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Level density of a Fermi gas and integer partitions: A Gumbel-like finite-size correction
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We investigate the many-body level density of a gas of noninteracting fermions. We determine its behavior as
a function of the temperature and the number of particles. As the temperature increases, and beyond the usual
Sommerfeld expansion that describes the degenerate gas behavior, corrections due to a finite number of particles
lead to Gumbel-like contributions. We discuss connections with the partition problem in number theory, extreme
value statistics, and differences with respect to the Bose gas.
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I. INTRODUCTION

The many-body (MB) level density ρMB is a fundamental
quantity that describes basic properties of thermodynamical
systems. Its behavior is of principal interest in many different
fields such as nuclear decay rate [1,2], thermonuclear reactions
in stellar processes, and, more recently, black hole entropy
[3–5]. Unfortunately ab initio computations are out of reach for
interacting systems and for large particle numbers. However, a
statistical treatment is still possible when interactions are taken
into account in a mean-field approximation. For fermions, two
extreme regimes can be identified. At temperatures that are
low compared to the Fermi energy µ0 but high with respect to
the mean level spacing at µ0 (degenerate gas approximation),
ρMB has a stretched exponential growth [6],

ρMB ∝ e2
√

π2ρ̄(µ0)Q/6, (1)

where Q is the excitation energy and ρ̄ is the smooth
single-particle (SP) level density. Nowadays Bethe’s theory
still remains a basic ingredient for advanced MB theories like
back-shifted Fermi gas models [7] and the Gilbert-Cameron
model [8]. From Eq. (1), we see ρMB is essentially sensitive
to the SP level density around the Fermi energy. The second
regime corresponds to high temperatures Q � µ0, where the
classical limit is reached and where ρMB has a power-law
behavior (Maxwell-Boltzmann regime). The aim of this article
is to analyze, for fermions, the transition between the two
regimes (see Fig. 1). To tackle this, we compute—in the
degenerate gas limit—the effect of a finite number of particles
when the temperature increases. For a power-law SP level
density ρ̄(µ0), we find two contributions to ρMB: the first one
is given by the usual Sommerfeld expansion while the second
one is related to low-lying level excitations. This work is in
connection with similar results obtained by Comtet et al. for
bosons [9]. In a mean-field approximation, ρMB is also directly
related to a combinatorial problem: to find the number of
configurations of the SP occupied levels for a given excitation
energy [10,11].

The article is organized as follows. In Sec. II we introduce
basic definitions of the MB level density. We calculate the
expression of the smooth part of the MB level density in the
low- and high-temperature regimes. In Sec. III, we establish

a relation between the partition problem in number theory
and the MB level density by using an equidistant spectrum.
We compute corrections due to a finite number of particles
from an exact asymptotic formula. Finally we generalize in
Sec. IV the result to a power-law spectrum using a nonlocal
Sommerfeld expansion provided by Garoni et al. [12].

II. GENERAL FRAMEWORK

The MB level density is a discrete quantity that, for a gas
in a SP potential, is given by

ρMB(E,N) =
∑
{mj }

δ

(
E −

∞∑
j=0

mjεj

)
δ

(
N −

∞∑
j=0

mj

)
. (2)

It is a microcanonical quantity where the particle number N

and the energy of the system E are fixed (all quantities are
dimensionless). εj corresponds to the energy of the j th level
of the SP potential for one particle and mj is the occupation
number of the j th SP level for a given configuration {mj }.
In the case of fermions without spin degeneracy, the Pauli
principle leads to mj being either 0 or 1. We define Q as
the difference E − E0, where E0 is the ground-state energy.
For each configuration {mj }, the conservation of particle num-
ber and energy yields

∑∞
j=0 mj = N and

∑∞
j=0 εjmj = E,

respectively.
Now we write Eq. (2) in terms of an inverse Laplace

transform:

ρMB(E,N) = 1

(2πi)2

∫ c+i∞

c−i∞

∫ b+i∞

b−i∞
eS(β,µ)dβdµ, (3)

where

S(β,µ) = β[−�(β,µ) + E − µN ] (4)

is the entropy. The constant b (respectively c) is chosen
such that it is larger (respectively smaller) than the sum
index of exp[−β�(β,µ)] with respect to the variable β

(respectively µ). Both parameters β and µ correspond,
respectively, to the inverse temperature and to the chemical
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FIG. 1. (Upper panel) The MB level density for ν = 1 and for five
fermions as a function of the excitation energy Q. The dotted line is
the exact computation. The solid line corresponds to the degenerate
or low-temperature regime, Eq. (24) (with n = Q). The dashed line
corresponds to the high-temperature regime, Eq. (23) (with E ≈ Q;
we have included the expression of the determinant D = E2 [see
Eq. (6) and following text for discussion]). (Lower panel) The
function F (Q, N ) for the same system. The dotted line corresponds to
the exact computation and the solid line to the analytical expression,
Eq. (34).

potential. �(β,µ) is the Grand potential defined as

�(β,µ) = − 1

β

∫ ∞

0
ρ(ε) ln[1 + eβ(µ−ε)]dε, (5)

where ρ(ε) = ∑∞
j=0 δ(ε − εj ) is the SP level density. The

saddle point method with respect to µ and β gives the following
equations:

ρMB(E,N) = eS(β,µ)

2π
√|D(β,µ)| , (6)

N =
∫ ∞

0

ρ(ε)

eβ(ε−µ) + 1
, (7)

E =
∫ ∞

0

ερ(ε)

eβ(ε−µ) + 1
. (8)

D(β,µ) is the determinant of the second derivatives of
S(β,µ), which is not relevant for the following discussion.
The last two equations define µ(E,N) and β(E,N). From
Eq. (7), we see that µ must decrease from positive to
negative values when the temperature increases. Ignoring the
discreteness of the SP level density, we now replace ρ by a
smooth function:

ρ(ε) ≈ ρ̄(ε) = νεν−1, for ν > 0. (9)

For instance, the case ν = D is the leading order of the D-
dimensional harmonic oscillator (HO). The case of billiards is
given by ν = D/2, where D is the dimension of space. When
ρ is given by Eq. (9), Eqs. (7) and (8) become

N = −�(ν + 1)

βν
Liν(−eβµ), (10)

E = −ν�(ν + 1)

βν+1
Liν+1(−eβµ), (11)

where Liν(x) = ∑∞
k=1 xk/kν is the polylogarithm function. In

this case the total energy and the Grand potential are connected
by E = −ν�(β,µ). From Eq. (4), the entropy simplifies to

S = β[(1 + 1/ν)E − µN ]. (12)

For the low-temperature regime, we expand Eqs. (7) and (8)
with 1/(βµ) as a small parameter. This so-called Sommerfeld
expansion [13,14] is valid for any regular function f :∫ ∞

0

f (ε)dε

eβ(ε−µ) + 1
=

∫ µ

0
f (ε)dε + 2

∞∑
j=1

Cjβ
−2j , (13)

where Cj = η(2j )d (2j−1)f (ε)/dε(2j−1)|ε=µ and η(x) is the
Dirichlet η function. Using Eqs. (7), (8), and (13), we define the
chemical potential and inverse temperature to leading order,
µ0 and β0, respectively, as

N =
∫ µ0

0
ρ(ε)dε, (14)

Q = E − E0 = 2η(2)ρ(µ0)β−2
0 , (15)

where E0 = ∫ µ0

0 ερ(ε)dε. We have neglected terms in the
derivatives of ρ in Eqs. (14) and (15). When ρ satisfies Eq. (9),
we can easily invert (14) and (15) to obtain

µ0 = N1/ν and β0 = ν
√

2η(2)/QN (ν−1)/2ν . (16)

Integrating the Grand potential, Eq. (5), by parts, we get

�(µ0, β0) = �(0, µ0) − 2η(2)ρ(µ0)β−2
0 . (17)

Using the expansions of Eqs. (14), (15), and (17) in the entropy
Eq. (4), the result is

S(β0, µ0) = β0
[−�(0, µ0) + 2η(2)ρ(µ0)β−2

0 + E − µ0N
]
.

(18)

At zero temperature it leads to

−�(0, µ0) + E0 − µ0N = 0. (19)

We have used the latter equation in Eq. (18). Finally we
obtain the leading order of the entropy for a Fermi gas at
low temperature:

S(β0, µ0) = 2

√
π2

6
ρ(µ0)Q, (20)

where we have used η(2) = π2/12. This result holds for any
smooth SP level density; in the case of Eq. (9) the entropy
is written as S(Q,N ) = 2

√
νπ2Q/6N (ν−1)/2ν . Higher-order

terms can be easily computed leading to a power series in Q

and N . We emphasize that for fermions, the dependence of
S on the excitation energy does not depend on the system.
In contrast, its N dependence comes through ρ(µ0). This
behavior is very different from that of the bosonic case (except
for ν = 1, see Sec. III) where the energy variation of the
entropy strongly depends on the SP level density, that is,
ρMB ∝ exp[Qν/(ν+1)] [9,10].

When the particle number is fixed and when the temperature
is sufficiently large, Eq. (7) leads to a large negative chemical
potential, eβµ tends to 0, and the Fermi-Dirac statistic
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converges to the Maxwell-Boltzmann distribution. In this case
Eqs. (10) and (11) become

N = �(ν + 1)

βν
eβµ, (21)

E = ν�(ν + 1)

βν+1
eβµ. (22)

We invert Eqs. (21) and (22) to get µ and β as a function
of N and E. Using Eqs. (6) and (12), it yields the following
formulas for E � N :

ρMB(E,N ) =
[
�(ν + 1)Eν

ννNν+1

]N

e(ν+1)N (23)

and µ = ln[βνN/�(ν + 1)]/β. We also find the usual equa-
tion of state for perfect gases: E = νNT . In contrast to the
stretched exponential growth at low temperature, we notice
that the MB level density has a power-law behavior at high
temperatures.

III. THE ONE-DIMENSIONAL HARMONIC OSCILLATOR

In this section we compute exactly the MB level density
for a system of noninteracting particles confined by a one-
dimensional harmonic potential (1DHO) with unit frequency
and we make connections with number theory. We choose
ε0 = 0 such that the spectrum is given by integers. We must
compute the MB level density for a given integer excitation
energy n and for a given particle number N , by counting all
possible configurations of particles. A schematic way to depict
this enumeration consists of using Young diagrams. They form
n boxes with j nonincreasing lines such as c1 � c2 � · · · � cj ,∑j

i=1 ci = n, where ci is the column number for the line i with
j � N . Consequently, for an integer n the number of Young
diagrams is the number of ways of counting n as nonzero
integers when the line number is less than N . This number
pN (n) is the so-called partition function of n restricted to at
most N terms.

For each Young diagram we associate a unique config-
uration of particles in such a way that the horizontal axis
represents the excitation energy of the particle and the vertical
axis represents the index of the occupied level. Hence we
have a one-to-one correspondence between each particle
configuration and Young diagram; pN (n) is ρMB(n,N ) [10,11].
In the same way one can easily show that the result holds for
particles with Bose-Einstein statistics as well.

The theory of partitions is studied in profusion by math-
ematicians (see [15] for an introduction). One of the most
singular results comes from the works of Hardy, Ramanujan,
and Rademacher, who computed an analytical expression
where the number of terms into pN (n) is not restricted anymore
[16,17]. In this case pN�n(n) = p(n) is called the partition
number of an integer n. The leading asymptotic expression of
p(n) for large n is given by

p(n) ≈ 1√
48n

e
√

2π2n/3. (24)

To leading order the exponential term in Eq. (24) is equivalent
to Eq. (6) with Eq. (20) and ν = 1 as expected. The correction

term for a finite number of terms to pN (n) was computed by
Erdös and Lehner [18]:

pN (n)

p(n)
≈ e−e−g

, (25)

with g =
√

π2/(6n)N + 1/2 ln[π2/(6n)] and N = o(n1/3).
This distribution is the so-called Gumbel-like distribution and
is one of the universal distributions in the domain of extreme
values statistics [19]. It shows how the finite particle number
contributes to the decrease of the number of configurations
when heating the system (increases n) and determines the
transition from low- to high-temperature regime. The main
target of this article is to evaluate this correction when
the spectrum is no longer equidistant but fulfills the more
general law, Eq. (9). This is computed in the following
section.

Note that in the case of fermions, the Fermi energy depends
on the particle number, while this is not the case for bosons.
This fundamental difference implies that the equivalence
between the two statistics is only valid in the case of the
1DHO. In the context of the partition theory the generalization
to a SP level density of the form Eq. (9) leads to mapping
ρMB(E,N) to the partition number of an integer n = E into
a sum of N distinct (due to Pauli principle) 1/νth powers of
integers. For bosons, a similar relation exists but without any
distinction between summands [9,10].

IV. GENERAL CASE

In the degenerate gas limit the chemical potential is large
with respect to the excitation energy. At low temperature,
the fugacity z = eβµ tends to infinity. To solve the equations
Eqs. (10) and (11), we must find the asymptotic expansion
of the polylogarithm function for a large negative argument.
Garoni et al. give the inversion expression of Liν(−z) [12]:

Liν(−z) = −2
∞∑

n=0

η(2n) lnν−2n(z−1)

�(ν + 1 − 2n)
− cos(πν)Liν(−z−1).

(26)

Note that for the ν half-integer, the term in Liν(−z−1) vanishes.
Furthermore when ν is an integer, the sum in Eq. (26) tends to
the integer part of ν/2. At low temperature z−1 tends to zero
and limx→0 Liν(x) = x. Equations (10) and (11) with Eq. (26)
become

N = 2 �(ν + 1)
∞∑

n=0

η(2n)β−2nµν−2n

�(ν + 1 − 2n)

− cos(πν)
�(ν + 1) e−βµ

βν
(27)

and

E = 2 ν�(ν + 1)
∞∑

n=0

η(2n)β−2nµν+1−2n

�(ν + 2 − 2n)

+ cos(πν)
ν�(ν + 1) e−βµ

βν+1
. (28)
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Terms in the sum on the right-hand side of Eqs. (27) and (28)
correspond to the Sommerfeld expansion terms. The meaning
of the exponential term in Eqs. (27) and (28) emerges from
the following example. With ν = 1, Eqs. (27) and (28)
yield

N = µ + e−βµ

β
, (29)

E = µ2

2
+ 2η(2)

β2
− e−βµ

β2
. (30)

The computation ofS to the second order is done by expanding
µ and β in Eqs. (29) and (30). We have

µ = µ0 −
√

Q

2η(2)
e−√

2η(2)/QN (31)

β = β0 −
[
N +

√
Q

2η(2)

]
2Q

e−√
2η(2)/QN . (32)

Using Eqs. (29), (30), (31), and (32) into Eq. (12), we
get

S = 2
√

2η(2)Q − e−t , (33)

where t = √
2η(2)/QN + ln[

√
2η(2)/Q]. Subtracting the

leading order entropy, Eqs. (20) to (33), and using Eqs. (6)
and (9), Eq. (25) is found with n = Q. The Gumbel law is
thus recovered, as already stated in the previous section. The
main contributions to ρMB are given by the Sommerfeld terms.
These terms depend only on the local properties of the SP level
density close to the Fermi energy and ignore the fact that the
single-particle spectrum is bounded from below. The transition
to the Maxwell-Boltzmann regime, where all particles con-
tribute to a single configuration, cannot be described by this
expansion. The exponentially small term e−βµ in Eqs. (27)
and (28) takes into account this effect, and this is the reason
why we call it a nonlocal correction to the MB level density.
For a given ν, we compute the nonlocal contribution to ρMB

using the previous method to obtain

F (Q,N ) = ρMB(Q,N)

ρMB(Q,N)

= exp

[
cos(πν)�(ν + 1)

βν
0

exp(−β0µ0)

]
. (34)

ρMB(Q,N ) represents the smooth MB level density computed
by means of the (local) Sommerfeld expansion, Eq. (13).

Equation (34) is the main result of this article. The final
correction takes the form of a modified Gumbel law. This is
different with respect to the case of bosons, where, depending
on the value of ν, three different functional dependencies of
the correction were found [9]. They correspond to the three
different distributions that appear in the theory of extreme
value statistics. The difference is related, in particular, to
the fact that there is no Bose-Einstein condensation for
noninteracting fermions.

The qualitative behavior of F (Q,N ) has a strong depen-
dence on the value of ν. For instance, F (Q,N ) = 1 for ν

half-integers. It can be larger than one for some specific
values of ν. This effect is not surprising, since for ν �= 1 the
Sommerfeld expansion gives the leading variation in N . In
that case F (Q,N ) is not constrained to be less than one. The
behavior of the MB level density as a function of the excitation
energy is illustrated in Fig. 1 for ν = 1 and for N = 5 fermions.
This value of ν describes a 1DHO, but also, for instance, a
two-dimensional billiard of arbitrary shape. A low number of
particles has been chosen in order to enhance the finite N

corrections. The upper panel in Fig. 1 illustrates the transition
from the degenerate gas regime to the Maxwell-Boltzmann
one. The lower panel shows the correction factor F (Q,N).
We note that the correction term is significant only in a small
region around the degenerate regime, that is, for Q � 15. At
higher excitation energies, the Maxwell-Boltzmann regime is
reached.

In conclusion, we have demonstrated that in the transition
from the low-temperature to the high-temperature regimes the
MB level density of a Fermi gas is described by a modified
law of extreme value statistics. This result is valid for a
large set of systems according to Eq. (9). In the context of
number theory, our results apply in particular to the partition
of integers as a sum of powers of distinct integers. Our results
are of interest in the computation of the level density of small
nuclei for which the finite-size correction term (34) is the most
important.

ACKNOWLEDGMENTS

J. R. acknowledges M. V. N. Murthy for fruitful dis-
cussions and C. Torrero for his careful reading of the
manuscript. J.R. also thanks the French National Research
Agency ANR (Project ANR-06-BLAN-0059) for financial
support.

[1] N. Rosenzweig, Phys. Rev. 108, 817 (1957).
[2] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,

Reading, Massachusetts, 1969), Vol. I.
[3] A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, Phys. Rev.

Lett. 80, 904 (1998).
[4] S. Das, P. Majumdar, and R. K. Bhaduri, Classical Quantum

Gravity 19, 2355 (2002).
[5] A. Alsleev, A. P. Polychronakos, and M. Smedibäck, Phys. Lett.

B 574, 296 (2003).
[6] H. A. Bethe, Phys. Rev. 50, 332 (1936).

[7] W. Dilg, W. Schantl, H. Vonach, and M. Uhl, Nucl. Phys. A 217,
269 (1973).

[8] A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965).
[9] A. Comtet, P. Leboeuf, and S. N. Majumdar, Phys. Rev. Lett.

98, 070404 (2007).
[10] M. N. Tran, M. V. N. Murthy, and R. K. Bhaduri, Ann. Phys.

(NY) 311, 204 (2004).
[11] P. Leboeuf, AIP Conf. Proc. 777, 180 (2005).
[12] T. M. Garoni, N. E. Frankel, and M. L. Glasser, J. Math. Phys.

42, 1860 (2001).

044301-4

http://dx.doi.org/10.1103/PhysRev.108.817
http://dx.doi.org/10.1103/PhysRevLett.80.904
http://dx.doi.org/10.1103/PhysRevLett.80.904
http://dx.doi.org/10.1088/0264-9381/19/9/302
http://dx.doi.org/10.1088/0264-9381/19/9/302
http://dx.doi.org/10.1016/j.physletb.2003.08.062
http://dx.doi.org/10.1016/j.physletb.2003.08.062
http://dx.doi.org/10.1103/PhysRev.50.332
http://dx.doi.org/10.1016/0375-9474(73)90196-6
http://dx.doi.org/10.1016/0375-9474(73)90196-6
http://dx.doi.org/10.1103/PhysRevLett.98.070404
http://dx.doi.org/10.1103/PhysRevLett.98.070404
http://dx.doi.org/10.1016/j.aop.2003.12.004
http://dx.doi.org/10.1016/j.aop.2003.12.004
http://dx.doi.org/10.1063/1.1996884
http://dx.doi.org/10.1063/1.1350634
http://dx.doi.org/10.1063/1.1350634


LEVEL DENSITY OF A FERMI GAS AND INTEGER . . . PHYSICAL REVIEW C 81, 044301 (2010)

[13] A. Sommerfeld, Z. Phys. A 47, 1 (1928).
[14] N. W. Ashcroft and N. D. Mermin, Solid State

Physics (Holt, Rhinehard and Winston, New York,
1976).

[15] G. E. Andrews, Theory of Partitions (Addison-Wesley, Reading,
MA, 1976).

[16] G. H. Hardy and S. Ramanujan, Proc. London Math. Soc. 17,
75 (1918).

[17] H. Rademacher, Proc. London Math. Soc. 43, 241 (1937).
[18] P. Erdös and J. Lehner, Duke Math J. 8, 335 (1941).
[19] S. Coles, An Introduction to Statistical Modeling of Extreme

Values (Springer-Verlag, London, 2001).

044301-5

http://dx.doi.org/10.1007/BF01391052
http://dx.doi.org/10.1112/plms/s2-17.1.75
http://dx.doi.org/10.1112/plms/s2-17.1.75
http://dx.doi.org/10.1112/plms/s2-43.4.241
http://dx.doi.org/10.1215/S0012-7094-41-00826-8

