we assume that units can be split into groups in such a way that the
covariance (and associated precision matrix) only varies across blocks, rather than individual
observations.

The rest of the paper is structured as follows. In Section 2, we describe the main features of
our graphical model with block-wise dependence structure, while in Section 3 we propose our
estimator based on GLASSO. In Section 4, we run Monte Carlo experiments to investigate the
small-sample properties of the proposed estimator. In Section 5, we carry out an empirical study
on the economic growth of a set of small regions in Europe. Finally, in Section 6, we provide
some concluding remarks. The Appendix provides the proofs.

We use |λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λn(A)| to denote the eigenvalues of a matrix A ∈ M
n×n,

where M
n×n is the space of n× n matrices. Tr(A) is the trace of A ∈ M

n×n, while its Frobenius
norm is ‖A‖F = (

∑m
i,j=1 a

2
ij )

1/2. K is used for a fixed positive constant that does not depend on
N ; Sc is used to denote the complement of a set S.

2. BLOCK-WISE DEPENDENCE STRUCTURE IN HUGE NETWORKS

Let yit be the observed data for the ith individual, i = 1, 2, . . . , N , at time t , with t = 1, 2, . . . , T ,
and assume that the N -dimensional vector yt = (y1t , y2t , . . . , yNt)′ ∼ N (μ,�), where � is an
N ×N symmetric and positive definite matrix, independent of t . For ease of exposition, we set
μ = 0, although this assumption can be relaxed by setting μ to a non-zero vector depending on
a set of strictly or weakly exogenous regressors, including, for example, temporal lags of the
dependent variable. Assume that the variables can be split into G non-overlapping groups, with
G ≤ N , such that the dependence between individuals belonging to different groups is the same
for all individuals belonging to the same group. Suppose, for simplicity, that all groups are of the
same sizeM = N/G, whereM is an integer number. Under this assumption, � has the following
block-wise structure:

�
N×N

=

⎛
⎜⎜⎝

σ 1 σ121M . . . σ1G1M
σ211M σ 2 . . . σ2G1M
. . . . . . . . . . . .

σG11M σG21M . . . σG

⎞
⎟⎟⎠ , (2.1)

where 1M is an M ×M matrix of ones, and

σ g
M×M

=

⎛
⎜⎜⎝
δg σgg . . . σgg

σgg δg . . . σgg

. . . . . . . . . . . .

σgg σgg . . . δg

⎞
⎟⎟⎠ , (2.2)
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where σgg are intra-group covariances, while δg are group-specific variances, for g =
1, 2, . . . ,G. Let

�G
G×G

=

⎛
⎜⎜⎝
σ11 σ21 . . . σ1G

σ12 σ22 . . . σ2G

. . . . . . . . . . . .

σG1 . . . . . . σGG

⎞
⎟⎟⎠ , �G

G×G
=

⎛
⎜⎜⎝
γ1 0 . . . 0
0 γ2 . . . 0
. . . . . . . . . . . .

0 . . . . . . γG

⎞
⎟⎟⎠ , (2.3)

where γg = δg − σgg ≥ 0. Then, � can be written in compact form as

� = (�G ⊗ 1M ) + (�G ⊗ IM ), (2.4)

where �G is a G×G matrix assumed to be positive definite. If � has the above block-wise
structure, then its inverse, namely the precision matrix, is also block-wise. To show this, rewrite

� =
(
M�G ⊗ 1

M
1M

)
+

(
�G ⊗ 1

M
1M

)
−

(
�G ⊗ 1

M
1M

)
+ (�G ⊗ IM )

=
(

(M�G + �G) ⊗ 1

M
1M

)
+

(
�G ⊗ (IM − 1

M
1M )

)
. (2.5)

Noting that (1/M)1M and (IM − (1/M)1M ) are idempotent matrices such that their sum is the
identity matrix, we can apply Lemma 2.1 (point (iv)) in Magnus (1982) to obtain

� = �−1 =
(

(M�G + �G)−1 ⊗ 1

M
1M

)
+

(
�G

−1 ⊗ (IM − 1

M
1M )

)
. (2.6)

Assuming that the matrix (�G + (1/M)�G)−1 has generic elements φgh, the likelihood function
has the simplified expression:

l(θ ) ≈ − ln |M�G + �G| − (M − 1) ln |�G| − 1

MT

T∑
t=1

G∑
g=1

×
( 1

M

G∑
h=1

∑
i∈g:j∈h

yityjtφgh + (M − 1)
∑
i∈g

y2
itγ

−1
g −

∑
i �=j :i,j∈g

yityjtγ
−1
g

)
. (2.7)

See Appendix A for a proof. Below, we propose a penalized maximum likelihood approach
to estimate � and �, which exploits the block-wise dependence structure and is based on the
GLASSO.

3. BLOCK-GLASSO APPROACH

To propose our estimator, consider the group averages

ȳgt = 1

M

∑
i∈g

yit, (3.1)

and note that, if yt ∼ N (0,�), where � is given by (2.5), then also yG,t = (ȳ1t , ȳ2, . . . , ȳGt )′ ∼
N (0,�G), where �G is a G×G, positive definite matrix with elements
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ψgh = 1

M2

∑
i∈g,j∈h

σij = σgh, for g �= h, (3.2)

ψgg = 1

M2

∑
i,j∈g

σij = σgg + 1

M
γg, (3.3)

or, in matrix form,

�G = �G + 1

M
�G. (3.4)

It follows that we can estimate � by applying the GLASSO to the vector of group means, yG,t .
More specifically, consider the following two-step procedure.

STEP 1. Estimate �G = �−1
G by applying the GLASSO to yG,t , t = 1, 2, . . . , T . This allows

us to obtain σ̂gh for g �= h = 1, 2, . . . ,G, and ψ̂gg, g = 1, 2, . . . ,G.

STEP 2. Estimate γg by exploiting identity (2.4) and (3.4). Noting that E[(1/MT)∑
i∈g

∑T
t=1 y

2
it] = σgg + γg , while E[(1/MT)

∑
i∈g

∑T
t=1 ȳ

2
gt ] = σgg + (1/M)γg , we can

consider the following estimator for γ̂g:

γ̂g = M

M − 1

( 1

MT

∑
i∈g

T∑
t=1

y2
it − ψ̂gg

)
, g = 1, 2, . . . ,G. (3.5)

Hence, use (2.6) to recover �̂:

�̂ =
( 1

M
�̂G ⊗ 1

M
1M

)
+

(
�̂

−1
G ⊗ (IM − 1

M
1M )

)
. (3.6)

In Step 1, the estimator that maximizes the penalized likelihood for yG,t is

�̂G = max
�G�0

{ln |�G| − Tr(SG�G) − ρG

G∑
g,h=1,g �=h

|φgh|}, (3.7)

where the maximization is taken over symmetric positive definite matrices, SG is the sample
covariance matrix, and ρG is the tuning parameter controlling the degree of the sparsity in the
estimated inverse covariance matrix.

The following theorems derive the asymptotic properties of estimator (3.6) when both N and
T go to infinity.

THEOREM 3.1. (CONSISTENCY) Let yt ∼ N (0,�) where � has the block structure in (2.5), with
�G given by (2.3) being a symmetric, positive definite matrix such that λ1(�G) < K < ∞. Let∑G

g,h=1,g �=h 1{φgh �=0} = sG, where φgh are the elements of �G. Let �̂ be an estimate of � following
Steps 1 and 2, where ρG = O(

√
(lnG/T )), with ρG being the tuning parameter in (3.7). Then,

we have

‖�̂ − �‖F = Op

( 1

M

√
(G+ sG) lnG

T

)
. (3.8)
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THEOREM 3.2. (SPARSISTENCY) Suppose all conditions in Theorem 3.1 hold, and that ‖�̂G −
�G‖2 = O(ηG) where ηG is such that ρG = O(

√
(lnG/T ) + ηG), with ρG being the tuning

parameter in (3.7). Let S = {(i, j ) : i �= j, θij = 0} be the set of indices of all non-zero off-
diagonal elements in �. Then, with probability tending to 1 we have θ̂ij = 0 for all i, j ∈ Sc.

Theorem 3.2 is a straightforward consequence of the sparsistency theorem of Lam and Fan
(2009) applied to �̂G; see also Rothman et al. (2008) and Guo et al. (2011).

Hence, for �̂ to be a good proxy of �,G needs to be small (or, equivalently,M large) and �G

needs to be a sparse matrix, as measured by sG. Note, however, that, from (2.6), the off-diagonal
elements of � are proportional to 1/M2. Hence, for fixed G, as M increases the (relative) effect
of each individual neighbour on each unit would disappear and, in the limit, the precision matrix
would become a diagonal matrix. A similar result has been obtained by Lee (2002) in the context
of a spatial autoregressive (SAR) model where each spatial unit is influenced aggregately by a
significant portion of other spatial units in the sample. Lee (2002) showed that if each spatial
unit in the limit has infinitely many neighbours (which would happen in our case forG fixed and
M increasing), then the ordinary least-squares (OLS) estimator for a SAR model would still be
consistent and even asymptotically efficient. In Section 4, we investigate the properties of our
estimator for different values of G relative to N .

A major advantage of our proposed estimation procedure is that it is considerably faster
than the conventional GLASSO for estimating an N ×N precision matrix. Using the algorithm
proposed by Friedman et al. (2008), the computational cost associated with a coordinate
descendent update would decrease from O(N2) to O(G2). This could decrease further to O(G)
using faster algorithms, such as QUIC (Hsieh et al., 2014). Another advantage of our approach is
that using block averages rather than single observations greatly helps in the presence of missing
values, a common problem in statistical analysis. Exploiting group membership information is
also very useful for prediction purposes on a hold-out sample of units, for which the position in
the (individual-level) network is usually unknown. It is important, however, to remark that our
approach requires a priori information on the block structure. If this is not available, then one
could exploit methods from the clustering literature that allow us to determine endogenously the
optimal grouping of cross-sectional units, such as the k-means algorithm (Forgy, 1965) extended
to allow for covariates in the model; see, in particular, Lin and Ng (2012) and Bonhomme and
Manresa (2015), and also Ando and Bai (2016). Our approach also has potential application in the
area of spatial econometrics. Given the equivalence between CAR models and the joint Gaussian
distribution emphasized by many authors – see, among others, Mardia (1988) and Meinshausen
and Buhlmann (2006) – this method provides a means for estimating spatial weights matrices in
the context of very large panel data. Later in the paper, we offer a small empirical exercise using
CAR models.

Finally, it is important to remark that our approach does not allow us to estimate consistently
the precision matrix when this arises from one or more common, pervasive factors. Unobserved
common factors occur in time series as a result of global shocks, namely unexpected events
that may hit all statistical units, although with different intensities (Stock and Watson, 2010).
These large-scale perturbations affect micro-level population units and are often responsible for
observable co-movements of a large number of time series. We observe that our model is more
parsimonious than the common factor specification and may be useful in situations where T is
too short to allow for fully unrestricted common effects. However, in a large T setting, in the
presence of unobserved common factors, our approach can be applied to de-factored residuals,
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after estimating common factors using methods such as principal components (Bai, 2003) or the
Common Correlated Effects methodology (Pesaran, 2006).

3.1. Case of blocks with unequal size

Suppose now we have blocks with unequal size, so that group g has size Mg , with g =
1, 2, . . . ,G. In this case, group averages in (3.1) are based on Mg observations. By applying
recursively the theorem for block matrix inversion – see Bernstein (2005) – it is easy to see that
in the case of blocks of unequal size, a block-wise structure for � still implies a block-wise �.
In the case of blocks with unequal size, a convenient representation of � can be obtained using
selection matrices. Let Mmax = max

g=1,2,...,G
{Mg} and consider

�Mmax = (�G ⊗ 1Mmax ) + (�G ⊗ IMmax ). (3.9)

Then � can be extracted as follows:

� = S�Mmax S′. (3.10)

Here, S is an N × GMmax matrix of zeros and ones, selecting the correct number of rows and
columns for each block in �Mmax , depending on the group size. Note that SS′= INT , and rewrite

� = (S�Mmax S′ + INT ) − INT = S(�Mmax + IGMmax )S′ − INT , (3.11)

where IGMmax is a GMmax × GMmax identity matrix. Using the matrix inversion lemma, we obtain

� = �−1 = −S
(
(�Mmax + IGMmax )−1 − S′S

)−1
S′ − INT , (3.12)

where

(�Mmax + IGMmax )−1 = (
(Mmax�G + �G + IG)−1 ⊗ 1

Mmax
1Mmax

)
+(

(�G + IG)−1 ⊗ (IMmax − 1

Mmax
1Mmax )

)
(3.13)

and S′S is a diagonal GMmax-dimensional matrix of zeros and ones.1 Steps 1 and 2 outlined above
can still be carried to obtain �̂G and �̂G, where now TMg observations are used to calculate γ̂g .
The resulting �̂G can then be plugged into (3.12) and (3.13). From (3.12) and (3.13), it can be
seen that consistency and sparsistency of the resulting estimator continue to hold with rates that
now depend on N , G and Mmax.

1 The matrix inversion lemma states that (Bernstein, 2005)

(A + BDC)−1 = A−1 − A−1B(D−1 + CA−1B)−1CA−1.
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3.2. Allowing for general intra-block correlation structure

The approach outlined in Section 3 can be extended to allow for a general, intra-block correlation
matrix at the expense of reducing the computational efficiency. Suppose that

σij = σgg + πij, for all i, j ∈ g = 1, 2, . . . ,G, (3.14)

σij = σgh, for all i ∈ g, j ∈ h, with g �= h = 1, 2, . . . ,G. (3.15)

Under this framework, while the covariance between variables of different blocks is constant for
all variables belonging to the same block, the intra-block covariance is allowed to vary across
variables. In this case, the covariance matrix can be written as

� = (�G ⊗ 1M ) + �,

where � is a block-diagonal matrix.
We can show that, under the condition that (1/M)

∑
k∈g πik ≈ 0 for all i, the � matrix can

be estimated by the covariance matrix of yit − ȳgt for each block. This results in a relatively easy
implementation, whereby we first calculate ȳgt and apply the block-GLASSO outlined in Section
3 to compute �̂G. Hence, we calculate the deviations of each value yit from its corresponding
group-level average, namely yit − ȳgt, and we apply the conventional GLASSO to all yit − ȳgt
for each block, separately. This approach requires that πij, namely the deviations of σij from σgg,
are not too large, so that the ȳgt can be used to consistently estimate σgg. The computational
complexity of this procedure rises to O(G2) +O(GM2), as it is necessary to estimate G blocks
of size M . In the rest of the paper, we refer to this approach as the flexible block-GLASSO.

4. MONTE CARLO EXPERIMENTS

In this section, we provide Monte Carlo evidence on the properties of the above estimation
procedure. We consider the following data-generating process:

yit = αi + βxit + eit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T . (4.1)

Here

xit = 0.4xi,t−1 + vit, t = −19,−18, . . . ,−1, 0, 1, 2, . . . , T (4.2)

with αi ∼ IIDN (0, 0.5), eit ∼ N (0, �) and vit ∼ N (0, �X). In generating xit, we set xi,−20 = 0
and discard the first 20 observations to reduce the effect on estimates of initial values of xit. To
generate �, we start from �G = �−1

G and assume that its elements, θgh,G ∼ Bin(1, (3/G)) for
g, h = 1, . . . ,G. We obtain � and � by applying (2.6), where we assume γG ∼ U (0.2, 0.5).
Letting D be the Choleski decomposition of �, namely � = DD′, we generate et = Dεt , where
εt = (ε1t , ε2t , . . . , εNt )′, with εit ∼ IDN(0, 1). We generate �X following the same procedure.
As for β, in a first set of experiments we set β = 0, and apply our methodology to yit, to test
our procedure when there is no uncertainty regarding the mean of yit. We then set β = 1 and
apply our methodology to regression residuals after estimating β by OLS. As a robustness check,
we carry an additional experiment where errors are non-normally distributed. In this case, when
generating eit, we set εit = (uit − 1)/

√
2, with uit ∼ χ2

1 . Model (4.1)–(4.2) has strictly exogenous
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regressors, an assumption that may not hold in practice. In a further set of experiments, we also
consider a dynamic set-up, where we assume that yit is generated by the first-order autoregressive
model

yit = αi + λyi,t−1 + eit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T , (4.3)

where all elements are generated as above, and λ = 0.4.
Finally, we examine the performance of the more general flexible block-GLASSO approach

outlined in Section 3.2 when � has a general intra-block correlation structure. Under this
experiment, all parameters are the same as in (4.1) and (4.2), with β = 1 and

σij = σgg + πij, for all i, j ∈ g = 1, 2, . . . ,G, (4.4)

σij = σgh, for all i ∈ g; j ∈ h, with g �= h = 1, 2, . . . ,G. (4.5)

We generate each block in � by assuming that its inverse has elements distributed as
Bin(1, (3/M)).

In each experiment, we compute the block-GLASSO and the conventional GLASSO, for all
pairs of N and T with N = 50 and 100 and T = 10, 50 and 200. As for the choice of G, we try
G = N/2, and N/5. Each experiment is replicated R = 250 times. We also carry out another set
of experiments with N much larger than T , and set N = 500, 1,000 and 2,000 and T = 20. In
this set of experiments, given the computational difficulties and poor performance in computing
conventional GLASSO for such large networks, we only provide results for the block-GLASSO.
Under the dynamic set-up (4.3), we only run experiments for large T (i.e. T = 50 and 200) to
avoid incurring bias of the OLS estimator for short panels.2

A number of statistics are used to assess the performance of our graph estimators. In terms
of recovery of the network structure (provided by the non-zero coefficients in �), we consider
the receiver operating characteristic (ROC) curve, which plots the true positive rate (percentage
of non-zeros, i.e. links, correctly estimated as non-zero) versus the false positive rate (percentage
of zeros incorrectly estimated as non-zeros), as the tuning parameter, ρG, varies. We summarize
ROC curves by providing the maximum F1 score and the area under the curve (AUC), both
averaged across the R replications. The F1 score is defined by (2TP/(2TP + FN + FP)), with
TP, FP and FN being the true positive, the false positive and the false negatives (number of non-
zeros incorrectly detected as zeros), respectively. In terms of estimation of the precision matrix,
we report the average entropy loss (EL) and the average Frobenius loss (FL), defined by

EL = Tr(�−1�̂) − ln |�−1�̂| −N, (4.6)

FL = ‖� − �̂‖2
F

‖�‖2
F

. (4.7)

When computing EL and FL, we use the rotation information criterion (RIC) – see Lysen (2009)
– to select the optimal regularization parameter (and associated optimal precision matrix). Only
for selected combinations ofN and T , we also provide graphs with the ROC curves. As for β, we

2 When T is short, our approach can be used in combination with methods for estimating short dynamic panels, such
as the generalized method of moments by Arellano and Bond (1991).
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Table 1. Properties of block-GLASSO and conventional GLASSO in model (4.1)–(4.2), β = 0.

N T G Block-GLASSO Conventional GLASSO

F1 AUC EL FL F1 AUC EL FL

50 200 25 0.929 0.881 2.894 0.015 0.869 0.551 15.063 0.491
50 200 10 0.923 0.906 0.800 0.003 0.638 0.285 19.694 0.472
50 50 25 0.828 0.818 6.099 0.056 0.719 0.509 27.918 0.679
50 50 10 0.817 0.786 1.562 0.010 0.670 0.457 27.650 0.678
50 10 25 0.665 0.400 13.167 0.571 0.578 0.172 43.232 0.829
50 10 10 0.707 0.640 3.668 0.063 0.548 0.147 65.296 0.827

100 200 50 0.948 0.894 6.458 0.015 0.863 0.529 35.085 0.538
100 200 20 0.944 0.912 1.970 0.003 0.668 0.303 45.417 0.531
100 50 50 0.819 0.772 12.855 0.053 0.689 0.415 61.453 0.717
100 50 20 0.801 0.812 3.821 0.010 0.597 0.281 84.888 0.710
100 10 50 0.620 0.207 26.570 0.601 0.523 0.079 86.485 0.827
100 10 20 0.675 0.475 8.299 0.064 0.498 0.071 135.156 0.838

Note: F1 is the F1 score, AUC is the area under the ROC, EL is the average EL in (4.6) and FL is the average Frobenius
Loss in (4.7).

Table 2. Properties of block-GLASSO with large N in model (4.1)–(4.2), β = 0.

N T G F1 AUC EL FL

500 20 50 0.657 0.421 13.757 0.011
500 20 100 0.656 0.248 33.660 0.029
500 20 250 0.616 0.092 94.290 0.168

1,000 20 50 0.649 0.402 12.306 0.005
1,000 20 100 0.631 0.232 30.079 0.011
1,000 20 250 0.613 0.094 90.020 0.040

2,000 20 50 0.641 0.388 11.429 0.003
2,000 20 100 0.624 0.228 28.523 0.010
2,000 20 250 0.609 0.090 87.742 0.009

Note: F1 is the F1 score, AUC is the area under the ROC, EL is the average EL in (4.6) and FL is the average Frobenius
loss in (4.7).

report bias, root mean square error (RMSE), empirical size and power of the OLS estimator of
β and the feasible generalized least-squares (GLS) estimator implemented using �̂ as estimate
of �. In computing the empirical size, we set the nominal size to 5%, while in calculating the
power we assume as an alternative hypothesis H1 : β = 0.95.

4.1. Results

The results are summarized in Tables 1–6 and Figures 1–2. The results from Table 1 show
that, when data have block-wise dependence structure, our method greatly outperforms the
conventional GLASSO for all combinations of N , T and G. In particular, the F1 score and
AUC show that block-GLASSO has higher true positive rates and substantially lower false
positive rates, while the EL and FL are always lower for block-GLASSO, indicating that the
latter provides a better estimation of the precision matrix. However, it is interesting to note
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Table 5. Properties of block-GLASSO and conventional GLASSO in model (4.1)–(4.2): non-normal errors,
β = 0.

N T G Block-GLASSO Conventional GLASSO

F1 AUC EL FL F1 AUC EL FL

50 200 25 0.930 0.881 26.885 0.604 0.639 0.280 66.760 0.832
50 200 10 0.919 0.903 34.697 0.636 0.639 0.280 66.760 0.832
50 50 25 0.829 0.814 26.803 0.576 0.726 0.508 43.637 0.823
50 50 10 0.819 0.830 34.572 0.627 0.621 0.347 67.244 0.835
50 10 25 0.681 0.413 26.492 0.515 0.596 0.183 44.165 0.827
50 10 10 0.712 0.653 33.972 0.590 0.551 0.147 67.892 0.839

100 200 50 0.945 0.890 51.858 0.605 0.860 0.522 84.741 0.822
100 200 20 0.936 0.913 69.041 0.636 0.614 0.262 133.373 0.832
100 50 50 0.818 0.769 51.977 0.578 0.699 0.417 85.726 0.825
100 50 20 0.800 0.810 68.965 0.628 0.594 0.274 134.467 0.836
100 10 50 0.639 0.216 51.495 0.526 0.541 0.083 86.977 0.829
100 10 20 0.682 0.486 67.671 0.588 0.500 0.071 135.553 0.839

Note: In calculating the empirical size, the nominal size is set to 5%, while in calculating the power we assume as an
alternative hypothesis H1: β = 0.95. F1 is the F1 score, AUC is the area under the ROC, EL is the average EL in (4.6)
and FL is the average FL in (4.7).

that when T = 10 and G = N/2 the block-GLASSO does not perform well relative to other
cases, and its properties are much worse than the case T = 10 and G = N/5. More generally,
Tables 1 and 2 show that for the same pair of N and T , the properties of block-GLASSO
deteriorate as G rises, thus confirming our theoretical results that, holding N and T fixed, the
estimation error is higher whenG is large or, equivalently,M small. This result is also confirmed
by Figure 1, showing the ROC curves for the block-GLASSO for varying N , T and G. As
expected, the performance of the estimator improves as N increases (and hence M) for fixed T
and G, and as T increases for fixed N and G, while it deteriorates as G rises, holding N and T
constant.

Table 3 reports the small-sample properties of OLS and GLS estimators as well as of the
block-GLASSO. As expected in the case of cross-sectionally correlated regression errors, the
OLS estimator, while having a bias comparable to that of the GLS, has higher RMSE and is
oversized for all combinations of N , T andG. Hence, ignoring the network leads to severe over-
rejection of the null hypothesis. Looking at the GLS estimator, its empirical size is close to the
nominal size of 5% in most cases, although some size distortions can be observed when T = 10
and G = N/2, namely, for short panels characterized by the presence of many, small groups. In
fact, under this case the block-GLASSO does not perform well, having small F1 and AUC and
large EL and FL, thus confirming our asymptotic results reported in Section 3. Similar results
can be observed in Table 4 for the case where the dependent variable is generated by the first-
order autoregressive model (4.3). Under non-normal errors (Table 5), the block-GLASSO still
performs well in detecting the network, as confirmed by F1 and AUC values similar to those
reported in Table 1, although its EL and FL are much higher than in the normal counterpart.

Table 6 shows results when the error covariance matrix displays general intra-block variation
(see (4.4) and (4.5)). It is interesting to observe that the empirical size of the GLS estimator
of β when ignoring the intra-block variation (block-GLASSO) is in some cases still close to
the nominal value of 5%. The GLS estimator based on the more general procedure (flexible
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Figure 1. Block-GLASSO ROC curves: varying values of (a) N , (b) T and (c) G. [Colour figure can be
viewed at wileyonlinelibrary.com]

Figure 2. Flexible block-GLASSO, group LASSO and conventional GLASSO: within-block variation,
N = 100, T = 200. [Colour figure can be viewed at wileyonlinelibrary.com]

block-GLASSO) shows a good performance only for smaller values ofG, perhaps because under
smallG (and hence largeM) the covariance of ȳgt better approximates the part of the covariance
that is block-wise. We also remark that the more flexible procedure is computationally much
slower than the block-GLASSO. Figure 2 shows the ROC for the flexible block-GLASSO and
the conventional GLASSO, as well as the group LASSO by Yuan and Lin (2006). The use of
a group penalty in the group LASSO encourages the recovery of the block structure, although
it does not impose it as in the block-GLASSO. Because the group LASSO has been developed
in the context of regression analysis, we apply it to our model as a neighbourhood selection
problem for each node of the network. It is interesting to see from Figure 2 that the group LASSO
approach performs less well than the block-GLASSO, but slightly better than the conventional
GLASSO, as the latter does not use any a priori information about the blocks.

C© 2016 The Authors. The Econometrics Journal published by John Wiley & Sons Ltd on behalf of Royal Economic Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/article/20/3/S61/5056392 by guest on 01 M

ay 2024



Sparse estimation of huge networks with a block-wise structure S77

5. AN EMPIRICAL EXAMPLE: SPATIAL SPILLOVERS IN REGIONAL
GROWTH AND CONVERGENCE IN EUROPE

We use block-GLASSO for estimating a growth equation in per-capita gross value-added and
for testing for economic convergence of European regions. The debate on whether there exists
convergence in per-capita input and income across nations is still open, with results obtained
that differ depending on the sample period and the regions included, as well as the estimation
methods adopted. A number of authors have highlighted the importance of incorporating spatial
effects when studying economic growth and regional convergence and have proposed the use of
spatial econometric techniques; see, among others, Rey and Montouri (1999), Ertur and Koch
(2007) and Cuaresma and Feldkircher (2013). Spatial dependence in regional economic growth
is likely to arise from technology spillover across neighbouring regions and from factor mobility,
as well as from the presence of spatial heterogeneity (Rey and Montouri, 1999). In the presence
of spatial dependence in economic growth data, if ignored, estimates of the speed of income
convergence across geographical regions will be biased.

We contribute to this literature by estimating a growth equation with spatial spillovers and
we use the block-GLASSO procedure to estimate the spatial weights matrix. We use data on
gross value-added per worker (GVA) for 1,088 NUTS3 observed over the period 1980–2012 in
14 European countries.3 The NUTS classification is a hierarchical system for dividing up the
economic territory of the European Union (EU) for the purpose of socio-economic analysis of
the regions and design of EU regional policies. It subdivides the EU territory into regions at the
three different levels, NUTS1, NUTS2 and NUTS3, moving from larger to smaller geographical
units.

Standard neo-classical growth models state that countries will converge to the same level
of per-capita income in the long run, independently of initial conditions, as long as there
are diminishing returns to capital and labour and perfect diffusion of technology. Under this
framework, poorer countries and regions grow faster than richer countries and a negative
relationship between average growth rates and initial income levels is expected. Let yi,t+k =
ln(GVAi,t+k/GVAit) be the growth in per-capita GVA (expressed in euros at 2005 prices) for the
NUTS3 region i over a set of non-overlapping time intervals of length k. Our empirical model is
the Gaussian CAR model for yit

E(yi,t+k|yj,t+k, j = 1, 2, . . . , N, j �= i) = α + β ln(GVAit)

+
N∑
j=1

wij (yj,t+k − α − β ln(GVAjt)), (5.1)

Var(yi,t+k|yj,t+k, j = 1, 2, . . . , N, j �= i) = σ 2
i , (5.2)

where we set k = 3. Hence, a negative coefficient attached to the variable ln(GVAit) indicate
that NUTS3 regions with a low initial level of income grow faster than regions with higher
initial levels of income, supporting the hypothesis of absolute convergence. The use of non-
overlapping time intervals is common practice in the cross-country growth literature, as this

3 The countries included in the analysis are: Austria, Belgium, Germany, Denmark, Spain, Finland, France, Ireland,
Italy, Netherlands, Norway, Portugal, Sweden and the United Kingdom.
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Table 7. Descriptive statistics for NUTS3 regions.

Average Std dev. Min Max

Per-capita GVA (euros) 19,818.3 8,817.7 1,842.0 159,936.1
Growth in per-capita GVA (%) 5.005 7.611 −63.661 47.183

would decrease the influence of short-term shocks and business cycles on economic activity,
while revealing long-run relationships. Compared to longer time intervals, the use of three-year
non-overlapping intervals allows us to keep a sufficient number of observations to exploit the
time dimension of panel data. Following existing studies on spatial interaction effects in regional
economic growth models, the inclusion of the spatial lag of the dependent variable (growth rate)
amongst the regressors in (5.1) aims at capturing the effect of inter-regional flows of labour,
capital and technology on growth and convergence; see Rey and Montouri (1999), Ertur and
Koch (2007) and Cuaresma and Feldkircher (2013).

In (5.1), wij is the (i, j )th element of an N ×N matrix, W, known as the spatial weights
matrix, such thatwii = 0. In spatial econometrics, W is often assumed to be known using a priori
information (e.g. from economic theory) on how statistical units potentially interact. Spatial
weights based on geographical or travel distance, or contiguity have been used for modelling
spatial spillovers in the economic growth equation, although this has been pointed out as being
unrealistic (Cuaresma and Feldkircher, 2013). In this application, we keep W as unknown and
estimate it using our block-GLASSO approach. While the unit of analysis is the NUTS3 region,
we take as groups larger geographical areas, given by 80 NUTS1 and then 211 NUTS2 European
regions. Other grouping criteria may undoubtedly be suggested, for example by looking at the
literature on club convergence – see, among others, Corrado et al. (2005) – or using methods for
identifying communities in social networks from the graph modelling literature (Freeman, 1979).

It is interesting to observe that (5.1) and (5.2) for the conditional distribution imply the joint
normal distribution (Besag, 1974).

yt ∼ N (μt ,�), (5.3)

where � = (IN − W)−1
, with 
 = diag(σ 2
1 , σ

2
2 , . . . , σ

2
N ) and μ = α + β ln(GVAt ), provided

that (IN − W) is invertible and (IN − W)−1
 is symmetric and positive-definite. The reverse is
also true: namely, if yt ∼ N (μt ,�), where � is an N ×N positive definite matrix, then also
(5.1) and (5.2) hold, with

wij = −θij

θii
, (5.4)

Var(yit|yjt, j = 1, 2, . . . , n, j �= i) = θ−1
ii ; (5.5)

see Mardia (1988) and Meinshausen and Buhlmann (2006). It follows that the problem of
estimating wij in the CAR model (5.1)–(5.2) is equivalent to determining whether yit and yjt

are conditionally independent, i.e. θij = 0. Hence, in this application, we estimate W via � by
imposing a block structure on � (and hence on � and W).

Table 7 offers some descriptive statistics on the variable under study, at the NUTS3 level. It
is interesting to observe that the region with the highest level of per-capita GVA (159,936 euros)
is the London area, while the region with the lowest per-capita GVA (1,842 euros) is North
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Table 8. Regression results.

OLS GLS: NUTS1 GLS: NUTS2

ln(GVAit) −0.273* (0.008) −0.227* (0.009) −0.221* (0.011)
Speed of convergence 0.106 0.086 0.083
Half-life 7.273 8.789 9.045
R2 0.121 0.133 0.134

G – 80 211

Percentage of links – 36.22 17.23
Average path length – 1.629 1.845

Graph centrality measures:
Degree – 0.126 0.065
Closeness – 0.101 0.052
Betweenness – 0.010 0.006

Note: NUTS3 regional dummies and time dummies have been included in all regressions. * denotes significant at the 5%
level. Standard errors (given in parentheses) robust to unknown heteroscedasticity have been adopted.

Portugal, which is also the region with the highest growth in per-capita GVA (47.183%) over the
three-year time interval.

Table 8 reports estimates of growth equations (5.1) and (5.2). The first column provides OLS
estimates ignoring the spatial structure of data, while the second and third columns show GLS
estimates where contemporaneous correlation is incorporated and estimated by block-GLASSO.
The value of the coefficient of the initial per-capita GVA of NUTS 3 provinces is negative and
significant, showing the presence of (absolute) convergence in all regressions. However, when
adopting the GLS approach based on the block-GLASSO procedure, the coefficient is smaller,
leading to lower speed of convergence towards the steady state, and a longer time necessary for
the regional economies to cover half of the initial lag from their steady states, when compared to
traditional OLS estimation. Goodness of fit for all regressions is low, ranging between 12% and
13%, indicating that some important factors have not been included in the models.

The lower panel of the table reports the percentage of links, the average path length and
a set of centrality measures proposed by graph theory – see Borgatti and Everett (2006) and
Freeman (1979) – that are widely used to characterize the compactness of graphs. The average
path length is given by the average length of all the shortest paths from or to the vertices in the
network, giving an indication of how dense the network is. The graph-level centrality measures
are based on three node-level centrality indicators (i.e. degree, closeness and betweenness),
which characterize different aspects of the relative importance of each node and are commonly
used in the applied literature.4 All graph-level measures vary between zero and one, and assume
their highest value when the graph has a star or wheel shape. Looking at the percentage of
links, it emerges that, as expected, the estimated networks are quite dense and connected when
using either NUTS1 or NUTS2 as blocks. This is confirmed by the average path length, which
is very low, being around 1.6–1.8. However, the graph centrality measures are close to zero,
indicating that there is no single region dominating all other regions. This is also evident from
Figure 3, which shows the adjacency graph resulting from the estimation of model (5.1)–(5.2)
via block-GLASSO where NUTS1 regions are taken as blocks. We do not report the graph when

4 Degree is the number of links for each unit, closeness is the inverse of the average length of the shortest paths to/from
all the other vertices in the graph and betweenness is the number of times a node acts as a bridge between other nodes.
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Figure 3. Adjacency graph of per-capita GVA growth: 1980–2012. [Colour figure can be viewed at
wileyonlinelibrary.com]

using NUTS2 regions as blocks, because these are too many. It is interesting to observe that the
most connected NUTS1 are also the regions with the highest per-capita GVA, namely Greater
London, Norway and South Netherlands, while the areas with a smaller number of connections
are Northern Ireland and northern areas of the United Kingdom, which are also geographically
isolated from the other regions. Also, in most cases, regions from the same country are connected,
thus supporting previous studies using geographical contiguity or geographical distance as a
metric of distance.

6. CONCLUDING REMARKS

In the last few years, several methods have been proposed for reducing the dimensionality
problem when estimating graphical models. These methods usually exploit a priori information
on possible independence between groups of observations. In this paper, we focus on the
estimation of a Gaussian graphical model with a large number of variables, where dependence
between variables is block-wise because of, for example, a hierarchical or group membership
structure. We propose an estimation strategy based on the GLASSO methodology applied to
group averages of observations, and we derive the large-sample properties of the proposed
estimator. Our Monte Carlo experiments show that our proposed estimator greatly outperforms
the conventional GLASSO when data have block-wise dependence. These experiments also show
that our procedure is robust to various deviations from block-wise dependence. For example,
the method still delivers valid inference when there is some within-group variation, or under
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non-normal errors. We have shown the usefulness of this procedure on an empirical study of
economic convergence of European regions, showing that accounting for block-wise dependence
helps us to better estimate convergence parameters. Although there are many examples in
economics where the membership is given, in many others this is not true, making the assumption
that the block structure is known a priori too restrictive. One interesting extension of this work
would be to determine endogenously the inclusion of a unit in a group as well as the size and
number of the groups, following the work by Lin and Ng (2012), Bonhomme and Manresa
(2015) and Ando and Bai (2016). Future work should also consider a block-wise structure for
the covariance matrix of a VAR model, within the setting proposed by Barigozzi and Brownlees
(2016) and Abegaz and Wit (2013). Finally, while our approach does not allow us to estimate the
covariance matrix arising from one or more common pervasive factors, it would be interesting to
study the properties of an estimation procedure that first controls for common pervasive factors
and then estimates the network structure using de-factored residuals.
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Schelldorfer, J., L. Meier and P. Bühlmann (2014). GLMMLasso: an algorithm for high-dimensional
generalized linear mixed models using L1-penalization. Journal of Computational and Graphical
Statistics 23, 460–77.

Sirakaya, S. (2006). Recidivism and social interactions. Journal of the American Statistical Association
101, 863–75.

Stock, J. and M. Watson (2010). Dynamic Factor Models. Oxford: Oxford University Press.
Vinciotti, V., L. Augugliaro, A. Abbruzzo and E. Wit (2016). Model selection for factorial Gaussian

graphical models with an application to dynamic regulatory networks. Statistical Applications in
Genetics and Molecular Biology 15, 193–212.

Wit, E. and A. Abbruzzo (2015). Factorial graphical models for dynamic networks. Network Science 3,
37–57.

Yuan, M. and Y. Lin (2006). Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society, Series B 68, 49–67.

APPENDIX

Log-likelihood function for networks with block-wise dependence structure

Let S be the N ×N sample covariance matrix based on a sample of size T from the random vector, y:

S = 1

T

T∑
t=1

⎛
⎜⎜⎝

y2
1t y1t y2t . . . y1t yNt

y2t y1t y2
2t . . . y2t yNt

. . . . . . . . .

yNty1t . . . . . . y2
Nt

⎞
⎟⎟⎠ .

To obtain the log-likelihood function, we first compute simplified expressions for ln |�| and Tr(S�), with
� = �−1 and � given by expression (2.4). Using results in Magnus (1982), we have

ln |�| = ln |
(

(M�G + �G)−1 ⊗ 1

M
1M

)
+

(
�G

−1 ⊗ (IM − 1

M
1M )

)
| (A.1)

= − ln |M�G + �G| − (M − 1) ln |�G|. (A.2)

Letting �G = �G + (1/M)�G and φgh be the generic element of �G = �−1
G , we have

Tr(S�) =
N∑

i,j=1

sijθji
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=
N∑
i=1

siiθii +
∑

i,j∈g,i �=j

G∑
g=1

sijθji +
G∑

g,h=1:g �=h

∑
i∈g:j∈h

sijθji

=
G∑
g=1

∑
i∈g
sii

(
1

M2
φgg + M − 1

M
γ −1
g

)
+

G∑
g=1

∑
i,j∈g:i �=j

sij

(
1

M2
φgg − 1

M
γ −1
g

)

+ 1

M2

G∑
g,h=1

∑
i∈g:j∈h:g �=h

sijφhg

= 1

M2

G∑
g,h=1

∑
i∈g,j∈h

sijφgh + M − 1

M

G∑
g=1

∑
i∈g
siiγ

−1
g − 1

M

G∑
g=1

∑
i,j∈g:i �=j

sijγ
−1
g .

Replacing the expressions for sij , we obtain

Tr(S�) = 1

T

1

M2

T∑
t=1

G∑
g,h=1

∑
i∈g:j∈h

yityjtφgh + M − 1

M

1

T

T∑
t=1

G∑
g=1

∑
i∈g
y2

itγ
−1
g

− 1

M

1

T

T∑
t=1

G∑
g=1

∑
i �=j :i,j∈g

yityjtγ
−1
g .

It follows that the likelihood function is

l(θ ) ≈ − ln |M�G + �G| − (M − 1) ln |�G|

− 1

MT

T∑
t=1

(
1

M

G∑
g,h=1

∑
i∈g:j∈h

yityjtφgh + (M − 1)
G∑
g=1

∑
i∈g
y2

itγ
−1
g −

G∑
g=1

∑
i �=j :i,j∈g

yityjtγ
−1
g

)
.

Proof of Theorem 3.1: Note that, from (2.6), and using (3.4), we have

� =
(

1

M
�G ⊗ 1

M
1M

)
+

(
�G

−1 ⊗
(

IM − 1

M
1M

))
.

Hence, it follows that

�̂ − � =
(

1

M
(�̂G − �G) ⊗ 1

M
1M

)
+

(
(�̂

−1
G − �−1

G ) ⊗ (IM − 1

M
1M )

)
.

Noting that, given two matrices A and B, ‖A ⊗ B‖F = ‖A‖F ‖B‖F – see, e.g. Bernstein (2005), p. 676 –
and because ‖(1/M)1M‖F = (1/M)‖1M‖F = 1 and ‖IM − (1/M)1M‖F = √

M − 1, we have

‖�̂ − �‖F ≤ 1

M
‖�̂G − �G‖F + √

M − 1‖�̂−1
G − �−1

G ‖F .

By Theorem 1 in Rothman et al. (2008), we have

‖�̂G − �G‖F = Op

(√
(G+ sG) lnG

T

)
;

see also Theorem 1 in Lam and Fan (2009). Further, using the properties of moments of quadratic forms, it
is easy to show that γ̂g − γg = Op(1/

√
MT), so that

‖�̂−1
G − �−1

G ‖F = Op

(√
G

MT

)
. (A.3)
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It follows that

‖�̂ − �‖F = Op

(
1

M

√
(G+ sG) lnG

T

)
+Op

(√
1

MT

)

= Op

(
1

M

√
(G+ sG) lnG

T

)
.

�
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