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a b s t r a c t

An open problem in graphical Gaussian models is to determine the smallest number of
observations needed to guarantee the existence of the maximum likelihood estimator of
the covariance matrix with probability one. In this paper we formulate a closely related
problem in which the existence of the maximum likelihood estimator is guaranteed for
all generic observations. We call the number determined by this problem the Gaussian
rank of the graph representing the model. We prove that the Gaussian rank is strictly
between the subgraph connectivity number and the graph degeneracy number. These
bounds are sharper than the bounds known in the literature and furthermore computable
in polynomial time.
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1. Introduction

An open problem in graphical Gaussianmodels is to determine the smallest number of observations needed to guarantee
the existence of the maximum likelihood estimator (MLE) of the covariance matrix. This problem first arose in Dempster’s
paper [3] and has been frequently brought to attention by Steffen Lauritzen, as evident in [1] and Lauritzen’s lectures in
‘‘Durham Symposium on Mathematical Aspects of Graphical Models 2008’’. Hence we refer to this problem as the D&L
problem using the initials of Dempster and Lauritzen. Note that the D&L problem as stated above is not well-posed, because
the existence of the MLE cannot be guaranteed for all observations, no matter how large the number of observations is.
To make this well-posed, a necessary condition is to ignore a set of observations of probability zero and thus require the
existence of theMLE only for observations in a set of probability one. It is now clear that the D&L problem in its most general
form can be expressed as follows.
D&L problem (I) For a given graphical Gaussian model with respect to a graph G, determine the smallest number of
observations needed to guarantee the existence of the MLE with probability one.

A slightly different well-posed formulation of the D&L problem is to require the existence of the MLE (of the covariance
matrix, henceforth) for all generic observations in the following sense. Let n ≤ p. Then the observations1 x1, . . . , xn ∈ Rp

are said to be generic if each n× n principal submatrix of the sample covariance matrix S = 1/n
n

i=1 xix
⊤

i is non-singular.
Note that with probability one every n observations are generic (thus the set of non-generic observations is of probability
zero). This formulation can now be expressed as follows.
D&L problem (II) For a given graphical Gaussian model with respect to a graph G, determine the smallest number of
observations needed to guarantee the existence of the MLE for all generic observations.
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The number determined by the D&L problem (II) is said to be the Gaussian rank ofG, denoted by r(G). The primary goal of
this paper is to obtain sharp lower and upper bounds on r(G). In parallel to the D&L problem (II), the number determined by
the D&L problem (I) is said to be the weak Gaussian rank of G, denoted by rw(G). Note again that being in general position is
a generic property of any n observations, that is, with probability one for every n observations each n×n principal submatrix
of the sample covariance matrix is non-singular. Thus obviously r(G) ≥ rw(G), for every graph G.

As wementioned earlier, the D&L problem first arose in [3], a celebrated work of Dempster in which, under the principle
of parsimony in fitting parametric models, Dempster introduced graphical Gaussian models and gave a partial analytic
expression for the MLE of the covariance matrix, assuming that the MLE exists. In practice, the MLE has to be computed
by an iterative numerical procedure, such as the iterative proportional scaling procedure (IPS) [16]. However, if the number
of observations is not sufficiently large there is no guarantee that the output matrix will indeed correspond to the MLE,
as it might not be positive definite. It is clear that the number determined by the D&L problem under either formulations
depends on the level of sparsity in graph, but the exact nature of this dependency is far from clear. Mainly because sparse
graphs are not well understood, in particular it is not knownwhat graph parameters best measure the graph sparsity. Hence
the D&L problems (I) and (II) are important problems not only in relation to maximum likelihood estimation but also for
gaining deeper insight into sparse graphs. In practice, the D&L problem (II) is equivalent to the D&L problem (I), because in
general the data can be expected to be generic and therefore n ≥ r(G) is a condition thatminimally guarantees the existence
of the MLE.

In a graphical Gaussian model the sparsity is given by a pattern of zeros in the inverse covariance matrix. The pattern of
zeros is determined by the missing edges of a graph and each zero entry of a generic inverse covariance matrix indicates
that the corresponding pair of variables are conditionally independent given the remaining variables. An attractive feature
of graphical Gaussian models, or graphical models in general, is that if the graph representing the model is sparse, then
the MLE of the covariance matrix can exist even if the number of observations is much smaller than the dimension of the
multivariate Gaussian distribution. Intuitively, we expect that the Gaussian rank of the graph, the number determined by
the D&L problem, to decrease as the graph becomes sparser. However, it is not clear what best measures the sparsity of a
graph or how the Gaussian rank varies accordingly. The main theorem of this paper suggests two suchmeasures of sparsity.

Despite some efforts since 90’s not much progress has been made to resolve the D&L problem. The existing results are
limited to a handful of publications as follows.

(R1) [5] For a decomposable graph G, a graph that has no induced cycle of length larger than or equal to four, the Gaussian
rank is equal to ω(G), the size of the largest complete subgraph of G.

(R2) [5] For every graph G, ω(G) ≤ rw(G) ≤ r(G) ≤ tw(G) + 1, where tw(G) denotes the treewidth of G (See [7] for the
definition).

(R3) [1] For Cp, a cycle of length p ≥ 3, 2 = ω(Cp) < rw(Cp) = r(Cp) = 3 = tw(Cp) + 1.
(R4) [17] For G3,3, the 3 × 3 grid, 2 = ω(G3,3) < rw(G3,3) = r(G3,3) = 3 < tw(G3,3) + 1 = 4.

In the literature the bounds given by (R2) are currently the best known bounds for the Gaussian rank. Restricted to the
class of decomposable graphs these bounds are tight, since tw(G) + 1 = ω(G) for a decomposable graph G, but we may
note that (R4) in [17] shows that for non-decomposable graphs the bounds in (R2) are not necessarily tight. Intuitively, it is
apparent that ω(G) overestimates and tw(G) underestimates the sparsity of G and therefore sharper bounds may exist. In
this paper we give sharper bounds on the Gaussian rank. The lower and upper boundswe give are the subgraph connectivity
number, denoted by κ∗(G), and the graph degeneracy number, denoted by δ∗(G). Both κ∗(G) and δ∗(G)will be defined later
in Section 2.2. Formally we prove the following theorem.

Theorem 1.1. Let G = (V , E) be a graph. Then

κ∗(G) + 1 ≤ r(G) ≤ δ∗(G) + 1 (1.1)

The proof of this theorem is given in Section 4. The upper bound is proved by mathematical induction using two key
observations: suppose a graphH is obtained fromG by removing a vertex v and its adjacent edges. Then (1) r(H) ≥ r(G)−1
and (2) if r(G) is larger than the number of the vertices adjacent to v, then r(H) = r(G). The proof of the lower bound relies
on Lovász–Saks–Schrijver’s Theorem in [11].

All the results stated in (R1) through (R4) now immediately follow from Theorem 1.1, since by some simple calculations
we can show that

(a) for a decomposable graph G, ω(G) = κ∗(G) + 1 = δ∗(G) + 1 = tw(G) + 1;
(b) for any (arbitrary) graph G, ω(G) ≤ κ∗(G) + 1 ≤ r(G) ≤ δ∗(G) + 1 ≤ tw(G) + 1;
(c) for a cycle (of any length) G, κ∗(G) = δ∗(G) = 2;
(d) for a k × m grid (with k and m ≥ 2), κ∗(G) = δ∗(G) = 2.

Note that by Part (d) the Gaussian rank of every grid is 3 which is substantially less than the upper bound given by (R2)
for grids of large dimensions. The reason is that the treewidth of a k × m grid is min{k,m} which tends to +∞ as k and
m → +∞ [14]. Here we mention that by relating rw(G) to the rigidity of the graph G, Gross and Sullivant in a recent
manuscript [6] also obtain the upper bound in Theorem 1.1 for rw(G).
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Fig. 1. Denoted graphs are (a) a 4 × 5 grid, G4,5 (b) a cycle of length 8, C8 (c) a complete (4, 3)-bipartite graph, K4,3 .

This paper is structured as follows. In Section 2 we first introduce required preliminaries and notation in graph theory,
matrix algebra andGaussian graphicalmodels, and then explain theMLE problem for Gaussian graphicalmodels. In Section 3
we give an alternative description of the Gaussian rank and derive some of its properties. In Section 4we prove Theorem 1.1.
In Section 5 we apply Theorem 1.1 to some special graphs to exactly determine their Gaussian ranks. These graphs include
symmetric graphs and randomgraphs.Wealso obtain a tight numerical upper bound for theGaussian ranks of planar graphs.

2. Preliminaries

In this section, we establish some necessary notation, terminology and definitions in graphical models, matrix algebra
and geometric graph theory.We also carefully explain how themaximum likelihood problem for graphical Gaussianmodels
leads to the D&L problem.

2.1. Graph theoretical notion, definitions

Our notation presented here closely follows the notation established in [15,10]. Let G = (V , E) be an undirected graph,
where V = V (G) is the vertex set and E = E(G) is the edge set of G. Each edge e ∈ E is an unordered pair ij = {i, j}, where
i, j ∈ V . For ease of notation we assume that E contains all the self-loops, that is, (i, i) for every i ∈ V . Unless otherwise
stated, we always assume that V (G) = {1, . . . , p} = [p].

(1) For a vertex v ∈ V , the set and the number of vertices adjacent to v are denoted by ne(v) and degG(v).
(2) A graph H is a subgraph of G, denoted by H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G).
(3) For a set V ′

⊆ V , the graph defined by G[V ′
] = (V ′, E ∩ V ′

× V ′) is said to be the subgraph of G induced by V ′.
(4) For a vertex v ∈ V , the induced subgraph G[V\{v}] is denoted by G− v. Note that G− v is simply obtained by removing

v and its incident edges from G.
(5) For an edge e ∈ E, G − e denotes the subgraph obtained by removing e from G, that is, G − e = (V , E\{e}).

2.2. Graph parameters

Let G denote the set of all graphs. A graph parameter is a function (µ : G → R) : G → µ(G). In words, a graph parameter
is a function that assigns a number to each graph. In graph theory two common graph parameters are:

(a) δ(G) = min{degG(v) : v ∈ V }, said to be the minimum degree of G;
(b) κ(G) = min{|S| : S ⊆ V such that G[V\S]is disconnected}, said to be the vertex connectivity number of G. In words,

κ(G) is the smallest number k of vertices whose deletion separates the graph or makes it trivial.

Now for every graph parameter µ we can define a new graph parameter as

µ∗(G) = max {µ(H) : H ⊆ G} .

Two such defined graph parameters are δ∗(G) and κ∗(G), known as the graph degeneracy number and the subgraph
connectivity number of G, respectively [15]. Note that κ∗(G) is the smallest number of vertex deletions sufficient to
disconnect each subgraph of G. Since κ(G) ≤ δ(G) we have

κ∗(G) ≤ δ∗(G) (see Part (a) in Remark 2.1). (2.1)

Example 2.1. Consider the graphs given by Fig. 1(a)–(c).

(a) The graph denoted by G4,5 in Fig. 1(a) is a 4×5 grid. It is easy to see that κ∗(G4,5) = δ∗(G4,5) = 2. In fact for every k×m
grid (with k andm ≥ 2), κ∗(Gk,m) = δ∗(Gk,m) = 2.

(b) The graph denoted by C8 in Fig. 1(b) is a cycle of length 8 with κ∗(C8) = δ∗(C8) = 2. This is obviously true for any
arbitrary cycle Cp (with length p ≥ 3).

(c) The graph denoted by K4,3 in Fig. 1(c) is a complete (4, 3)-bipartite graph. In general, a complete (k,m)-bipartite graph
is a graph so that its vertex set can be partitioned into two sets with k andm elements such that two vertices are adjacent
if and only if they are in different partitions of V . One can check that κ∗(Kk,m) = δ∗(Kk,m) = min{k,m} [15].
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Remark 2.1. These simple facts can be found in [15].
(a) If two graph parameters are such that µ1(H) ≤ µ2(H) for every subgraph H ⊆ G, then µ∗

1(G) ≤ µ∗

2(G).
(b) If a graph parameter is non-decreasing, that is, H ⊆ G H⇒ µ(H) ≤ µ(G), then µ∗(G) = µ(G). For example, for this

reason ω∗(G) = ω(G) and tw∗(G) = tw(G).
(c) For every graph G we have ω(G) ≤ κ(G) + 1 ≤ δ(G) + 1 ≤ tw(G) + 1. In light of (a) and (b), this implies that

ω(G) ≤ κ∗(G) + 1 ≤ δ∗(G) + 1 ≤ tw(G) + 1.
(d) There are algorithms (specifically given in [15]) that compute κ∗(G) and δ∗(G), respectively, in no more than

O(|V |
3/2

|E|
2) and O(|E|) steps (in contrast, clique number and treewidth cannot be computed in polynomial time).

2.3. Matrix algebra notation, definitions

The notation presented here closely follows the notation established in [19,15]. For a vector u = (ui : i ∈ V ) ∈ RV and
α ⊆ V , let u[α] denote the subvector (ui : i ∈ α) ∈ Rα . For a matrix A = (Ai,j) ∈ RV×V and α and β ⊆ V , let A[α, β] denote
the submatrix (ai,j : i ∈ α, j ∈ β) ∈ Rα×β . A principal submatrix A[α, α] is simply denoted by A[α]. Some other notations
used throughout the paper are as follows.
(1) The set of p × p symmetric matrices is denotes by S(p).
(2) The set of (symmetric) positive semi-definite matrices is denoted by S+(p).
(3) The set of (symmetric) positive definite matrices is denoted by S++(p).
(4) The set of matrices A ∈ S+(p) of a fixed rank d is denoted by S+(p, d).
(5) A ≽ 0 (or A ≻ 0) denotes A is a positive semidefinite (or positive definite) matrix without specifying its dimension.
(6) The Moore–Penrose generalized inverse of A is denoted by AĎ. Note that AĎAAĎ = AĎ and AAĎA = A. It is clear that

AĎ = A−1 when A is non-singular.
(7) Let A be partitioned as A =


A[α] A[α, β]

A[β, α] A[β]


, where β = V\α. Then the Schur complement of A[α], denoted by A[β|α],

is defined by

A[β|α] = A[β] − A[β, α]A[α]
ĎA[α, β].

Convention: For convenience in subsequent sections, unless otherwise stated, we always assume that given matrices are
non-zero.

2.4. General-position vectors and matrices

Let v1, . . . , vp be p vectors in Rd. These vectors are said to be in general position in Rd if any d vectors among them are
linearly independent. Also a square matrix A of rank d is said to be in general position if every d × d principal submatrix of
A is non-singular.

Next we proceed with two lemmas and a corollary due to Eaton and Perlman [4] and Malley [13]. For completeness and
because the notation under consideration is slightly different in the Appendix we prove these results.

Lemma 2.1 ([4,13]). If p ≥ d vectors are randomly selected in Rd (with a probability distribution dominated by Lebesgue
measure), then with probability one they are in general position.

Lemma 2.1 therefore implies that being in general position is a generic property of any p ≥ d vectors in Rd. The next lemma
shows that there is a relationship between general-position vectors and matrices.

Lemma 2.2. Let A ∈ S+(p, d). Then A is in general position if and only if there are general-position vectors v1, . . . , vp ∈ Rd such
that

A =

v⊤

1
...

v⊤

p

 
v1 · · · vp


= (v⊤

i vj)1≤i,j≤p. (2.2)

Corollary 2.1 ([4,13]). Suppose x1, . . . , xn are n observations from a p-variate distribution. Thenwith probability one the sample
covariance matrix S and the sample correlation matrix R are in general positions.

A useful property of a general-position matrix A ∈ S+(p, d) is that in some sense it can be extended to another general-
position matrix in S+(p + 1, r) or S+(p + 1, r + 1). The next lemma formalizes this fact.

Lemma 2.3. Let A ∈ S+(p, d) be in general position.

(a) There exist non-zero vectors w and v ∈ Rp such that A − ww⊤ and

1 vT
v A


are general-position matrices, respectively, in

∈ S+(p, d) and S+(p + 1, d).
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(b) If d ≤ p−1, then there exists a vector u ∈ Rp such that A+uu⊤
∈ S+(p, d+1) is in general position. This in return implies

that the matrix
1 u⊤

u A + uu⊤


∈ S+(p + 1, d + 1) is in general position.

Proof. (a) Let τ = [d] and choose a non-zero vector xτ ∈ Rd such that x⊤
τ A[τ ]xτ < 1. We set

x =


xτ

0


∈ Rp and w = Ax =


A[τ ]xτ

A[γ , τ ]xτ


,

where γ = V\τ . Note that A ≽ 0 and x⊤Ax = x⊤
τ A[τ ]xτ < 1. Thus we have

1 − w⊤AĎw = 1 − x⊤Ax > 0,

and therefore B = A − ww⊤
∈ S+(p), by Theorem 1.20 in [19]. Now we claim that B has rank d and is in general position. It

suffices to show that B[α] = A[α] − w[α]w[α]
⊤

≻ 0 for every set α = {i1, . . . , id} ⊆ V . Let β = V\α. Then

w[α] = (Ax)[α] =

A[α] A[α, β]

 
x[α]

x[β]


= A[α]x[α] + A[α, β]x[β].

Thus, if we set yα = x[α] + A[α]
−1A[α, β]x[β], then A[α]yα = w[α]. Our claim is established if we can show that

1 w[α]
⊤

w A[α]


≻ 0 , or equivalently 1 − w⊤

[α]A[α]
−1w[α] = 1 − y⊤

α A[α]yα > 0.

We verify that the right-hand side inequality holds by writing

y⊤

α A[α]yα =

x[α] + A[α]

−1A[α, β]x[β]
⊤

A[α]

x[α] + A[α]

−1A[α, β]x[β]


= x[α]
⊤A[α]x[α] + 2x[α]

⊤A[α, β]x[β] + x[β]
⊤A[β, α]A[α]

−1A[α, β]x[β]

= x[α]
⊤A[α]x[α] + 2x[α]

⊤A[α, β]x[β] + x[α]
⊤A[α, β]x[β] − x[β]

⊤A[β|α]x[β]

=


x[α]

x[β]

⊤ 
A[α] A[α, β]

A[β, α] A[β]

 
x[α]

x[β]


− x[β]

⊤A[β|α]x[β]

= x⊤Ax − x[β]
⊤A[β|α]x[β]

≤ x⊤Ax (since A ≽ 0 and therefore A[β|α] ≽ 0)
< 1.

Therefore, B[α] ≻ 0 and rank(B[α]) = |α| = d. This shows that B = A − ww⊤
∈ S+(p, d) is in general position. To prove

the second half of Part (a) we proceed similarly. First we choose a vector yτ ∈ Rd such that y⊤
τ A[τ ]yτ = 1. Now we set

y =


yτ

0


∈ Rp and v = Ay =


A[τ ]yτ

A[γ , τ ]yτ


.

Then we have 1 − v⊤AĎv = 1 − y⊤Ay = 0. Consequently, B = A − vv⊤
∈ S+(p, d − 1) is in general position. This in return

implies that
1 v⊤

v A


∈ S+(p + 1, d) is in general position.

(b) First note that for a vector u ∈ Rp, rank(A + uu⊤) = rank(A) if and only if u ∈ Range(A), otherwise rank(A + uu⊤) =

rank(A) + 1 [9]. Now it suffices to find a vector u ∈ Rp
\Range(A) such that pα(u) = det


A[α] + u[α]u[α]

⊤


≠ 0 for each
α = {i1, . . . , id+1} ⊆ V . For this, we note that Range(A) and the zeros of the polynomials pα(x) are all algebraic sets ( Rp

and therefore have zero measures. Thus we can choose a vector u in the nonempty set Rp
\

Range(A)


α{x : pα(x) = 0}


.

For this vector thematrix A+uu⊤
∈ S+(p, d+1) is in general position. The rest of the proof is similar to that of Part (a). �

Remark 2.2. As the proof shows, Part (a) of Lemma 2.3 holds in particular forw = Ax, where x =


xτ

0


and xτ ∈ Rd satisfies

x⊤
τ A[τ ]xτ < 1.
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2.5. Graphical Gaussian models

Let G = (V , E) be a graph with p vertices. A Gaussian distribution Np(0, Σ) is said to be Markov with respect to G if

(Σ−1)i,j = 0 whenever ij ∉ E.

The graphical Gaussian model over G, denoted by N (G), is the family of Np(0, Σ) Markov with respect to G. Let

ZG = {A ∈ S(p) : Ai,j = 0for eachij ∉ E} and PG = ZG ∩ S++(p).

Then ZG is an |E|-dimensional linear space and PG is an open convex cone in ZG. Note that PG is in fact the set of inverse
covariance matrices for the graphical Gaussian model N (G).

2.6. The maximum likelihood problem

Suppose x1, . . . , xn are n observations taken from Np(0, Σ) ∈ N (G). Then the MLE of Σ is the solution to the following
optimization problem [8]:

argmax
Ω


−

n
2
log detΣ −

n
2
tr(Σ−1S)


subject to


Σ−1

i,j = 0, ∀ij ∉ E

Σ ≻ 0.

Recall that S = 1/n
n

i=1 xix
⊤

i is the sample covariance matrix. In terms of the inverse covariance matrix Ω = Σ−1, this
optimization problem can be recast as the convex optimization problem:

argmin
Ω


−

n
2
log detΩ +

n
2
tr(ΩS)


(2.3)

subject to Ω ∈ PG.

A standard optimization procedure such as in [8] or [2] shows that the dual problem of (2.3) solves the following concave
optimization problem.

argmax
Ω

(log detΣ)

subject to

Σi,j = Si,j, ∀ij ∈ E
Σ ≻ 0, (2.4)

which has a unique solution if and only if the feasible set determined by Eq. (2.4) is non-empty. Note that the existence of
a matrix Σ that satisfies the condition given by Equation (2.4) is essentially a positive definite completion problem. For the
future reference we record the conclusion as follows.

Proposition 2.1. Suppose x1, . . . , xn are n observations taken from Np(0, Σ) ∈ N (G). Then the MLE of Σ exists if and only if
there is a matrix P ∈ S++(p) such that Pi,j = Si,j for every ij ∈ E.

3. The Gaussian rank of a graph

In this section we give another description for the Gaussian rank of a graph using its unique property with respect to the
positive definite completion problem given by Eq. (2.4). An advantage of this alternative description is that more easily can
be verified and thus used to derive the properties of the Gaussian rank as a graph parameter.

3.1. An alternative description of the Gaussian rank

Let G = (V , E) be a graph. Two matrices A, B ∈ Rp×p are said to match on G, denoted by A
G
= B, if Ai,j = Bi,j for each

ij ∈ E. In other words, two matrices match on G if their Euclidean projection onto ZG are identical. The matching relation
G
=

is additive, and invariant under scaling [1]. More precisely,

A
G
= B and U

G
= V H⇒ A + U

G
= B + V (3.1)

A
G
= B H⇒ DAD

G
=DBD, for every diagonal matrix D. (3.2)

Let us recall that by definition r(G) is the smallest number r with the property that for every observations x1, . . . , xr if the
sample covariancematrix S is of rank r and in general position, then theMLE exists. In light of Proposition 2.1 an alternative
description of r(G) can be given as follows.
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Proposition 3.1. Let G be a graph. Then r(G) is the smallest number r with the following property:

(⋆) ∀A ∈ S+(p, r), if A is in general position H⇒ ∃P ∈ S++(p) such that P
G
= A.

Remark 3.1. Similarly, rw(G) is the smallest number r with the following property:
Almost surely ∀A ∈ S+(p, r), if A is in general position H⇒ ∃P ∈ S++(p) such that P

G
= A.

3.2. Some basic properties of the Gaussian rank

In this subsection we list some basic properties of the Gaussian rank as a graph parameter. Let us keep in mind that
r(G) ≤ r , for some positive integer r if the condition (⋆) in Proposition 3.1 is satisfied. Also, because of the scale invariant
property of matching relation given by Eq. (3.2), whenever convenient we can assume that A ∈ S+(p, r) is a correlation
matrix, that is, the diagonals of A are all 1.

Proposition 3.2. Let r > r(G). Then for every general-position matrix A ∈ S+(p, r) there is a matrix P ∈ S++(p) such that

P
G
= A.

Proof. Let A =
r

i=1 wiw⊤

i be a decomposition of A as in Eq. (A.1). Let us set B =
r(G)

i=1 wiw⊤

i and C =
r

i=r(G)+1 wiw⊤

i .
Since A is in general position the matrix B ∈ S+(p, r(G)) is also in general position. Thus there is a matrix Q ∈ S++(p) such

that Q
G
= B. Eq. (3.1) now shows A = B + C

G
=Q + C ∈ S++(p) as desired. �

In relation to the D&L problem (II) Proposition 3.2 is an important property that intuitively seems obvious. The reason is that
if the MLE exists for every generic r(G) observations, then we expect this to be true for every generic r ≥ r(G) observations
as well.

Proposition 3.3. Let v ∈ V be a vertex of G. Then the following holds.
(a) r(G − v) ≤ r(G) ≤ r(G − v) + 1.
(b) r(G) = r(G − v) + 1 if v is adjacent to all other vertices.

Proof. First, without loss of generality we assume that p ≥ 2 and v = 1.

(a) Let us set r = r(G). The claim is that r(G − v) ≤ r . Since r(G − v) ≤ p − 1 it suffices to consider the case r ≤ p − 1. Let
A ∈ S+(p − 1, r) be in general position. By Part (a) in Lemma 2.3 there is a vectorw ∈ Rp−1 such that

B =


1 w⊤

w A


∈ S+(p, r) is in general position.

Let P ∈ S++(p) such that P
G
= B. If we set α = V (G − v), then it is clear that A

G−v
= P[α] ∈ S++(p − 1).

Nowwe show that r(G) ≤ r(G − v) + 1. Let us set r0 = r(G − v) and let A ∈ S+(p, r0 + 1) be in general position. We
assume without loss of generality that A is a correlation matrix. If we partition A as

A =


1 u⊤

u B


, then C = B − uu⊤

≽ 0.

By using the Guttman rank additivity formula in [19] and the fact that C[α] = B[α] − u[α]u[α]
⊤, for each α ⊆ V , we

conclude that C ∈ S+(p − 1, r0) is in general position. Therefore, there is a matrix Q ∈ S++(p − 1) such that Q
G−v
= C .

Let us set

P =


1 u⊤

u Q + uu⊤


∈ S++(p).

The additive property of the matching relation given by Eq. (3.1) now shows that Q + uu⊤
G−v
= B and therefore P

G
= A.

(b) Suppose v = 1 is adjacent to 2, . . . , p. As before, let us set r = r(G). By Part (a) above r(G − v) ≥ r − 1. Thus, it suffices
to show that r(G − v) ≤ r − 1. For this, let A ∈ S+(p − 1, r − 1). Clearly, it suffices to consider the case r ≤ p − 1. By
Part (b) of Lemma 2.3 there is a vector u ∈ Rp−1 such that the matrix

1 u⊤

u A + uu⊤


∈ S+(p, r) is in general position.

Therefore, there is a matrix P ∈ S++(p) such that

P =


1 u⊤

u Q


G
=


1 u⊤

u A + uu⊤


, for some matrix Q ∈ S++(p − 1).

Thus, A + uu⊤
G−v
= Q and consequently A

G−v
= Q − uu⊤

∈ S++(p − 1). �
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Corollary 3.1. Let H be a subgraph of G. Then r(H) ≤ r(G).

Proof. Every subgraph of G is obtained by removing successively a finite number of vertices and edges from G. Therefore, it
suffices to show that r(G − v) ≤ r(G), for each vertex v ∈ V , and r(G − e) ≤ r(G), for each edge e ∈ E. The latter is obvious
using the condition (⋆) in Proposition 3.1. �

A graph G is said to be the clique sum of two subgraphs G1 = (V1, E1) and G2 = (V2, E2) if V = V1 ∪ V2, E = E1 ∪ E2 and
G[V1 ∩ V2] is a complete graph (including the empty graph). We write this as G = G1 ⊕V1∩V2 G2. The following proposition
is now immediate using a standard completion process given by [5] or [10].

Proposition 3.4. Suppose G = G1 ⊕V1∩V2 G2. Then r(G) = max{r(G1), r(G2)}. In particular, if G1, . . . , Gk are all the connected
components of G, then

r(G) = max {r(Gi) : i = 1, . . . , k} .

Remark 3.2. In relation to the D&L problem (I) we can show (by slightly modifying our proofs and using the alternative
description of rw(G) given by Remark 3.1) that the properties of the Gaussian rank discussed in this subsection are also valid
properties of the weak Gaussian rank. This fact however will not be used in the paper.

4. The proof of Theorem 1.1

In this section we prove Theorem 1.1, that is, the bounds given by Eq. (1.1). The lower and the upper bounds for r(G) are
proved in separate subsections.

4.1. The upper bound: r(G) ≤ δ∗(G) + 1

First we state and prove the following key lemma.

Lemma 4.1. Let v ∈ V be a vertex of G. If r(G − v) ≥ degG(v) + 1, then r(G) = r(G − v).

Proof. If degG = 0, then by Proposition 3.4 r(G) = max{1, r(G − v)} = r(G − v). Thus we assume that degG(v) ≥ 1. For
convenience, let us assume that v = 1 and ne(v) = {2, . . . , degG(v) + 1}. Note that V (G − v) = {2, . . . , p}. Now we set

r0 = r(G − v), τ = {2, . . . , r0} and γ = V (G − v)\τ .

Note that ne(v) ⊆ τ since r0 ≥ degG(v)+ 1. Let A ∈ S+(p, r0). We need to show that there is a matrix P ∈ S++(p) such that

P
G
= A. For this, we assume that A is a correlation matrix and therefore can be partitioned as

A =


1 u⊤

u B


=

 1 u[τ ]
⊤ u[γ ]

⊤

u[τ ] A[τ ] A[τ , γ ]

u[γ ] A[γ , τ ] A[γ ]

 , where B =


A[τ ] A[τ , γ ]

A[γ , τ ] A[γ ]


.

Note also that u ∈ Rp−1 and B ∈ S+(p − 1, r0) is in general position. Let us set xτ = A[τ ]
−1u[τ ]. Now we have

1 u[τ ]
⊤

u[τ ] A[τ ]


≻ 0 and therefore 1 − u[τ ]

⊤A[τ ]
−1u[τ ] > 0.

This implies that x⊤
τ A[τ ]xτ = x⊤

τ B[τ ]xτ < 1. By Part (a) of Lemma 2.3 and Remark 2.2, if we set w = Bx, then
B − ww⊤

∈ S+(p − 1, r0) is in general position. Therefore, there is a matrix Q ∈ S++(p − 1) such that Q
G−v
= B − ww⊤. Let

us set

P =


1 w⊤

w Q + ww⊤


∈ S++(p).

By Eq. (3.1) it is clear that Q + ww⊤
G−v
= B. Also, since w[τ ] = A[τ ]xτ = u[τ ] and ne(v) ⊆ τ we have P1j = A1j whenever

j ∈ ne(v). Therefore, P
G
= A. �

We now prove that the upper bound r(G) ≤ δ∗(G) + 1 holds.

Proof. By mathematical induction let us assume that for any graph H with fewer than p vertices r(H) ≤ δ∗(H) + 1. Now
let G be a graph with p vertices. We assume without loss of generality that p ≥ 2. Let v ∈ V such that degG(v) = δ(G). On
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the contrary, let us assume that r(G) ≥ δ∗(G) + 2, then by Part (a) of Proposition 3.3 we obtain

r(G − v) ≥ r(G) − 1 ≥ δ∗(G) + 1 ≥ degG(v) + 1.

Lemma 4.1 now implies that r(G) = r(G− v). The induction hypothesis then implies that r(G) = r(G− v) ≤ δ∗(G− v)+ 1.
The fact that δ∗(G) = max{δ(G), δ∗(G − v)} [15] implies that r(G) ≤ δ∗(G) + 1. �

Remark 4.1. Note that Lemma 4.1 also holds for the weak Gaussian rank, that is, for any graph G if rw(G − v) ≥ degG +1,
then rw(G) = rw(G − v). Consequently, this implies rw(G) ≤ δ∗(G)+ 1. But the latter more easily follows from the fact that
rw(G) ≤ r(G) ≤ δ∗(G) + 1.

4.2. The lower bound: κ∗(G) + 1 ≤ r(G)

To prove that this lower bound holdswemainly rely on Lovász–Saks–Schrijver’s Theorem in [11]. This theoremassociates
the connectivity of a graph with its certain geometric representations. More details are as follows. Let G = (V , E) be graph.
An orthonormal representation of G in Rd is a function φ : V → Rd assigning a unit vector ui to each vertex i ∈ V such
that u⊤

i uj = 0 whenever ij ∉ E. In words, φ assigns to each vertex a unit vector in Rd such that the vectors assigned
to nonadjacent vertices are orthogonal. Now a general-position orthonormal representation of G in Rd is an orthonormal
representation φ in Rd such that the p assigned vectors φ(1) = u1, . . . , φ(p) = up are in general position in Rd. The next
theorem is crucial for proving the lower bound in Theorem 1.1.

Theorem 4.1 (Lovász–Saks–Schrijver [11,12]). If G = (V , E) is a graph with p vertices, then the following are equivalent:

(i) G is (p − d)-connected;
(ii) G has a general-position orthonormal representation in Rd.

Remark 4.2. We note that in the proof of (i) H⇒ (2) in [11] it is shown that the set of general-position orthonormal
representations in Rd is a subvariety of Rpd and, consequently, of probability zero.

We now proceed to prove that the lower bound κ∗(G) + 1 ≤ r(G) holds.

Proof. Since r(H) ≤ r(G) for every subgraph H of G, in light of Part (a) and Part (b) in Remark 2.1, it suffices to show that
for every graph G we have r(G) ≥ κ(G)+ 1. First we set k = κ(G) and d = p− k. By Theorem 4.1 there are general-position
unit vectors u1, . . . ,up ∈ Rd such that u⊤

i uj = 0 for each ij ∉ E. LetΩ = (u⊤

i uj)1≤i,j≤p. By Lemma 2.2 we haveΩ ∈ S+(p, d)
is in general position. Letw1, . . . ,wk ∈ Rp be a basis of Null(Ω) and set

A =

w1 . . . wk

 w⊤

1
...

w⊤

k

 ∈ S+(p, k).

The proof of Lemma 6.3 in [18] shows that the matrix A ∈ S+(p, k) is in general position. Let P ∈ S(p) such that P
G
= A. Then

tr(PΩ) =


ij∈E

Pi,jΩi,j =


ij∈E

Ai,jΩi,j = tr(AΩ) = 0 (note that AΩ = 0).

This shows that P ∉ S++(p), since S++(p) is a self dual cone, that is,

S++(p) = {Q ∈ S(p) : tr(QB) > 0 for every B ∈ S+(p)\{0}},

and Ω ∈ S+(p)\{0}. Thus there is no matrix P ∈ S++(p) such that P
G
= A. This shows that r(G) ≥ κ(G) + 1. �

Remark 4.3. Note that the proof of lower bound above does not imply that κ∗(G) + 1 ≤ rw(G). This is because by using
Lovász–Saks–Schrijver’s Theorem, in light of Remark 4.2, the set of all general positionmatrices A ∈ S+(p, κ(G)) in our proof
is of probability zero, and this is not sufficient to conclude κ∗(G) > rw(G).

5. Some applications of Theorem 1.1

A useful application of the bounds given by Theorem 1.1 is that when the lower and upper bounds are equal the Gaussian
rank is exactly determined. In this section we briefly discuss for which graphs κ∗(G) = δ∗(G). We also use Theorem 1.1 to
obtain a sharp numerical upper bound for the Gaussian ranks of the so-called planar graphs.
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Fig. 2. Denoted graphs in (a) and (b) are symmetric. The graph given by (c) is not symmetric. In each graph the equality in Eq. (5.1) holds and the Gaussian
ranks are easily computed to be 4, 4 and 5, respectively.

Fig. 3. A planar graph with degeneracy number 5.

5.1. Gaussian ranks of symmetric graphs

Let G = (V , E) be a graph. A permutation σ : V → V is said to be an automorphism of G if ij ∈ E H⇒ σ(i)σ (j) ∈ E. The
graph G is said to be symmetric if for any two edges ij and i′j′ ∈ E there is an automorphism σ of G such that σ(i) = i′ and
σ(j) = j′ (please see Chapter 27 in [7] for a detailed discussion of symmetric graphs). For example, one can check that the
graphs given by Fig. 2(a) and (b) are symmetric. The symmetric property in particular implies that G is regular, that is, there
is a positive integer k such that degG(v) = k for every vertex v ∈ V . An interesting feature of a symmetric graph G is that
κ(G) = δ(G). This consequently implies that κ∗(G) = δ∗(G). Theorem 1.1 therefore implies that for a symmetric graph the
Gaussian rank is exactly determined as

r(G) = κ∗(G) = δ∗(G). (5.1)

Note that Eq. (5.1) can hold for many non-symmetric graphs as well, such as the regular graph given by Fig. 2(c) or even
non-regular graphs such as grids. To the best of our knowledge the class of all graphs G satisfying κ∗(G) = δ∗(G), or even
κ(G) = δ(G), is not fully characterized.

5.2. Gaussian ranks of random graphs

A random graphG(ϵ) in the Erdös–Rényimodel is a graph inwhich the edges are selected by a sequence of (independent)
Bernoulli trials with probability 0 < ϵ < 1 [7].

Theorem 5.1 (Bollobás et al.). Almost surely for every random graph G(ϵ) we have κ(G(ϵ)) = δ(G(ϵ)).

The next result now follows from Theorem 5.1 above and Theorem 1.1.

Corollary 5.1. Almost surely for every random graph G(ϵ) we have

r(G(ϵ)) = κ∗(G(ϵ)) = δ∗(G(ϵ)).

This in particular implies that almost surely for every random graph G(ϵ) we have

rw(G(ϵ)) ≤ κ∗(G) + 1.

5.3. On the Gaussian ranks of planar graphs

A planar graph is a graph that can be drawn in a plane without the edges crossing each other. In graph theory it is well-
known that planar graphs are at most 5-degenerate, that is, δ∗(G) ≤ 5 if G is planar. Theorem 1.1 therefore implies that
when G is a planar graph r(G) ≤ 6. Note that the upper bound 6 is tight. For this, consider the planar graph G in Fig. 3. Since
κ∗(G) = δ∗(G) = 5 by Eq. (5.1) we have r(G) = 6.

Remark 5.1. We note that Gross and Sullivant in [6] prove that for every planar graph G, rw(G) ≤ 4. Comparing this with
the tight upper bound r(G) ≤ 6 shows that for some graphs the week Gaussian rank can be strictly less than the Gaussian
rank. For example for the graph G given by Fig. 3 we have rw(G) = 4 < r(G) = 6.
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Appendix

Proof of Lemma 2.1. First we note that randomly selecting p vectors in Rd is equivalent to randomly selecting a matrix
W ∈ Rd×p. Let X = (xi,j) denote a d × pmatrix of variables. For each α = {i1, . . . , id} ⊆ [p] we define the polynomial

pα(X) = det

x1,i1 . . . x1,id
...

. . .
...

xd,i1 . . . xd,id

 and Vα = {W ∈ Rd×p
: pα(W ) = 0}.

Each Vα ( Rd×p is an algebraic set and its (Lebesgue) measure is therefore zero. Thus, Pr

W ∈ Rd×p

\


α Vα


= 1. This

completes the proof, since each d columns of a matrixW ∈ Rd×p
\


α Vα are linearly independent. �

Proof of Lemma 2.2. (H⇒) Suppose A ∈ S+(p, d). Let each pair of (λ1,u1), . . . , (λd,ud) denote a positive eigenvalue and
its corresponding eigenvector of A. Let us setwi =

√
λiui, for i = 1, . . . , d. Then we have

A =

d
i=1

wiw⊤

i = W⊤W , where W =

w⊤

1
...

w⊤

d

 =

v1 . . . vp


∈ Rd×p. (A.1)

Note that v1, . . . , vp ∈ Rd are the columns of W . Suppose for α = {i1, . . . , id} ⊆ [p] the vectors vi1 , . . . , vid are
linearly dependent. Thus, there is a non-zero vector xα = (xi1 , . . . , xid)

⊤
∈ Rd such that

i∈α

xivi = W

xα

0


= 0 H⇒ W⊤W


xα

0


= A


xα

0


= 0.

Thus A[α]xα = 0 and consequently A[α] is singular.
(⇐H) Suppose v1, . . . , vp ∈ Rd are in general position. Let A be defined as in Eq. (2.2). Then for each α = {i1, . . . , id} ⊆ [p]

the submatrix

A[α] =

v⊤

i1
...

v⊤

id

 
vi1 · · · vid


is obviously non-singular. �

Proof of Corollary 2.1. Let

X =

x⊤

1
...

x⊤

n

 =

y1 . . . yp


∈ Rn×p

be the data matrix. Then by Lemma 2.1 with probability one y1, . . . , yp, the columns of X, are in general position in Rn. The
result now follows from Lemma 2.2, since whenever the columns of X are in general position S = 1/n


X⊤X


is also in

general position. �

References

[1] Søren L. Buhl, On the existence of maximum likelihood estimators for graphical Gaussian models, Scand. J. Stat. 20 (3) (1993) 263–270.
[2] Joachim Dahl, Lieven Vandenberghe, Vwani Roychowdhury, Covariance selection for nonchordal graphs via chordal embedding, Optim. Methods

Softw. 23 (4) (2008) 501–520.
[3] Arthur P. Dempster, Covariance selection, Biometrics (1972) 157–175.
[4] Morris L. Eaton, Michael D. Perlman, The non-singularity of generalized sample covariance matrices, Ann. Statist. 1 (1973) 710–717.
[5] Robert Grone, Charles R. Johnson, Eduardo M. de Sá, Henry Wolkowicz, Positive definite completions of partial Hermitian matrices, Linear Algebra

Appl. 58 (1984) 109–124.
[6] Elizabeth Gross, Seth Sullivant, The maximum likelihood threshold of a graph. 2014. ArXiv:1404.6989.
[7] Jonathan L. Gross, Jay Yellen (Eds.), Handbook of Graph Theory, in: Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL,

2004.
[8] Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning, second ed., in: Springer Series in Statistics, Springer, New

York, 2009, Data mining, inference, and prediction.
[9] Alston S. Householder, The Theory of Matrices in Numerical Analysis, Dover Publications, Inc., New York, 1975, Reprint of 1964 edition.

[10] Steffen L. Lauritzen, Graphical Models, in: Oxford Statistical Science Series, vol. 17, The Clarendon Press, Oxford University Press, New York, 1996,
Oxford Science Publications.

[11] L. Lovász, M. Saks, A. Schrijver, Orthogonal representations and connectivity of graphs, Linear Algebra Appl. 114/115 (1989) 439–454.
[12] L. Lovász, M. Saks, A. Schrijver, A correction: orthogonal representations and connectivity of graphs, [Linear Algebra Appl. 114/115 (1989), 439–454;

MR0986889 (90k:05095)] Linear Algebra Appl. 313 (1-3) (2000) 101–105.
[13] James D. Malley, Statistical and algebraic independence, Ann. Statist. 11 (1) (1983) 341–345.
[14] Bernard Mans, Luke Mathieson, On the treewidth of dynamic graphs, Theoret. Comput. Sci. 554 (2014) 217–228.

http://refhub.elsevier.com/S0047-259X(15)00070-6/sbref1
http://refhub.elsevier.com/S0047-259X(15)00070-6/sbref2
http://refhub.elsevier.com/S0047-259X(15)00070-6/sbref3
http://refhub.elsevier.com/S0047-259X(15)00070-6/sbref4
http://refhub.elsevier.com/S0047-259X(15)00070-6/sbref5
http://arxiv.org/1404.6989
http://refhub.elsevier.com/S0047-259X(15)00070-6/sbref7
http://refhub.elsevier.com/S0047-259X(15)00070-6/sbref8
http://refhub.elsevier.com/S0047-259X(15)00070-6/sbref9
http://refhub.elsevier.com/S0047-259X(15)00070-6/sbref10
http://refhub.elsevier.com/S0047-259X(15)00070-6/sbref11
http://refhub.elsevier.com/S0047-259X(15)00070-6/sbref12
http://refhub.elsevier.com/S0047-259X(15)00070-6/sbref13
http://refhub.elsevier.com/S0047-259X(15)00070-6/sbref14


218 E. Ben-David / Journal of Multivariate Analysis 139 (2015) 207–218

[15] David W. Matula, Subgraph connectivity numbers of a graph, in: Theory and Applications of Graphs (Proc. Internat. Conf., Western Mich. Univ.,
Kalamazoo, Mich., 1976), in: Lecture Notes in Math., vol. 642, Springer, Berlin, 1978, pp. 371–383.

[16] T.P. Speed, H.T. Kiiveri, Gaussian Markov distributions over finite graphs, Ann. Statist. 14 (1) (1986) 138–150.
[17] Caroline Uhler, Geometry of maximum likelihood estimation in Gaussian graphical models, Ann. Statist. 40 (1) (2012) 238–261.
[18] Hein van der Holst, Graphs with magnetic Schrödinger operators of low corank, J. Combin. Theory Ser. B 84 (2) (2002) 311–339.
[19] Fuzhen Zhang, The Schur Complement and its Applications, in: Numerical Methods and Algorithms, vol. 4, Springer-Verlag, New York, 2005.

http://refhub.elsevier.com/S0047-259X(15)00070-6/sbref15
http://refhub.elsevier.com/S0047-259X(15)00070-6/sbref16
http://refhub.elsevier.com/S0047-259X(15)00070-6/sbref17
http://refhub.elsevier.com/S0047-259X(15)00070-6/sbref18
http://refhub.elsevier.com/S0047-259X(15)00070-6/sbref19

	Sharp lower and upper bounds for the Gaussian rank of a graph
	Introduction
	Preliminaries
	Graph theoretical notion, definitions
	Graph parameters
	Matrix algebra notation, definitions
	General-position vectors and matrices
	Graphical Gaussian models
	The maximum likelihood problem

	The Gaussian rank of a graph
	An alternative description of the Gaussian rank
	Some basic properties of the Gaussian rank

	The proof of Theorem 1.1
	The upper bound:  r (G) leqδ* (G) + 1 
	The lower bound:  κ* (G) + 1 leqr (G) 

	Some applications of Theorem 1.1
	Gaussian ranks of symmetric graphs
	Gaussian ranks of random graphs
	On the Gaussian ranks of planar graphs

	Acknowledgments
	Appendix
	References


