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We introduce a parallel Wang-Landau method based on the replica-exchange framework for

Monte Carlo simulations. To demonstrate its advantages and general applicability for simulations of

complex systems, we apply it to different spin models including spin glasses, the Ising model, and the

Potts model, lattice protein adsorption, and the self-assembly process in amphiphilic solutions. Without

loss of accuracy, the method gives significant speed-up and potentially scales up to petaflop machines.
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In Wang-Landau (WL) sampling, the a priori unknown
density of states gðEÞ of a system is iteratively determined
by performing a random walk in energy space (E) seeking
to sample configurations with probability 1=gðEÞ (‘‘flat
histogram’’) [1–3]. This procedure has proven very power-
ful in studying problems with complex free energy land-
scapes by overcoming the prohibitively long time scales
typically encountered near phase transitions or at low
temperatures. It also allows us to calculate thermodynamic
quantities, including the free energy, at any temperature
from a single simulation. Moreover, Wang-Landau sam-
pling is a generic Monte Carlo procedure with only a
minimal set of adjustable parameters and, thus, has been
applied successfully to such diverse problems as spin
glasses, polymers, protein folding, lattice gauge theory,
etc.; see [4–7] for examples. Various improvements have
been proposed to the method, either by optimizing the
‘‘modification factor and flatness criterion’’ scheme
[8–10] or by means of efficient Monte Carlo trial moves
[11–13] (to name a few). Ultimately, however, paralleliza-
tion is the only means to systematically sustain the per-
formance for ever larger problems. Surprisingly, to date,
only two directions have been taken in this regard.

Parallelization scheme (i).—As already suggested [2,3],
it is possible to subdivide the total energy range into
smaller subwindows each sampled by an independent
WL instance (random walker). The total simulation time
is obviously limited by the convergence of the slowest
walker and can be tuned by unequal distribution of energy
space. However, an optimal load balancing is impossible
due to the a priori unknown irregularities in the complex
free energy landscape. Moreover, energy intervals cannot
be reduced arbitrarily due to systematic errors introduced
from ‘‘locked-out’’ configurational space.

Parallelization scheme (ii).—Here, multiple random
walkers work simultaneously on the same density of states
(and histogram). Distributed memory (MPI [14]), shared
memory (OpenMP [15]), and GPU [16] variants of this
idea have been proposed; shared memory implementations

have the advantage of not requiring periodic synchroniza-
tion among the walkers and even allowing for ‘‘data race’’
when updating gðEÞ without noticeable loss in accuracy
[15]. Although this second approach seemingly avoids the
problems of scheme (i), a recent, massively parallel imple-
mentation [16] has revealed that correlations among the
walkers can systematically underestimate the density of
states (DOS) in hardly accessible energy regions. A rem-
edy to the problem has been proposed in terms of a
(heuristic) bias to the modification factor, but, overall,
such interdependencies render this parallelization scheme
highly problematic. Moreover, it is important to note that
the effective round-trip times of the individual walkers are
not improved by this concerted update.
In this Letter, we propose a generic parallelWang-Landau

scheme which combines the advantageous dynamics of
Wang-Landau sampling with the idea of replica-exchange
Monte Carlo simulations [17,18]. Similar to scheme (i), we
start off by splitting up the total energy range into smaller
subwindows but with large overlap between adjacent
windows. Each energy subwindow is sampled by multiple,
independent WL walkers. The key to our approach is that
configurational or replica exchanges are allowed among
WL instances of overlapping energy windows during the
course of the simulation, such that each replica can travel
through the entire energy space. The replica-exchange
move does not bias the overall WL procedure and, thus,
guarantees the flexibility to be applied to any valid WL
update rule (e.g., the 1=t algorithm [10]). Furthermore, our
hierarchical parallelization approach does not impose any
principal limitation to the number of WL instances used
[contrary to scheme (i); see above]. Therefore, it is conceiv-
able to design setups which scale up to thousands of CPUs.
The standardWL algorithm [1,2] estimates the density of

states, gðEÞ, in an energy range [Emin, Emax] using a single
random walker. During the simulation, trial moves are
accepted with a probability P¼min½1;gðEoldÞ=gðEnewÞ�,
where Eold (Enew) is the energy of the original (proposed)
configuration. The estimation of gðEÞ is continuously
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adjusted and improved by a modification factor f [as
gðEÞ!f�gðEÞ] which gets progressively closer to unity
as the simulation proceeds, while a histogram HðEÞ keeps
track of the number of visits to each energy E during an
iteration. When HðEÞ is sufficiently ‘‘flat,’’ the next itera-
tion begins with HðEÞ reset to zero and f reduced by some
predefined rule (e.g., f ! ffiffiffi

f
p

). The simulation terminates
when f reaches a small enough ffinal at which point the
accuracy of gðEÞ is proportional to ffiffiffiffiffiffiffiffiffiffi

ffinal
p

for flat enough
HðEÞ [8].

In our parallelWL scheme [19], the global energy range is
first split into h smaller intervals (subwindows), each of
which contains m random walkers. Consecutive intervals
must overlap each other to allow for configurational ex-
change; see Fig. 1 for examples. The overlap o should be
neither too large nor too small so as to strike a balance
between fast convergence ofgðEÞ and a reasonable exchange
acceptance rate. In fact, we find that a large overlap of
o � 75% is advantageous, but that number is flexible to a
certain extent and one can also obtain excellent results with
other choices [20]. Within an energy subwindow, each ran-
domwalker performs standardWL sampling. After a certain
number ofMonteCarlo steps, a replica exchange is proposed
between two random walkers, i and j, where walker i choo-
ses swap partner j from a neighboring window at random.
Let X and Y be the configurations that the random walkers i
and j are carrying before the exchange, and EðXÞ and EðYÞ
be their energies, respectively. Motivated by the detailed
balance condition the acceptance probability Pacc for the
exchange of configurations X and Y between walkers i
and j is

Pacc ¼ min

�

1;
giðEðXÞÞ
giðEðYÞÞ

gjðEðYÞÞ
gjðEðXÞÞ

�

; (1)

where giðEðXÞÞ is the instantaneous estimator for the den-
sity of states of walker i at energy EðXÞ, cf. [21].
In contrast to the parallelization scheme (ii) above, in

our formalism, every walker is furnished with its own gðEÞ
and HðEÞ which are updated independently. Also, every
walker has to fulfill the WL flatness criterion indepen-
dently at each iteration, ensuring that systematic errors as
found in [16] cannot occur. When all random walkers
within an energy subwindow have individually attained
flat histograms, their estimators for gðEÞ are averaged out
and redistributed among themselves before simultaneously
proceeding to the next iteration. This practice reduces the
error during the simulation with

ffiffiffiffi

m
p

[20], i.e., as for
uncorrelated WL simulations. Furthermore, increasing m
can improve the convergence of the WL procedure by
reducing the risk of statistical outliers in gðEÞ resulting
in slowing down subsequent iterations. (Alternatively, it
allows us, in principle, to use a weaker flatness criterion
[20], which is in the spirit of a concurrently proposed idea
of merging histograms in multicanonical simulations [22].)
The simulation is terminated when all the energy intervals
have attained ffinal. At the end of the simulation, h�m
pieces of gðEÞ fragments with overlapping energy intervals
are used to calculate a single gðEÞ in the complete energy
range. During that procedure, the joining point for any two
overlapping density of states pieces is chosen where the
inverse microcanonical temperatures � ¼ d log½gðEÞ�=dE
best coincide, and statistical errors are determined by
resampling techniques [20,23].
In order to assess its general applicability, feasibility,

and performance, we applied this novel parallel WL
scheme to multiple models in statistical mechanics. The
first two are the well studied Ising model and 10-state Potts
model in two dimensions, showing second-order and first-
order transitions, respectively. We applied the parallel
scheme to the 2D Ising model up to system sizes of 2562

using up to the order of 2000 cores. The deviations from
exact results were always of the same order as the statis-
tical errors, which are <0:01% in the peak region of the
density of states. For the 10-state Potts model, we extrapo-
lated the critical temperature in the thermodynamic limit
from results of system sizes up to 3002. Our estimate of
T1
c ¼ 0:701 234� 0:000 006 is in excellent agreement

with the exact value of 0.701 232 [24]. While it still takes
a few days for a single-walker WL run to converge for a
1002 Potts system, we obtained all results, which will be
shown in detail elsewhere [20], within hours. Besides this
remarkable accuracy and absolute gain in timing, we will
show below that our algorithm has almost perfect weak
scaling behavior for these lattice models since their system
sizes are scalable in a straightforward way. For a final test,
we applied the method to a 12� 12� 12 spin-glass sys-
tem and reproduced results published earlier [2,25] with
speed-ups of the same order as reported below. In particu-
lar, low energy states are found much faster, while our

FIG. 1. (a) Partition of the global energy range into nine equal-
size intervals with overlap o ¼ 75%. (b) Run-time balanced
partition with overlap to the higher energy interval o � 75%.
Multiple WL walkers can be employed in each interval.
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estimate for e0 ¼ �1:787� 0:005 agrees perfectly with
the earlier data [2]. To demonstrate the potential to obtain
new physics results and strong scaling properties, we also
apply the method to two very distinct and particularly
challenging molecular problems: a coarse-grained contin-
uum model for the self assembly of amphiphilic molecules
(lipids) in explicit solution and a lattice model for the
surface adsorption of proteins. In the first model, amphi-
philic molecules, each of which composed of a polar (P)
head and two hydrophobic (H) tail monomers (P-H-H), are
surrounded by solvent particles (W). Interactions between
H and W molecules, as well as those between H and P
molecules, are purely repulsive. All other interactions
between nonbonded particles are of Lennard-Jones type;
bonded molecules are connected by a FENE potential,
cf. [26,27] for similar models. The second model uses
the hydrophobic-polar (HP) model [28] for protein surface
adsorption. Here a protein is represented by a self-avoiding
walk consisting of H and P monomers placed on a cubic
lattice with an attractive substrate. Recent studies on this
model and details can be found in [29,30].

Both models bring about qualitatively different technical
challenges, such as high energy and/or configurational
barriers, and simulations of particular setups are impossible
for all practical purposes using the traditional, single
walker WLmethod due to unreasonable resource demands.
For a demonstration, we choose two such systems. The first
consists of 75 lipid molecules and 775 solution particles
using the first model with a continuous energy domain.
The density of states gðEÞ on an energy range covering the
lipid bilayer formation spans more than 1600 orders of
magnitude [cf. Fig. 2(a)], which makes low temperature
statistics extremely difficult to obtain. The second system
is an HP lattice protein consisting of 67 monomers [31]
interacting with a weakly attractive surface and with dis-
crete energy levels, which gives rise to an unusually rugged
density of states, see Fig. 2(b). Obtaining convergence for
the entire energy range is an arduous task using a single
walker.

Our parallel WL framework allows us to successfully
simulate both, previously inaccessible, systems. The rea-
sons are twofold: first, each walker is now responsible for
sampling a smaller configurational phase space, which
contributes mainly to the faster convergence. Second, the
replica-exchange process revitalizes walkers from trapped
states and avoids an erroneous bias in gðEÞ due to potential
ergodicity breaking since replicas can access the entire
conformational space by walking through all energy win-
dows. A typical time series of a replica performing
round trips in the full energy range of the lipid system
[cf. Fig. 2(a)] is shown in Fig. 3. With these features
combined, we obtain the entire gðEÞ with a noticeable
speed-up and high accuracy, see [20] for more details.

To quantify the efficiency of the parallel WL scheme,
we define the speed-up, soðh;mÞ, as the number of

Monte Carlo steps taken by the slowest parallel WL walker

[Nparallel
o ðh;mÞ], as compared to that taken by m single

walkers (Nsingle):

soðh;mÞ ¼ Nsingle

Nparallel
o ðh;mÞ : (2)

For h & 20 we have achieved strong scaling: the speed-up
scales linearly with the increase in h as shown in Fig. 4(a)
for a fixed number m and both energy splittings shown
in Fig. 1. While the equal-size energy range splitting

FIG. 2 (color online). Logarithm of density of states (DOS)
obtained by our parallel WL scheme with the setup shown in
Fig. 1(a). (Top)Amphiphilic system containing 75 lipidmolecules
and a total of 1000 particles. Error bars (�), obtained from
multiple independent simulations, are smaller than the line
thickness and shown in the inset. The pictures show a conforma-
tion where lipid molecules assemble and form a single cluster
(E � �2100) and a low-energy bilayer configuration (E �
�4800). (Bottom) DOS of the lattice HP 67mer, where only H
monomers are attracted by the substrate. The H-H interaction is 3
times stronger than the surface attraction leading to the unusual
sawtoothlike shape. The inset shows the error bars on the enlarged
low-energy data. Note the two energy gaps, i.e., no conformations
exist with E ¼ �173,�172, and�170 (see arrows). The picture
shows an adsorbed HP protein with energy E ¼ �174.
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[Fig. 1(a)] is the most basic approach, the run-time bal-
anced energy splitting [Fig. 1(b)] is chosen such that
walkers in different energy subwindows complete the first
WL iteration after the same number of sweeps (within
statistical fluctuations). As the growth behavior of WL
histograms is in principle known [8], such an energy split-
ting can be estimated by analyzing the first-iteration
histogram from a short pre-run with equal-size energy
intervals. Using the lipid system as an example and con-
sidering a much smaller global energy range accessible for
single-walker simulations, the slope of speed-up in com-
pleting the first WL iteration is � 0:5 for the equal size
energy splitting and � 1:6 for the run-time balanced en-
ergy splitting, which is particularly remarkable as this
indicates that the speed-up is larger than the number of
processors used. For the HP protein [cf. Fig. 2(b)], single
walker WL simulations did not reach convergence of the
DOS over the entire energy range within a CPU year, yet
all parallel runs finalized within a month already for equal-
size energy splitting and with only a single walker per
energy interval. We found that so¼75%ðh ¼ 9Þ � 20; again,
we get a speed-up larger than the number of processors
even in this basic setup. To investigate the weak scaling
properties, we simulate the 10-state Potts model for differ-
ent system sizes. We increase the number of computing
cores by the same amount as the system size increases
and measure the total run time. The results are shown in
Fig. 4(b), where these data are compared to the run time
increase for serial, single walker WL simulations of the
same model. Figure 4 clearly shows that our method is able
to achieve both, strong and weak scaling, i.e., by increasing
the number of computing cores one can get results faster
for the same system and/or simulate larger systems in the
same time.

To conclude, we introduced a generic, hierarchical
parallel framework for generalized ensemble WL simula-
tions based on the concepts of energy range splitting,

replica-exchange Monte Carlo simulations and multiple
random walkers. The method is held as simple and general
as possible and leads to significant advantages over tradi-
tional, single-walker WL sampling. In our complete for-
mulation, we consider multipleWLwalkers in independent
parallelization directions and show that strong and weak
scaling can be achieved. (Our formulation far surpasses a
version with a single walker per equal-size energy sub-
window and an ad hoc overlap, which was used earlier to
study evaporation and condensation in a spin lattice model
[21]). With the ability to reach into previously inaccessible
domains, highly accurate results, and proven scalability up
to �2000 cores without introducing an erroneous bias, we
provide a proof of concept that our novel parallel WL
scheme has the potential for large scale parallel
Monte Carlo simulations. Since the framework is comple-
mentary to other technical parallelization strategies, it is
further extendible in a straightforward way. This facilitates
efficient simulations of larger and more complex problems
and thus provides a basis for many applications on petaflop
machines.
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FIG. 4 (color online). (a) Speed-up soðh;mÞ for different
numbers of cores for equal-size energy windows and overlap
o ¼ 75% [blue circles, cf. Fig. 1(a)] and using a run-time bal-
anced energy splitting [red diamonds, cf. Fig. 1(b)]. Here, the
calculation of the speed-up is based on the MC steps (MCS)
needed to complete the first WL iteration. (b) MC time to
terminate serial WL runs for different system sizes of the 2D
Potts model (blue circles) vs run time for parallel runs if the
number of cores increases according to the increase in system
size (red diamonds). The run time practically stays constant,
proving the weak scaling property of our method.

FIG. 3. Path of a single replica through energy space. Replica
exchange betweenwalkers is proposed every 104 sweeps (data also
shown with that resolution), with acceptance rates between 30%
and 55%. Grid lines correspond to the borders of the individual
energy windows, cf. sketch of parallel setup at right and Fig. 1(a).
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