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Théorique et Appliquée BP12, 91680 Bruyères-Le-Châtel, France
E-mail: marc.barthelemy@cea.fr and aflammin@indiana.edu

Received 29 March 2006
Accepted 10 July 2006
Published 24 July 2006

Online at stacks.iop.org/JSTAT/2006/L07002
doi:10.1088/1742-5468/2006/07/L07002

Abstract. Inspired by studies on the airports’ network and the physical
Internet, we propose a general model of weighted networks via an optimization
principle. The topology of the optimal network turns out to be a spanning
tree that minimizes a combination of topological and metric quantities. It is
characterized by strongly heterogeneous traffic, non-trivial correlations between
distance and traffic and a broadly distributed centrality. A clear spatial
hierarchical organization, with local hubs distributing traffic in smaller regions,
emerges as a result of the optimization. Varying the parameters of the cost
function, different classes of trees are recovered, including in particular the
minimum spanning tree and the shortest path tree. These results suggest that a
variational approach represents an alternative and possibly very meaningful path
to the study of the structure of complex weighted networks.
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Transportation and communication infrastructures such as the airports’ network and the
physical Internet are characterized by broad distributions of traffic [1, 2], betweenness
centrality [3] and in some case also of degree [4]. Strong, nonlinear traffic–distance and
traffic–connectivity correlations have also been reported [1, 2]. Modelization attempts
with ingredients such as random weights, dynamical rules or weight-topology coupled
dynamics (see e.g. [2] and references therein) have mainly focused on growth processes,
and variational approaches have instead mainly been used only in practical problems by
road traffic engineers [5]. Both the problem of optimal traffic [6] on a network and of
optimal networks [7] have a long tradition in mathematics and physics. It is well known,
for example, that the laws that describe the flow of currents in a resistor network [8] can
be derived by minimizing the energy dissipated by the network [9]. On the other hand,
optimal networks have shown to be relevant in the study of the mammalian circulatory
system [10], food webs [11], general transportation networks [12], metabolic rates [13], river
networks [14], and gas pipelines or train tracks [15]. All these studies share the fact that
the nodes of the network are embedded in a d-dimensional euclidean space, which implies
that the degree is almost always limited and the connections are restricted to ‘neighbours’
only. A second broad class of optimal networks where spatial constraints are absent has
also been investigated recently. It has been shown, for example, that optimization of
both the average shortest path and the total length can lead to small-world networks [16]
and, more generally, degree correlations [17] or scale-free features [18] can emerge from an
optimization process. Cancho and Sole [19] showed that the minimization of the average
shortest path and the link density leads to a variety of networks, including exponential-like
graphs and scale-free networks. Guimera et al [20] studied networks with minimal search
cost and found two classes of networks: star-like and homogeneous networks. Finally,
Colizza et al [21] studied networks with the shortest route and the smallest congestion
and showed that this interplay could lead to a variety of networks when the number of
links per node is changed.

In this letter, mostly inspired by studies on airports’ networks [1, 4], we investigate
the important case for which nodes are embedded in a two-dimensional plane but links
are not constrained (as for air routes) to connect ‘neighbours’. We propose a cost function
that depends both on the length and the traffic carried by the links and show that the
resulting optimal network is hierarchically organized in space and displays a complex
traffic structure. We consider a set of N points (‘airports’) randomly distributed in a
square of unitary area and we would like to build a network (air routes) that connects all
points. The cost or weight wij associated with ‘travelling’ along a link (i, j) is a function
of both the length dij of the link and of the traffic tij that it carries. In the air-network
analogy, the quantity tij represents the number of passengers on the link (i, j) and is
symmetrical, tij = tji. To travel from a generic node i0 to another generic node ip along a
specific path {i0, i1, i2, . . . , ip−1, ip}, the cost to be paid is the sum of the weights wik,ik+1

associated with the links that compose the path, and when more than one path is available
we assume that the most economical one is chosen:

Ci0,ip = min
p∈P(i0,ip)

∑

e∈p

we (1)

where the minimization is over all paths p belonging in the set of paths P(i0, ip) going
from i0 to ip (we is the weight of the edge e). If there is no path between a pair of nodes,
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the corresponding cost will be taken as being equal to infinity. This choice ensures that
the optimal network will be connected. The global quantity E0 that we wish to minimize
is then the average cost to pay to travel from a generic node to another:

E0({tij}) =
2

N(N − 1)

∑

i<j

Ci,j . (2)

Our purpose is therefore to find the traffic {t∗ij} carried by the links and which
minimizes (2), with the only constraints that all tij ≥ 0 and that the total traffic
T =

∑
i<j tij is fixed. In this letter, we choose as the weight of a link e the ratio of

its length to traffic: we = de/te (with this choice, the value of T fixes the scale of traffic
and does not affect the topology of the optimal network, since a rescaling of the total
energy by a constant factor will not affect the minimization3). Although this choice
is not the most general, it naturally verifies the expectation that the weight increases
with dij and decreases with tij. This last condition can be easily understood in the case
of transportation networks and means that it is more economic to travel on links with
large traffic, reducing the effective distance—or the marginal cost—of the connection. We
search for the minimum-realizing traffic using a zero-temperature metropolis algorithm.
The elementary move consists of transferring a random fraction of the traffic carried by
a link to another one (the total traffic being fixed). We choose at random two links (i, j)
and (i′, j′) and transfer weights between them according to

tij → tij − αtij (3)

ti′j′ → ti′j′ + αtij (4)

where α is a uniform random number between zero and one. The sign of α is positive with
probability p and negative with probability 1 − p (if one of the links has a zero weight,
the transfer can only be made in one direction; in other cases p = 0.5 ensures a quick
convergence). If, after the transfer, the weight of a link is zero, the corresponding link
is deleted. The minimum-cost path between two points is recalculated at any step using
Djikstra’s algorithm [7]. We compute the energy difference, ∆ = E ′

0 −E0, and only if it is
negative is the transfer accepted. We test a number of order O(N2) of such transfers which
converges to an optimal network that minimizes the energy E0. The initial topology is a
complete graph with random weights on the links. As we show below, the optimal solution
is characterized by a non-trivial topology and spatial organization which results as the
compromise of two opposing forces: the need for short routes and traffic concentration
on as few paths as possible. The interplay between topology and traffic naturally induces
the observed correlations between degree, distance and traffic itself.

Numerical simulations show that the optimal network is a tree. A simple example
supporting this finding is obtained by considering an isoceles triangle ABC with d(A, C) =
d(B, C) = d and d(A, B) = d′; optimization leads to the values tAC = tBC ≈ T/2
and tAB ≈ 0 when d � d′. The minimum energy is thus (at leading order in d)
E0 ≈ d/tAC + d/tBC ≈ 4d/T . When we remove the link BC and thus kill the loop, the
traffic on AC becomes approximately twice as high, i.e. tAC ≈ T (and tBC ≈ tAB ≈ 0),
but the minimum energy at leading order is E ′

0 ≈ 2d/tAC ≈ 2d/T , which is lower than E0.

3 We chose tij to be integer for faster simulations, but the results are the same with real tij .
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(a)

(c)

(b)

(d)

Figure 1. Different spanning trees obtained for different values of (µ, ν) in
equation (6) obtained for the same set of N = 1000 nodes. (a) Minimum
spanning tree obtained for (µ, ν) = (0, 1). In this case the total distance is
minimized. (b) Optimal traffic tree obtained for (µ, ν) = (1/2, 1/2). In this case,
we have an interplay between centralization and minimum distance resulting in
local hubs. (c) Minimum euclidean distance tree obtained for (µ, ν) = (1, 1).
In this case, centrality dominates over distance and a ‘star’ structure emerges
with a few dominant hubs. (d) Optimal betweenness centrality tree obtained for
(µ, ν) = (1, 0). In this case, we obtain the shortest path tree which has one star
hub (for the sake of clarity, we omitted some links in this last figure).

This example shows that optimization reduces the number of links joining nodes in the
same regions and increases the traffic on the remaining links. Loops between nodes in the
same neighbourhood then become redundant.

The optimal network being a tree enormously simplifies the computation of the energy.
Since only a single path exists between any two nodes in a tree, the energy (2) can be
rewritten as E0 =

∑
e∈T bede/te, where be is the edge-betweenness [22] and counts the

number of times that e belongs to the shortest path between two nodes. The optimal
traffic (with the same constraints as above) is given by te = T

√
bede/

∑
e

√
bede and the

topology of the ‘optimal traffic tree’ (OTT) can then be obtained by minimizing

E =
∑

e∈T

√
bede. (5)

The minimal configuration can now be searched by rewiring links. Replacing link (i, j)
by (i, j′) modifies only the centralities along the path between j and j′, which implies
that our calculation has a complexity of order O(N) and allows computations over very
large networks (the same algorithm was used in the context of river networks [23]).
We expect to obtain something very different from the classical (euclidean) minimum
spanning tree (MST) [7], since E involves a combination of metric (distance) and
topological (betweenness) quantities. The expression equation (5) suggests an interesting
generalization given by the optimization of

Eµν =
∑

e∈T
bµ
e dν

e (6)

where µ and ν control the relative importance of distance against topology as measured
by centrality. Figure 1 shows examples of spanning trees obtained for different values of
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Figure 2. Betweenness centrality distribution for the MST and for the OTT. The
lines are power-law fits and give the theoretical result δ = 4/3 for the MST and
the value δ � 2.0 for the OTT (N = 104, 100 configurations).

(µ, ν). For (µ, ν) = (0, 1), one obtains the euclidean minimum spanning tree (figure 1(a))
which can also be obtained by minimizing the total weight

∑
e we and gives traffic

te = T
√

de/
∑√

de. For (µ, ν) = (1/2, 1/2), we obtain the OTT (figure 1(b)) which
displays an interesting interplay between distance and shortest path minimization (see
below). For (µ, ν) = (1, 1), the energy is proportional to the average shortest weighted
path (with weights equal to euclidean distance (figure 1(c)). When (µ, ν) = (1, 0), the
energy (6) is proportional to the average betweenness centrality and therefore to the
average shortest path

∑
e be ∝ �. The tree (1, 0) shown in figure 1(d) is thus the shortest

path tree (SPT) with an arbitrary ‘star-like’ hub (a small non-zero value of ν would select
the closest node to the gravity centre as the star). The minimization of equation (6) thus
provides a natural interpolation between the MST and the SPT, a problem which was
addressed in previous studies [24]. The degree distribution for all cases considered above
is not broad (with the possible exception (µ, ν) = (1, 1)—a complete inspection of the
plane (µ, ν) is left for future studies), possibly as a consequence of spatial constraints. In
particular, the degree distribution for the OTT is well fitted by an exponential function.

It has been shown that trees can be classified in ‘universality classes’ [25, 26] according
to the size distribution of the two parts in which a tree can be divided by removing a link
(or the sub-basins areas distribution in the language of river network). We define Ai and
Aj as the sizes of the two parts in which a generic tree is divided by removing the link (i, j).
The betweenness bij of link (i, j) can be written as bij = 1

2
[Ai(N −Ai)+Aj(N −Aj)], and

the distributions of As and bs can easily be derived one from the other. It is therefore not
surprising that the same exponent δ characterizes both P (A) ∼ A−δ and P (b). While we
obtain the value δ = 4/3 for the MST [25], for the OTT we obtain (figure 2) an exponent
δ � 2, which is a value also obtained for trees grown with a preferential attachment
mechanism [27] (see also [28] for a supporting argument). Interestingly, most real-world
networks are also described by this value, δ � 2 [3]. The OTT thus tends to have a
more uniform centrality with respect to the MST [29], with important consequences on
the vulnerability of the network, since there is no clearly designated ‘Achille’s heel’ for
the OTT.
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Figure 3. Hierarchical organization emerging for the optimal traffic tree (µ, ν) =
(1/2, 1/2) (N = 1000 nodes). Longer links lead to regional hubs, which in turn
connect to smaller hubs distributing traffic in smaller regions.
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Figure 4. Average euclidean size of the largest cluster remaining after deleting
links ranked according to their length (in decreasing order). This plot is obtained
for one typical configuration of size N = 1000 and a square of area set to
one. The decrease observed for the OTT is consistent with a hierarchical spatial
organization, as is visually evident from figure 3.

We now investigate the traffic properties of the OTT and we find that the traffic
scales as tij ∼ dτ

ij with τ ≈ 1.5 showing that large traffic is carried over large distance and
is then dispatched on smaller hubs that distribute it on still smaller regions. Despite the
limited range of degrees, we also observe for the strength [1] si =

∑
j tij a superlinear

behaviour with the degree. This result demonstrates the existence of degree–traffic
correlations, as observed for the airport network for example [1] which can emerge from a
global optimization process. The spatial properties of the OTT are also remarkable, and
it displays (figure 3) a hierarchical spatial organization where long links connect regional
hubs, which in turn are connected to sub-regional hubs, etc. This hierarchical structure
can be probed by measuring the average euclidean distance between nodes belonging to the
largest cluster obtained by deleting recursively the longest link. For the OTT (figure 4),
we observe a decrease of the region size, demonstrating that longer links connect smaller
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regions, a feature absent in non-hierarchical networks such as the MST, the SPT or the
random tree (figure 4).

In summary, we showed that the emergence of complex structures in traffic
organization could be explained by an optimization principle. In particular, strong
correlations between distance and traffic arise naturally as a consequence of optimizing
the average weighted shortest path. In the optimal network, long-range links carry
large traffic and connect regional hubs dispatching traffic on a smaller scale, ensuring
efficient global distribution. These results suggest that the organization of the traffic
on complex networks and more generally the architecture of weighted networks could
in part result from an evolutionary process. The optimal networks obtained here are
trees, but some transportation networks contain loops which reflect the fact that other
ingredients are needed in order to describe them. Our results however suggest that some
transportation networks could possibly be seen as the superposition of many trees. It
would be interesting to check if this is the case for the world-wide airport network which
results from the superposition of individual airline company networks which are probably
close to trees. Finally, this study led us to propose a generalization of the usual minimum
spanning tree by introducing the centrality and allows one to interpolate from the MST
to the shortest path tree. This generalization however deserves further study and raises
interesting questions such as the crossover from different tree universality classes.

We thank Vittoria Colizza and Alessandro Vespignani for interesting discussions and
suggestions.

References
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