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The problem formulated below was motivated by that of de-

termining an interval containing the point at which a unimodal

function on the unit interval possesses a maximum, without postulat-

ing regularity conditions involving continuity, derivatives, etc. Our

solution is to give, for every e > 0 and every specified number N of

values of the argument at which the function may be observed, a pro-

cedure which is €-minimax (see (1) below) among the class of all se-

quential nonrandomized procedures which terminate by giving an

interval containing the required point, where the payoff of the com-

puter to nature is the length of this final interval. (The same result

holds if, e.g., we consider all nonrandomized procedures and let the

payoff be length of interval plus c or 0 according to whether the

interval fails to cover or covers the desired point, where c^l/Uif+i,

the latter being defined below.) The analogous problem where errors

are present in the observations was considered in [l ], but no optimum

results are yet known for that more difficult case.

Search for a maximum is a "second-order" search in the sense that

information is given by pairs of observations. Thus, if Xi<x2 and

f(xi)^f(x2), and / is a member of the class J described below, the

point xU) defined below (the point where / attains its maximum if

the latter exists) must lie to the left of x2. If we postulate only that

fEJy this is essentially the only information we have about jetf):

i.e., that future observations should be taken to the left of x2. Simi-

larly, the problem of finding the point xvl at which a strictly increas-

ing function / on the unit interval attains a value a (weaker restric-

tions on / can be made) is essentially first-order in the sense that

every single observation gives information about where to take the

next. (See [2; 3] for the corresponding statistical problem.) The mini-

max procedure in that case is successively to split the interval in

which xV] is known to lie into equal parts at the point of next ob-

servation, in an obvious manner. It may be fruitful to consider higher-

order search problems, as will be done in a future paper.

Let the class J consist of every function / from the closed unit

interval I into the reals (R) and for which there is an x^EI such

that/ is either strictly increasing for x^xU) and strictly decreasing

for x>x<J), or else strictly increasing for x <x(/) and strictly decreasing
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for x^xW. Let O denote the space of all closed intervals D which are

subsets of I. An element D£D will be called a terminal decision. Let

N be given integer =2. A (nonrandomized) strategy 5 is a set S

— {xi, gî, ■ • • , gx, s, t\ consisting of a number Xi£7, functions gk

from Ik~2 XR*~l into I (2gJfe = AT), and functions j and t from

jN-i xRN into I and with s = i. A strategy S is used as follows: one

observes (or computes) in order

f(xi),f(x2), ■ • • ,/(**)with xk = gk[x2, ■ ■ ■ , xk-i,f(xi), • • • ,f(xk-i)]

for 2^k^N (x2 = g2[f(xi)]), and  then  selects the closed  interval

D(f, S) = [s(x2, • • • , xñ, f(xi), ■ ■ • , f(xN)),

t(x2, • • • , xN,f(xi), • • • ,f(xN))]

as terminal decision. Let S at be the class consisting of every strategy

5 requiring N observations and for which x^'££>(/, 5) for all / in J.

Our problem is, given any e>0 and N^2, to find an S^EBn such

that

(1) sup L(D(f, Si)) ^    inf     sup L(D(f, S)) + e,
fGj ses* /ê7

where L(D) is the length of the interval D.

We shall now describe an S% which, it will be shown, satisfies (1).

Let Un be the rath Fibonacci number (£/o = 0, Ui = l, Un= U„-i

+ (7„_2 for »2:2). SJ is defined by *i = l/2, x2=l/2+e, and [s, t]
= [0, x2] or [«i, l] according to whether f(xi) ¡if(x2) or f(xi) <f(x2).

Suppose 5^_i has been defined (N^3). We then define S^ as follows:

Xi= Utf-i/Un+i, x2=1—Xi=Un/Un+i- According to whether f(xi)

^f(x2) or f(xi)<f(x2), let h(x)^xUN+i/Uff or h(x) = (— UN-\

+xUn+i)/Un, let y = h(x) and f*(y)—f(h~'i(y)) for y£7, and define
y2 = h(xi) or yi = Ä(x2) in the respective cases. Thus, y2= Un-\/Un or

3'i= í/jv-ü/í/jv. Use Sjy_i on the variable y and function/* (for y£7),

noting that either f*(y2) or /*(yi) has already been observed. Ob-

viously, S% £S at.

We shall now prove inductively that S^ satisfies (1). This is ob-

vious for N=2. Assuming it to be true for N^n, we now prove (1)

to hold for iV=ra+l. Suppose the latter to be false. Then, since

L(D(f, S£))=e+l/Z7AM-i, there would exist a procedure 5£Sn+i for

which

(2) sup L(D(f, 3)) < l/tfn+2.
re7

We may suppose that, under S, g2 is a constant. For otherwise we
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could define a procedure S by using the xi of S and thereafter using

S on the function f(x) —f(xi) ; the g2 of this procedure is then con-

stant (equal to the g2(0) of S), and S clearly satisfies (2) (with S

replaced by S) if S does. We hereafter denote the xi and x2 of S by b

and è+a = l— c (say) with a^O; the corresponding values for S*+i

will be denoted by d = Un/Un+2 and d+e = l—d= Un+x/Un+i-

We next show that, as a consequence of (2),

(3) a + 6 :£ d + e   and    a + c ^ d + e.

We prove the first inequality of (3), the proof of the second being

similar. Suppose, to the contrary, that a+b>d+e. We shall con-

struct a procedure S'ESn for which

(4) sup L(D(f, S')) < 1/Un+x,

contradicting the induction hypothesis. For any fEJ define /' for

yEI by

(5)      f'(y) =
:xpRrh)}   if   °^y<a + b'
— y if   a + i á y á 1.

It is easy to verify that/'£7 and that xU"> = (a+b)x<J\ Under S' we

observe exp f(b/(a-\-b))=f'(b), calculate f'(a+b) = — a — b, treat

these as the first two observations on /' according to S, and take

the remaining » — 1 observations on / under S' by using S on /'

as follows : if the ¿th observation on /' under S is to be taken at a

value yk^a+b (for k^3), S' puts xt_i = 0 and ignores the value of

f(xk-x),f'(yk) is calculated from the last line of (5), and y*+i is com-

puted under S; if the &th observation on/' under 3 is to be taken at

a value yk<a+b, the (k — l)th observation on / according to S' is

taken at xk-x=yk/(a+b), the value of f'(yk) is then computed from

(5) from the observed f(xk-i), and yk+i is determined by S. After »

observations on / (« + 1 on /'), we put D(f, S') = [s'/(a+b),

min (1, t'/(a+b))], where [s', t']=D(f', S). Clearly x^ED(f, S'), so
that S'EStr- Moreover, since L(D(f, S'))^L(D(f', S))/(a+b), if
a-\-b>d+e=U„+i/Un+2, equation (2) would imply equation (4).

This completes the proof of (3).

The second inequality of (3) and the fact that a+b+c = 2d-\-e = l

show that ¿>èd (similarly, e^d). We shall use this and (2) to con-

struct a procedure S" ES „_i for which
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(6) sup L(D(f, S")) < 1/E/,;
fEJ

this contradiction of our induction hypothesis will then imply that

(2) is false, completing our proof. To this end, for any/£7 define/"

for y £7 by

(7) f"(y) =
exp   {/(y)}        "r   0^y<b,

— y for   4 I y á 1.

Clearly,/" £7 and *V") «=6*w. S" is defined by using S on f" in a

manner similar to that used in the previous paragraph on /' to define

S': the first two observations on /" under S are f"(b) = —b and

f"(a+b) = — a — b; thereafter, the ¿th observation on /" under S

corresponds in an obvious manner to the (k — '2)th on/ under S", and

D(f, S") = [s"/b, min (1, t"/b)], where [s", t"]=D(f", S). Thus,
L(D(f, S"))^L(D(f", S))/b; since b^d=Un/Un+2, this and (2)
imply (6), completing the proof of our assertion.

We remark that a minimax procedure (one satisfying (1) with e = 0)

does not exist in the above problem, as is evident from the case N=2.

The procedure Sjv defined above may be improved upon by noting

that, whenever the two largest observations are equal, x(/) must lie

between the two corresponding values of x for any /£7. An interest-

ing procedure which is not minimax for any fixed N but will often be

useful in applications is the strategy S* defined as follows: let

*2=l-x1=-.l/2+51/72 = .618=p (say). If f(xi) ^f(x2), define v(x)

= x/nandy = v(x), and/*(y) =/(f-1(y)) for y £7. Putting y2 = v(xi) =¡x

and yi=l—ß, we then use S* on the variable y and function /*,

where we already have observed f*(y2). (A similar procedure applies

if f(xi) <f(x2).) Continuing in this manner, at every stage we have

the same geometric configuration, unlike the case of S%. The ad-

vantage of this is that if the number of observations is not specified

in advance but is determined after several values have been observed

(e.g., more observation might be taken if / appears to be sharply

peaked near its maximum), the use of any SjÇ (or sequence of S^'s)

can lead to great inefficiency if ore decides after N observations to

take more. When N is large, if S* is used for N observations, the

length of the final interval is about 1.17 times that of Sjf (with e—>0).
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MEAN VALUE METHODS IN ITERATION

W. ROBERT MANN

Due largely to the works of Cesàro, Fejér, and Toeplitz, mean

value methods have become famous in the summation of divergent

series. The purpose of this paper is to show that the same methods

can play a somewhat analogous role in the theory of divergent itera-

tion processes. We shall consider iteration from the limited but never-

theless important point of view of an applied mathematician trying

to use a method of successive approximations on some boundary

value problem which may be either linear or nonlinear.

It is now widely known that the Schauder fixpoint theorem [l]

is a powerful method for proving existence theorems. If one wishes to

use it to prove that a given problem has a solution, he proceeds by

associating with the problem a convex compact set E in some Banach

space, and a continuous transformation T which carries E into itself.

Schauder's theorem asserts that T must have at least one fixpoint,

say p, in E. If E and T have been appropriately chosen, it can then

usually be shown that any such fixpoint must be a solution of the

original problem and conversely. Mathematical literature since about

1935 abounds with illustrations of this technique. We mention here

only [2] and [3] which contain the genesis of the present work.

Let us then begin with a convex compact set £ in a Banach space,

and a continuous transformation T carrying E into itself. The problem

which we shall consider is that of constructing in £ a sequence of

elements {xn} that converge to a fixpoint of T. Ordinarily one starts

by choosing more or less arbitrarily an initial point Xi in E and then

considering the successive iterates {xn} of Xi under T, where

(1) xn+i = T(xn).

If this sequence converges, then obviously its limit point is a fixpoint

of T and the problem is solved. But to guarantee convergence one

must impose some further restriction on T, such as, for example, that
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