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ABSTRACT

Modularity is widely used to effectively measure
the strength of the community structure found by
community detection algorithms. However, modu-
larity maximization suffers from two opposite yet
coexisting problems: in some cases, it tends to favor
small communities over large ones while in others,
large communities over small ones. The latter ten-
dency is known in the literature as the resolution
limit problem. To address them, we propose to mod-
ify modularity by subtracting from it the fraction
of edges connecting nodes of different communities
and by including community density into modularity.
We refer to the modified metric as Modularity Den-
sity and we demonstrate that it indeed resolves both
problems mentioned above. We describe the motiva-
tion for introducing this metric by using intuitively
clear and simple examples. We also prove that this
new metric solves the resolution limit problem. Fi-
nally, we discuss the results of applying this metric,
modularity, and several other popular community
quality metrics to two real dynamic networks. The
results imply that Modularity Density is consistent
with all the community quality measurements but
not modularity, which suggests that Modularity Den-
sity is an improved measurement of the community
quality compared to modularity.

I INTRODUCTION

Communities are the basic structures in sociology in
general and in social networks in particular. They
have been intensively researched for more than a half
of the century [1]. Community in sociology usually
refers to a social unit whose members share common
values and the identity of the members as well as
their degree of cohesiveness depend on individuals’
social and cognitive factors such as beliefs, prefer-
ences, or needs. The ubiquity of the Internet and
social media eliminated spatial limitations on com-
munity geographical range, enabling on-line commu-
nities to link people regardless of their physical loca-
tion. The newly arising computational sociology re-

lies on computationally intensive methods to analyze
and model social phenomena [2], including communi-
ties and their detection.

Analysis of social networks became one of the basic
tools of sociology [3] and has been used for linking
micro and macro levels of sociological theory. The
classical example of the approach is presented in [4]
that elaborated the macro implications of one as-
pect of small-scale interaction, the strength of dyadic
ties. Moreover, a lot of commercial applications, such
as digital marketing, behavioral targeting, and user
preference mining, rely heavily on community analy-
sis. With the rapid growth of large-scale on-line social
networks, e.g., Facebook connected a billion users in
2012, there is a high demand for efficient community
detection algorithms that will be able to handle their
evolution growth. Communities in on-line social net-
works are discovered by analyzing the observed and
often recorded on-line interactions between people.

In computational sociology, communities are defined
as groups of nodes in a social network within which
connections are denser than between them [5]. This
definition has been found useful also in other type
of networks, and community detection became one
of the fundamental issues in network science. Com-
munity detection has been shown to reveal latent
yet meaningful structure not only for groups in on-
line and contact-based social networks, but also in
groups of customers with similar interests in online
retailer user networks, groups of scientists in inter-
disciplinary collaboration networks, and in biology
in functional modules in protein-protein interaction
networks etc. [6]. Since in most applications the real
communities are not known (often due to the cost of
establishing ground truth in large on-line social net-
works), there is a need for developing reliable metrics
to evaluate detected communities, so these metrics
can be used to rank the quality of community struc-
tures discovered by different community detection al-
gorithms. Such metrics can also be used to develop
novel community algorithms that iteratively attempt
to improve the metrics by merging or splitting the
given network community structure.
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In the last decade, the most popular community de-
tection method, proposed by Newman [7], has been
to maximize the quality metric known as modular-
ity [5,8] over all the possible partitions of a network.
This metric measures the difference (relative to the
total number of edges) between the actual and ex-
pected (in a randomized graph with the same number
of nodes and the same degree distribution) number of
edges within a given community. It is widely used to
measure the strength of the community structures de-
tected by the community detection algorithms. How-
ever, modularity maximization has two opposite yet
concurrent problems. In some cases, it tends to split
large communities into smaller communities. In other
cases, it tends to form large communities by merging
communities that are smaller than a certain threshold
which depends on the total number of edges in the
network and on the degree of inter-connectivity be-
tween the communities. The latter problem is known
as the resolution limit problem [9].

To solve these two problems simultaneously, we pro-
pose a new community quality metric, that we termed
Modularity Density, as an alternative to modularity.
First, we show modularity decreased by Split Penalty,
defined as the fraction of edges that connect nodes of
different communities, solves the problem of favoring
small communities. Next, we demonstrate that in-
cluding community density into modularity addresses
the problem of favoring large communities. We refer
to the resulting metric as Modularity Density.

We formally prove that Modularity Density could re-
solve the resolution limit problem. We also discuss
our experiments with this metric, modularity, and
other popular community quality metrics, including
the number of Intra-edges, Contraction, the num-
ber of Inter-edges, Expansion, and Conductance [10],
on two real dynamic networks. The results show
that Modularity Density is different from original
modularity, but consistent with all those community
quality measurements, which implies that Modular-
ity Density is effective in measuring the community
quality of networks.

The rest of the paper is organized as follows. First, in
Section II we discuss some related works. Then, we
briefly introduce modularity and illustrate our mo-
tivation to propose the new metric with examples in
Section III. Section IV presents the formal proofs and
the experiments that demonstrate Modularity Den-
sity solves the two problems of modularity simulta-
neously. Finally, we conclude and discuss the future
work in Section V.

II RELATED WORK

Community detection in complex networks has re-
ceived a considerable amount of attention in the last
years. Numerous techniques have been developed for
both efficient and effective community detection, in-
cluding Modularity Optimization [7,8,11–15], Clique
Percolation [16, 17], Local Expansion [18–20], Fuzzy
Clustering [21, 22], Link Partitioning [23], and La-
bel Propagation [24–26]. The above algorithms are
designed to detect communities on static networks.
However, networks, such as Internet and online social
networks, are usually dynamic, with changes arriv-
ing as a stream. Thus, a large number of algorithms
were proposed to cope with community detection on
dynamically evolving networks, such as LabelRankT
[27] and Estrangement [28]. LabelRankT [27] detects
communities in large-scale dynamic networks through
stabilized label propagation. Estrangement [28] de-
tects temporal communities by maximizing modular-
ity in a snapshot subject to a constraint on the es-
trangement from the partition in the previous snap-
shot.

In addition to the development of algorithms for com-
munity detection, several metrics for evaluating the
quality of community structure have been introduced.
The most popular and widely used is modularity [5,8].
It is defined as the difference (relative to the total
number of edges) between the actual and expected (in
a randomized graph with the same number of nodes
and the same degree sequence) number of edges inside
a given community. Although initially defined for un-
weighted and undirected networks, the definition of
modularity has been subsequently extended to cap-
ture community structure in weighted networks [29]
and then in directed networks [30].

However, recently, Fortunato and Barthélemy [9]
presented a resolution limit problem of modularity,
essence of which is that optimizing modularity will
not find communities smaller than a threshold size,
or weight [31]. This threshold depends on the to-
tal number, or total weight, of edges in the net-
work and on the degree of interconnectedness be-
tween the communities. Moreover, Good et al. [32]
shown that the range of modularity values computed
over all possible partitions of a graph has a struc-
ture in which the maximum modularity partition is
typically concealed among an exponentially large (in
terms of the graph size) number of structurally dis-
similar, high-modularity partitions. To address this
resolution limit problem, multi-resolution versions of
modularity [33,34] were proposed to allow researchers
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(a) Two very well separated communities. (b) Two well separated communities.

(c) Two weakly connected communities. (d) Ambiguity between one and two communities.

(e) One well connected community. (f) One very well connected community.

Figure 1: Six simple network examples that have two different community structures, one with a single big
community containing all eight nodes and the other with the two small communities each containing four
different nodes.

to specify a tunable target resolution limit parameter
and identify communities on that scale. Typically, it
is not clear how to choose the correct value for this
parameter. Furthermore, Lancichinetti and Fortu-
nato [35] stated that even those multi-resolution ver-
sions of modularity as well as its original version are
not only inclined to merge the smallest well-formed
communities but also to split the largest well-formed
communities. In contrast, the Modularity Density
metric we propose here solves those two problems of

modularity without the trouble of specifying any par-
ticular parameter.

III MODULARITY DENSITY

In this section, we first formally introduce Newman’s
definition of modularity and then illustrate the moti-
vation for modifying modularity with several simple
network examples. Next, we propose a new commu-

Page 3 of 15
c©ASE 2012



Table 1: Metric values of the example: Two very well separated communities.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities 0.5 0 0.5 0.5
One community 0 0 0 0.245

Table 2: Metric values of the example: Two well separated communities.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities 0.357 0.143 0.214 0.339
One community 0 0 0 0.25

Table 3: Metric values of the example: Two weakly connected communities.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities 0.3 0.2 0.1 0.263
One community 0 0 0 0.249

nity quality metric, called Modularity Density, as an
alternative to modularity by combining modularity
with Split Penalty and community density to avoid
the two coexisting problems of modularity. Finally,
we define Modularity Density for different kinds of
networks, including unweighted and undirected net-
works, weighted networks, and directed networks,
based on the corresponding formulas of modularity.

1 NEWMAN’S MODULARITY

Modularity [5, 8] for unweighted and undirected net-
works is defined as the ratio of difference between the
actual and expected (in a randomized graph with the
same number of nodes and the same degree sequence)
number of edges within the community. For the given
community partition of a network G = (V,E) with
|E| edges, modularity (Q) [5] is given by

Q =
∑

ci∈C

[

|Ein
ci
|

|E|
−

(

2|Ein
ci
|+ |Eout

ci
|

2|E|

)2
]

, (1)

where C is the set of all the communities, ci is a spe-
cific community in C, |Ein

ci
| is the number of edges

between nodes within community ci, and |Eout
ci

| is
the number of edges from the nodes in community ci
to the nodes outside ci.

The definition of modularity [29] for the weighted net-
works has precisely the same formula, Equation (1),
as for the unweighted and undirected networks. How-
ever, for weighted networks, |E| is the sum of the
weights of all the edges in the network, |Ein

ci
| is the

sum of the weights of the edges between nodes within
community ci, and |Eout

ci
| is the sum of the weights

of the edges from the nodes in community ci to the
nodes outside ci.

The formula of modularity for directed networks [30]
is as follows

Q =
∑

ci∈C

[

|Ein
ci
|

|E|
−

(|Ein
ci
|+ |Eout,ci |)(|E

in
ci
|+ |Eci,out|)

|E|2

]

,

(2)
where |Eout,ci | is the number of edges from the nodes
outside ci to the nodes in ci and |Eci,out| is the num-
ber of edges from the nodes in ci to the nodes out-
side ci. For undirected networks, it is clear that
|Eout,ci | = |Eci,out| = |Eout

ci
| and thus the directed

modularity is reduced to undirected modularity.

2 MOTIVATION FOR INTRODUCING
SPLIT PENALTY

In this subsection, we demonstrate the motivation for
introducing Split Penalty into modularity by using
seven intuitively clear and simple network examples,
six of which are presented in Figure 1. The seventh
example is a complete graph with eight nodes and one
big community containing all eight nodes while the
alternative partition consists of the two small com-
munities each containing four different nodes. We
could easily judge that for the first, second, and
the third examples, the community structure with
two small communities is better than the community
structure in which they are merged together. For the
fourth example, the two different community struc-
tures are nearly of the same quality. However, for
the fifth, sixth, and the seventh examples, the com-
munity structure with one big community is of better
quality than the alternative.

Tables 1-7 show the metric values of the seven net-
work examples described above. Tables 1-3, and Ta-
ble 7 demonstrate that modularity succeeds in mea-
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Table 4: Metric values of the example: Ambiguity between one and two communities.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities 0.25 0.25 0 0.188
One community 0 0 0 0.245

Table 5: Metric values of the example: One well connected community.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities 0.167 0.333 -0.167 0.0417
One community 0 0 0 0.23

Table 6: Metric values of the example: One very well connected community.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities 0.0455 0.455 -0.409 -0.239
One community 0 0 0 0.168

Table 7: Metric values of the example: One Complete Graph.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities -0.0714 0.571 -0.643 -0.643
One community 0 0 0 0

suring the quality of the two different community
structures in those four examples. However, from
Tables 4-6, we could observe that modularity actu-
ally fails to measure the community quality of those
three examples because it implies that the commu-
nity structure with two small communities is better.
In contrast, for the fifth and the sixth examples, the
community structure with one big community is of
better quality. Yet, in this case modularity gives
preference to the community structure with two sepa-
rated small communities, demonstrating that modu-
larity has the problem of favoring small communities.

To address the drawback of favoring small communi-
ties, we propose that the quality of the community
structure should take into account the edges between
different communities. We introduce Modularity with
Split Penalty (Qs) by subtracting from modularity
the Split Penalty (SP ) which is the fraction of edges
that connect nodes of different communities. More
formally,

Qs = Q − SP. (3)

The intuition here is clear. Modularity measures the
positive effect of grouping nodes together in terms
of taking into account existing edges between nodes
while Split Penalty measures the negative effect of
ignoring edges joining members of different commu-
nities. Enlarging community eliminates some Split
Penalty but if there are only a few edges across cur-
rent partition, modularity of the merged community
could be lower, negating the benefit of merging. Split-
ting a community into two or more communities in-

troduces some Split Penalty but if there are only a
few edges between those separated communities, an
increase of modularity can make such splitting bene-
ficial. Tables 1-7 demonstrate that Qs can correctly
measure the quality of the community structures of
all seven network examples.

3 MODULARITY WITH SPLIT PENALTY

In this subsection, we extend the formula of Qs

to different kinds of networks, such as unweighted
and undirected networks, weighted networks, and di-
rected networks, based on the corresponding formulas
of modularity presented in Subsection III-1.

From Subsection III-2, we know that Split Penalty
(SP ) is the fraction of edges that connect nodes of dif-
ferent communities. Thus, for undirected networks,
no matter unweighted or weighted, Split Penalty is
defined as

SP =
∑

ci∈C

[

∑

cj∈C
cj 6=ci

|Eci,cj |

2|E|

]

. (4)

where |Eci,cj | is the number of edges from commu-
nity ci to community cj for unweighted networks or
the sum of the weights of the edges from community
ci to community cj for weighted networks. For di-
rected networks, Split Penalty is given by

SP =
∑

ci∈C

[

∑

cj∈C
cj 6=ci

|Eci,cj |

|E|

]

. (5)
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(a) Two clique communities. (b) Two tree communities.

Figure 2: Two simple network examples with the left one containing two clique communities and the right
one containing two tree communities. Also, there are six edges within all four communities, but the number
of nodes is different in clique and tree communities.

Table 8: Metric values of the example: two clique communities vs two tree communities.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two clique communities 0.4231 0.07692 0.3462 0.4183
Two tree communities 0.4231 0.07692 0.3462 0.2214

It can be seen that for each community, the Split
Penalty only takes into account the outgoing edges
from this community to the rest of the network but
not the incoming edges from the rest of the network
to this community. It is reasonable to use only out-
going edges, because in a sense those are friendships
of community members. Incoming edges may not be
apparent. Moreover, considering both outgoing and
incoming edges would only double the value of Split
Penalty because the incoming edges of a community
are the outgoing edges of other communities.

Therefore, for undirected networks, both unweighted
and weighted, from Equations (1), (3), and (4), Qs is
defined as

Qs = Q− SP

=
∑

ci∈C









|Ein
ci
|

|E|
−

(

2|Ein
ci
|+ |Eout

ci
|

2|E|

)2

−
∑

cj∈C
cj 6=ci

|Eci,cj |

2|E|









.

(6)

For directed networks, using Equations (2), (3),
and (5), Qs can be expressed as

Qs = Q− SP

=
∑

ci∈C

[

|Ein
ci
|

|E|
−

(|Ein
ci
|+ |Eout,ci |)(|E

in
ci
|+ |Eci,out|)

|E|2

−
∑

cj∈C
cj 6=ci

|Eci,cj |

|E|

]

.

(7)

4 MOTIVATION FOR INTRODUCING
COMMUNITY DENSITY

Modularity and also Qs have two shortcomings.
First, they are independent of the number of nodes
in the communities as long as the number of edges
is preserved. Second, modularity has the resolution
limit problem that Qs makes even worse.

The first shortcoming is illustrated in Figure 2 with
two simple networks. The left subfigure contains two
clique communities and the right subfigure includes
two tree communities. In each subfigure, there is one
single edge that connects the two communities and
there are six edges within all four communities but
the number of nodes in clique communities is different
from the number of nodes in tree communities. As
shown in Table 8, the values of modularity and Qs

of those two different community structures are the
same. However, it is quite obvious that the two clique
communities have better community structure qual-
ity than the two tree communities in terms of node
connections. Moreover, this example shows that the
number of nodes of the network and within the com-
munities influences neither modularity nor Qs.

Second shortcoming, the resolution limit problem, is
illustrated in Figure 3. It displays a ring network
comprised of thirty identical cliques, each of which
has five nodes and they are connected by single edges.
In this case, the modularity of the community struc-
ture with each clique forming a different community,
totally thirty communities, should be larger than that
of the community structure in which two consecu-
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Figure 3: A ring network example made out of thirty identical cliques, each having five nodes and connected
by single edges.

Table 9: Metric values of the example: a ring of thirty cliques, each having five nodes and connected by
single edges.

Modularity (Q) Split Penalty (SP ) Qs Qds

Thirty communities 0.8758 0.09091 0.7848 0.8721
Fifteen communities 0.8879 0.04545 0.8424 0.4305

tive cliques form a different community, totally fifteen
communities. However, Table 9 shows that the rela-
tion is reversed since the community structure with
fifteen communities has larger modularity than that
of the community structure with thirty communities.
Further, as pointed out in [9], when m(m−1)+2 < n,
where n is the number of cliques and m is the number
of nodes in each clique, modularity is higher for the
large community with two consecutive cliques instead
of the small community with a single clique. More-
over, Table 9 demonstrates that the difference of Qs

for these two community structures is larger than the
corresponding difference of modularity. More specif-
ically, ∆Qs = (0.8424 − 0.7848) = 0.0576 > ∆Q =
(0.8879 − 0.8758) = 0.0121, which means that Qs

makes the resolution limit problem even worse.

To address the above two shortcomings, it is quite
intuitive to introduce community density into modu-
larity, incorporating both the number of edges and
the number of nodes in the communities and also
Split Penalty. The corresponding new metric is called
Modularity Density (Qds). Table 8 implies that the
Qds of the two tree communities is almost half of
the Qds of the two clique communities. Moreover,
Table 9 shows that the Qds of the community struc-
ture in which two consecutive cliques form a different
community is almost half of the Qds of the alterna-
tive in which each clique forms a different commu-
nity. Hence, in this case, Qds avoids the resolution
limit problem. Furthermore, Tables 1-7 and Figure 1

demonstrate that Qds correctly measures the quality
of the community structures of all seven network ex-
amples. Even for the network example of Figure 1(d)
in which there is ambiguity which community struc-
ture is of higher quality, the Qds of the one big com-
munity is only slightly larger than the Qds of the two
small communities as shown in Table 4.

5 MODULARITY DENSITY

In this subsection, we will give the formulas for Qds

for different kinds of networks, including unweighted
and undirected networks, weighted networks, and di-
rected networks, based on the corresponding formulas
of Qs presented in Subsection III-3.

For undirected networks, regardless whether un-
weighted or weighted, we define Qds using Equa-
tion (6) as follows

Qds =
∑

ci∈C

[

|Ein
ci
|

|E|
dci −

(

2|Ein
ci
|+ |Eout

ci
|

2|E|
dci

)2

−
∑

cj∈C
cj 6=ci

|Eci,cj |

2|E|
dci,cj

]

,

dci =
2|Ein

ci
|

|ci|(|ci| − 1)
,

dci,cj =
|Eci,cj |

|ci||cj |
.

(8)
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In the above, dci is the internal density of community
ci, dci,cj is the pair-wise density between community
ci and community cj . Note that |Ein

ci
| in dci and

|Eci,cj | in dci,cj are unweighted for both unweighted
and weighted networks, so that those two community
densities are always less than or equal to 1.0.

For directed networks, using Equation (7), Qds is
given by

Qds =
∑

ci∈C

[

|Ein
ci
|

|E|
dci

−
(|Ein

ci
|+ |Eout,ci |)(|E

in
ci
|+ |Eci,out|)

|E|2
d2ci

−
∑

cj∈C

cj 6=ci

|Eci,cj |

|E|
dci,cj

]

,

dci =
|Ein

ci
|

|ci|(|ci| − 1)
,

dci,cj =
|Eci,cj |

|ci||cj |
.

(9)

IV EVALUATION AND ANALYSIS

In this section, we first prove that Modularity Den-
sity (Qds) solves the resolution limit problem. Then,
we introduce two real dynamic datasets and various
other popular community quality measurements. Fi-
nally, we show the experimental results that validate
Qds ability to solve the two problems of modularity
(Q) simultaneously.

1 PROOF OF SOLVING RESOLUTION
LIMIT PROBLEM

In this subsection, we test Modularity Density (Qds)
on the examples from Fortunato and Barthélemy [9].
First, we prove that Qds does not divide a clique into
two or more parts. Then, we verify that Qds will not
merge two or more adjacent cliques connected with a
single edge. Finally, we prove that Qds can discover
communities with different sizes.

Modularity Density (Qds) does not divide a
clique into two or more parts. Given a clique
with m (m ≥ 3) nodes, we prove that maximizing
Qds does not divide this clique into two parts. Con-
sider an arbitrary partition P that divides the clique
into communities c1 and c2 with the number of nodes
m1 and m2, respectively. Then, the number of edges
between c1 and c2 is m1m2. Let Qds(single) be the

Qds of the whole clique and Qds(pairs) be the Qds of
partition P . By definitions,

Qds(single) = 0,

Qds(pairs) =
(m1 −m2)

2 −m

m(m− 1)
−

m2
1 +m2

2

m2
,

then,

Qds(pairs)−Qds(single) =
−2m1m2 − 2m1m2m

m2(m− 1)
< 0.

Hence, Qds will not divide a clique into two parts. A
simple generalization of this proof demonstrates that
Qds will not divide a clique into three or more parts.

Modularity Density (Qds) does not merge two
or more consecutive cliques in the clique struc-
ture ring network. Given a network, see Fig-
ure 4(a), comprised of a ring of n (where n ≥ 2 is an
even integer) cliques connected through single edges.
Each clique is a complete graph with m (m ≥ 3)
nodes andm(m−1)/2 edges. Then, the cycle network
has a total of nm nodes and nm(m− 1)/2+n edges.
It is clear that the ring network has a well-formed
community structure where each community corre-
sponds to a single clique. However, this community
structure cannot be obtained by maximizing mod-
ularity [9] since the community structure with n/2
communities of two adjacent cliques each has higher
modularity. We prove that maximizing Qds finds the
right community structure. We letQds(single) be the
Qds of the community structure in which each clique
is a different community, totally n communities, and
Qds(pairs) be the Qds of the community structure
with two consecutive cliques forming a different com-
munity, totally n/2 communities. By definitions,

Qds(single) =
m(m− 1)

m(m− 1) + 2
−

1

n
−

2

m3(m− 1) + 2m2
,

Qds(pairs) =
[m(m− 1) + 1]

2

[m(m− 1) + 2] [m(2m− 1)]

−
2 [m(m− 1) + 1]2

n [m(2m− 1)]
2

−
1

4m3(m− 1) + 8m2
.

We need to prove the inequality

Qds(pairs) < Qds(single). (10)

The first term of Qds(pairs) can be rewritten as

[m(m− 1) + 1]2

[m(m− 1) + 2][m(2m− 1)]
=

m4 − 2m3 + 3m2 − 2m+ 1

m(m2 −m+ 2)(2m− 1)
.

Then, the first and third terms of Qds(single) with
the latter combined with the last term of Qds(pairs)
yield

−
m2 −m

m2 −m+ 2
+

7

4m2(m2 −m+ 2)
= −

m4 −m3 − 1.75

m2(m2 −m+ 2)
.

Page 8 of 15
c©ASE 2012



Figure 4: Two clique structure network examples. (a) A clique structure ring network. There are totally n
(where n is an even positive integer) cliques. Each clique contains m (m ≥ 3) nodes, and two consecutive
cliques are connected by a single edge. (b) A network with two pairs of identical cliques. One pair of cliques
have m (m ≥ 4) nodes, and the other pair of cliques have p (3 ≤ p < m) nodes.

Combining all these terms, we get

−m5 +m4 + 2m3 − 2m2 + 4.5m− 1.75

m2(m2 −m+ 2)(2m− 1)
.

We move the remaining two terms to the right hand
side of Inequality (10) that we are proving getting

1

n

−2m4 + 5m2 − 4m+ 2

m2(2m− 1)2
.

Multiplying both sides by −m2(2m− 1) (and chang-
ing direction of inequality) we get

m5 −m4 − 2m3 + 2m2 − 4.5m+ 1.75

m2 −m+ 2

>
1

4n

m4 − 2.5m2 + 2m− 1

m− 0.5
.

By doing divisions on both sides, we get

m3 − 4m− 2 +
1.5m+ 5.75

m2 −m+ 2

>
1

4n

[

m3 + 0.5m2 − 2.25m+ 0.875−
9

16m− 8

]

.

Since 1.5m+5.75
m2−m+2

≥ 0, and 1

4n
≤ 1

8
for n ≥ 2 and also

9

16m−8
> 0, we just need to show that

m3 − 4m− 2 >
m3 + 0.5m2 − 2.25m+ 0.875

8

which simplifies to

7m3 − 0.5m2 − 29.75m− 16.875 > 0 for m ≥ 3,

which is easy to prove either by induction, starting
at m = 3, or by inspecting zeros of the derivative

21m2 −m− 29.75, which are all less than 2.0, show-
ing that this polynomial is positive for m ≥ 3.

Since Inequality (10) holds, Qds will not merge two
consecutive cliques in the ring network. A straight-
forward extension of the proof shows that Qds will
not merge three or more consecutive cliques.

Modularity Density (Qds) could discover com-
munities with different sizes. Consider a net-
work, shown in Figure 4(b), with two pairs of identi-
cal cliques. The left pair of cliques have m (m ≥ 4)
nodes, and the right pair of cliques have p (3 ≤ p <
m) nodes. This network has 2m + 2p nodes and
m(m − 1) + p(p − 1) + 4 edges. It is obvious that
each of the four cliques should be a different commu-
nity. However, the authors in [9] found that max-
imizing modularity will merge the right two small
cliques. Here, we prove that maximizing Qds will not
merge them. We let Qds(single) denote the Qds of
the community structure in which each clique corre-
sponds to a single clique, and Qds(pairs) be the Qds

of the community structure with the right two small
cliques merged into one community. Clearly, the Qds

of the left two large cliques will stay the same in those
two different community structures so we denote it as
Qds(0). By definitions,

Qds(single) = Qds(0) +
p(p− 1)

m(m− 1) + p(p− 1) + 4

−
[p(p− 1) + 2]2

2 [m(m− 1) + p(p− 1) + 4]
2

−
1

mp [m(m− 1) + p(p− 1) + 4]

−
1

p2 [m(m− 1) + p(p− 1) + 4]
,
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Qds(pairs) = Qds(0)−
1

mp [m(m− 1) + p(p− 1) + 4]

−
[p(p− 1) + 1]

2
[p(p− 1) + 2]

2

p2(2p− 1)2 [m(m− 1) + p(p− 1) + 4]
2

+
[p(p− 1) + 1]2

p(2p− 1) [m(m− 1) + p(p− 1) + 4]
.

The inequality that we need to prove is

Qds(single)−Qds(pairs) > 0. (11)

Since

Qds(single)−Qds(pairs)

=
1

m(m− 1) + p(p− 1) + 4
∗

{

p(p− 1)−
1

p2

−
[p(p− 1) + 2]2

2[m(m− 1) + p(p− 1) + 4]
−

[p(p− 1) + 1]2

p(2p− 1)

+
[p(p− 1) + 1]2[p(p− 1) + 2]2

p2(2p− 1)2[m(m− 1) + p(p− 1) + 4]

}

,

it is clear that the first factor is always positive so it
can be removed from consideration and the interior
of the second factor can be rewritten as

(p2 − p)+

2[p2 − p+ 1]2[p2 − p+ 2]2 − [p2 − p+ 2]2p2(2p− 1)2

2p2(2p− 1)2[m2 −m+ p2 − p+ 4]

>
1

p2
+

[p2 − p+ 1]2

p(2p− 1)
.

The second term simplifies to

−
[p2 − p+ 2]2

2

2p4 − 5p2 + 4p− 2

p2(2p− 1)2[m2 −m+ p2 − p+ 4]
.

Since by induction for p ≥ 3 the polynomial 2p4 −
5p2+4p−2 is positive, then this term is greater than

−
(p2 − p+ 2)(2p4 − 5p2 + 4p− 2)

4p2(2p− 1)2

=
1

4

[

−0.5p2 + 0.375−
7.5p3 − 15.625p2 + 10p− 4

4p4 − 4p3 + p2

]

.

It is easy to show that the last fraction is less than
0.391 by using induction or by finding zeros of the
fraction derivative, which are all less than 2.5, so we
just need to prove that 0.875p2 − p− 0.004 is greater
than the right hand side of Inequality (11).

The second term of the right hand side of Inequality
(11) can be rewritten as

p4 − 2p3 + 3p2 − 2p+ 1

2(p2 − 0.5p)
= 0.5p2 − 0.75p+ 1.125

−
0.875p− 1

2(p2 − 0.5p)
< 0.5p2 − 0.75p+ 1.125,

because 0.875p > 1 and p2 > p for p ≥ 2.

Since 1

p2 < 0.12, the inequality that we need to

prove reduces to 0.375p2 − 0.25p > 1.249, but for
p ≥ 3, 0.375p2 − 0.25p ≥ 2.625, proving Inequality
(11). Thus, we conclude that maximizing Qds will
not merge the right two small cliques, demonstrating
that Qds can discover communities of different size.

In summary, all the above proofs show that Modu-
larity Density solves the resolution limit problem of
modularity.

2 REAL DYNAMIC DATASETS

In this subsection, we introduce two real dynamic
datasets on which we conduct experiments in order to
validate Qds avoids the two problems of modularity.

Senate Dataset [28, 36]. The Senate dataset is a
time-evolving weighted network comprised of United
States senators where the weight of an edge repre-
sents the similarity of their roll call voting behavior.
This dataset was obtained from website voteview.com
and the similarities between a pair of senators were
calculated following Waugh et al. [36] as the num-
ber of bills for which the senators of the pair voted
the same way, normalized by the number of bills for
which they both voted. The dataset totally consists
of 111 snapshots corresponding to Senate’s activities
over 220 years and includes 1916 unique senators.

Reality Mining Bluetooth Scan Data [37]. This
dataset was created from the records of Bluetooth
Scans generated among the 94 subjects in Reality
Mining study conducted from 2004-2005 at the MIT
Media Laboratory. In the network, nodes represent
the subjects and the directed edges correspond to the
Bluetooth Scan records while the weight of each edge
represents the number of direct Bluetooth scans be-
tween the two subjects. In the experiments, we only
used the records from August 02, 2004 (Monday) to
May 29, 2005 (Sunday) and we divided them into
weekly snapshots, so each snapshot represents scans
collected during the corresponding week. There are
total of 43 snapshots.

3 COMMUNITY QUALITY MEASURE-
MENTS

In the discussion of the experimental results we use
various community quality metrics, including the
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Table 10: The average metric differences between LabelRankT with different values of conditional update
parameter q and Estrangement on Senate dataset.

LabelRankT q 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
Q -0.0534 -0.0462-0.0408 -0.0538 -0.0714 -0.0848 -0.083 -0.0897 -0.0897 -0.0848 -0.08
Qs -0.166 -0.0802 0.0468 0.0808 0.0969 0.112 0.116 0.115 0.115 0.111 0.106
Qds -0.1638 -0.0787 0.04847 0.08297 0.0995 0.1145 0.1182 0.1183 0.1183 0.1135 0.1083

# Intra-edges -159.102-32.444 234.296 387.38 510.645 616.855 615.123 624.764 624.764 602.627 580.733
Contraction -6.806 -3.023 2.481 4.553 5.937 7.033 7.065 7.227 7.227 6.927 6.622
# Inter-edges -75.962 -54.098-123.898 -187.99 -245.198-299.356-300.108-303.043-303.043-292.782-282.442
Expansion 6.448 2.91 -2.428 -4.416 -5.737 -6.847 -6.878 -7.009 -7.009 -6.724 -6.431

Conductance 0.213 0.0851 -0.0886 -0.148 -0.186 -0.214 -0.216 -0.224 -0.224 -0.213 -0.201

Table 11: The average metric differences between LabelRankT with different values of conditional update
parameter q and Estrangement on reality mining bluetooth scan data.

LabelRankT q 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
Q -0.161 -0.121 -0.0783 -0.0744 -0.0724 -0.0699 -0.0702 -0.0724 -0.0742 -0.0755 -0.0774
Qs -0.379 -0.244 -0.107 -0.0802 -0.0538 -0.0497 -0.0382 -0.0405 -0.0521 -0.0634 -0.0713
Qds -0.191 -0.0984 -0.0222 -0.017 -0.0116 -0.0116 -0.00318-0.00826 -0.011 -0.0115 -0.0134

# Intra-edges -1450.893-956.006-479.377-331.371-230.263-183.536 -102.94 -78.93 -155.183-242.287-333.419
Contraction -86.909 -69.914 -52.543 -46.371 -43.176 -40.567 -35.948 -36.425 -38.006 -41.277 -45.425
# Inter-edges -39.949 -76.524 -159.74 -167.333-190.947-190.865-196.098-193.123-188.708-179.653 -178.96
Expansion 52.529 25.829 6.289 5.76 5.664 7.07 4.881 6.799 6.916 6.117 5.669

Conductance 0.23 0.176 0.114 0.1 0.0934 0.0933 0.0843 0.0955 0.102 0.107 0.104

number of Intra-edges, Contraction, the number of
Inter-edges, Expansion, and Conductance [10], which
characterize how community-like is the connectivity
structure of a given set of nodes. All of them rely
on the intuition that communities are sets of nodes
with many edges inside them and few edges outside
of them. Now, given a network G = (V,E) and given
a community or a set of nodes c, let |c| be the num-
ber of nodes in the community c and let |Ein

c | denote
the total number of edges in c for unweighted net-
works or the total weight of such edges for weighted
networks. We denote the total number of edges from
the nodes in community c to the nodes outside c for
unweighted networks or the total weight of such edges
for weighted networks as |Eout

c |. Then, the definitions
of the five quality metrics are as follows:
The number of Intra-edges: |Ein

c |; it is the to-
tal number of edges in c or the total weight of such
edges. A large value of this metric is better than a
small value in terms of the community quality.
Contraction : 2|Ein

c |/|c| for undirected networks or
|Ein

c |/|c| for directed networks; it measures the aver-
age number of edges per node inside the community c
or the average weight per node of such edges. A large
value of Contraction is better than a small value in
terms of the community quality.

The number of Inter-edges: |Eout
c |; it is the total

number of edges from the nodes in community c to
the nodes outside c or the total weight of such edges.
A small value of this metric is better than a large
value in terms of the community quality.
Expansion : |Eout

c |/|c|; it measures the average num-
ber of edges (per node) that point outside the commu-
nity c or the average weight per node of such edges. A
small value of Expansion is better than a large value
in terms of the community quality.

Conductance:
|Eout

c |
2|Ein

c |+|Eout
c | for undirected networks

or
|Eout

c |
|Ein

c |+|Eout
c | for directed networks; it measures the

fraction of the total number of edges that point out-
side the community for unweighted networks or the
fraction of the total weight of such edges for weighted
networks. A small value of Conductance is better
than a large value in terms of the community quality.

4 EXPERIMENTAL RESULTS

In this subsection, we report the results of per-
forming community detection on the two real dy-
namic datasets introduced in Subsection IV-2 by us-
ing the dynamic community detection algorithms,
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(a) Senate dataset (q = 0.7).
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(b) Reality Mining Bluetooth Scan data (q = 0.6).

Figure 5: The modularity (Q) of the community detection results of LabelRankT and Estrangement (also,
the difference between LabelRankT and Estrangement) on (a) each snapshot of Senate dataset at q = 0.7
and on (b) each snapshot of Reality Mining Bluetooth Scan data with q = 0.6.

LabelRankT [27] and Estrangement [28]. We chose
these two algorithms because the second algorithm
relies on the modularity optimization while the first
one does not. In the experiments, we adopted the
best parameter of Estrangement but varying the con-
ditional update parameter q ∈ [0, 1] of LabelRankT
from 0.05 to 0.95. As seen in the results, in most
cases, the best q is around 0.7 in agreement with
the best value reported in [27]. For the community
structures found by the two algorithms, we calculated
the values of modularity (Q), Qs, Modularity Den-
sity (Qds), and the five community quality metrics
described in Subsection IV-3.

Table 10 and Table 11 present the average metric dif-
ferences between LabelRankT with different values of
conditional update parameter q and Estrangement on
Senate dataset and Reality Mining Bluetooth Scan
data, respectively. That is, we first computed the
values of the eight metrics above for the community
detection results, detected by Estrangement, of each
snapshot. Then, we calculated the eight metrics val-
ues for the community detection results, discovered
by LabelRankT for all q, of each snapshot. Next,
we got the metric differences of all eight metrics by
subtracting the metric values of Estrangement from
those of LabelRankT for all q’s over each snapshot.
Then, averaging those differences of each metric over
all the snapshots, we obtained the corresponding av-
erage metric differences.

Table 10 demonstrates that Q gets its largest value
when q = 0.2; Qs reaches the largest value when
q = 0.6; Qds, Intra-edges, and Contraction get their
largest values at q = 0.7 and q = 0.8; also, Inter-
edges, Expansion, and Conductance reach their small-

est values at q = 0.7 and q = 0.8. Thus, Qds is
consistent with the five metrics introduced in Subsec-
tion IV-3 on determining the best q for LabelRankT
on Senate dataset while Q and Qs are not consis-
tent with them. Further, we could observe that Q
is always negative which indicates that LabelRankT
performs below Estrangement over all q’s because
the goal of Estrangement is to maximize modularity
(Q). However, the other seven metrics imply that La-
belRankT performs better than Estrangement when
q > 0.1. Therefore, we could explicitly observe that
maximizing Q to detect communities has problems in
measuring the community detection quality correctly
on Senate dataset.

Table 11 shows that six metrics get their best (largest
or smallest) values at q = 0.6 while the two excep-
tions, Q and the number of Intra-edges, reach their
largest values when q = 0.5 and q = 0.7, respec-
tively. Thus, the six metrics, except Q and the num-
ber of Intra-edges, are consistent on determining the
best value of q for LabelRankT on Reality Mining
Bluetooth Scan data. This indicates that on Reality
Mining Bluetooth Scan data, maximizing Q to detect
communities has problems.

It is also interesting to observe that for q = 0.05
and q = 0.1 in Table 10, Inter-edges metric implies
that LabelRankT performs better than Estrangement
on Senate dataset, which is not consistent with Qs,
Qds, Intra-edges, Contraction, Expansion, and Con-
ductance metrics. Moreover, we could learn from Ta-
ble 11 that all the metrics, except Inter-edges met-
ric, imply that LabelRankT performs slightly below
the performance of Estrangement over all q’s. Thus,
Inter-edges metric has some problems. Also, as men-
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(a) Senate dataset (q = 0.7).
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(b) Reality Mining Bluetooth Scan data (q = 0.6).

Figure 6: Qs of the community detection results of LabelRankT and Estrangement (also, the difference
between LabelRankT and Estrangement) on (a) each snapshot of Senate dataset at q = 0.7 and on (b) each
snapshot of Reality Mining Bluetooth Scan data with q = 0.6.
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(a) Senate dataset (q = 0.7).

5 10 15 20 25 30 35 40
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Snapshot

M
o

d
u

la
ri

ty
 D

en
si

ty

 

 
LabelRankT
Estrangement
Difference

(b) Reality Mining Bluetooth Scan data (q = 0.6).

Figure 7: The Modularity Density (Qds) of the community detection results of LabelRankT and Estrange-
ment (also, the difference between LabelRankT and Estrangement) on (a) each snapshot of Senate dataset
at q = 0.7 and on (b) each snapshot of Reality Mining Bluetooth Scan data with q = 0.6.

tioned in the paragraph above, Intra-edges metric is
not consistent with the other six metrics on deter-
mining the best q for LabelRankT, which also means
that Intra-edges metric has problems. We conjecture
that the reason for the shortcoming of Intra-edges and
Inter-edges metrics is the same as the case of mod-
ularity (Q) which does not consider the number of
nodes in the communities. This reason also implies
the superiority of Qds over Q and Qs.

Based on the results presented in the above two ta-
bles, we conclude that Qds solves the two problems
of modularity. We also conjecture that the difference
between the best values of q for LabelRankT deter-
mined by Q and Qs and the difference determined
by Qs and Qds on Senate dataset is a manifesta-
tion of the two problems of modularity maximization,
namely favoring small communities and the resolu-

tion limit problem. Moreover, the difference between
the best values of q for LabelRankT determined by Q
and Qs on Reality Mining Bluetooth Scan data indi-
cates that maximizing Q has the problem of favoring
small communities. Thus, Qs and Qds can be used
for checking whether finding communities by maxi-
mizing Q on a specific dataset will suffer any of the
two problems.

To make the differences among Q, Qs, and Qds more
clear, we plot their values, in Figures 5, 6, and 7, of
the community detection results of LabelRankT and
Estrangement on each snapshot of Senate dataset at
q = 0.7 and on each snapshot of Reality Mining Blue-
tooth Scan data when q = 0.6. Figure 5(a) shows
that in most cases Q is negative, while Qs and Qds

are positive as seen in Figure 6(a) and Figure 7(a).
It indicates that there is large difference between Q

Page 13 of 15
c©ASE 2012



and Qs or between Q and Qds. This is consistent
with Table 10. Further, it can be observed from Fig-
ure 6(a) and Figure 7(a) that Qs and Qds are almost
the same on each snapshot, which is also consistent
with Table 10. Figure 5(b), Figure 6(b), and Fig-
ure 7(b) demonstrate that Q, Qs, and Qds are neg-
ative in most of the cases, although their values are
different in each snapshot. These observations are
consistent with the results shown in Table 11.

V CONCLUSION AND FUTURE WORK

In this paper, we propose a new community quality
metric, called Modularity Density, which solves the
problems of modularity of favoring small communi-
ties in some circumstances and large communities in
others. We demonstrate with proofs and experiments
on real dynamic datasets that Modularity Density is
an effective alternative to modularity.

In the future, we plan to extend Modularity Den-
sity to enable evaluation of the quality of overlap-
ping community structures. We will also propose a
community detection algorithm based on Modularity
Density maximization and then compare its commu-
nity detection results with those of modularity max-
imization algorithms on some typical real networks.
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