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The gut microbiota of preterm infants develops predictably'”7, with pioneer species
colonizing the gut after birth, followed by an ordered succession of microorganisms.
The gut microbiotais vital to the health of preterm infants®®, but the forces that shape
these predictable dynamics of microbiome assembly are unknown. The environment,
the host and interactions between microorganisms all potentially shape the dynamics
of the microbiota, butinsuch acomplex ecosystem, identifying the specific role of any
individual factor is challenging'® ™. Here we use multi-kingdom absolute abundance
quantification, ecological modelling and experimental validation to address this
challenge. We quantify the absolute dynamics of bacteria, fungiand archaeaina
longitudinal cohort of 178 preterm infants. We uncover microbial blooms and extinctions,
and show that there is an inverse correlation between bacterial and fungal loads in the
infant gut. We infer computationally and demonstrate experimentally in vitro and
invivo that predictable assembly dynamics may be driven by directed, context-dependent
interactions between specific microorganisms. Mirroring the dynamics of macroscopic

ecosystems™™"

,alate-arriving member of the microbiome, Klebsiella, exploits the

pioneer microorganism, Staphylococcus, to gain afoothold within the gut. Notably,
we find that interactions between different kingdoms can influence assembly, with a
single fungal species—Candida albicans—inhibiting multiple dominant genera of gut
bacteria. Our work reveals the centrality of simple microbe-microbe interactionsin
shaping host-associated microbiota, whichis critical both for our understanding of
microbiotaecology and for targeted microbiota interventions.

Humans are colonized by vast communities of microorganisms,
particularly within the gastrointestinal tract, that have key roles in
the health of the host®’. Infants are generally born uninhabited by
microorganisms, and their gut microbiota gradually assembles after
birth!”. Notably, this developmental process occurs in a predictable
manner, with specific bacterial taxa establishing in the gut at distinct
points in infant life’® 22, The early-life microbiota is critical to infant
health, and microbiota composition is linked to a range of diseases,
morbidity and mortality, particularly within preterminfants**7%, Yet
despite its importance, we do not understand what drives the pat-
terned progressions of theinfant gut community™ . Gestational age,
delivery mode, host epithelial and immune ontogeny, diet, antibiotics
and the interactions between individual microorganisms may each
influence microbiota composition®”228% Butwith such complexity,
the effect of any individual factor on the development of the micro-
biota has remained unclear, and disentangling how and why microbial
communities change over time remains a major challenge—both for
the human microbiota and for host-associated and environmental
microbiomes more broadly.

Our ability to identify drivers of microbiota development has been
hampered by the complexity of microbial ecosystems and also by fun-
damentallimitationsin how we quantify the composition of microbial
communities'®™3, First, although next-generation sequencing (NGS)
has provided a comprehensive map of bacterial diversity within the
human gut®®>*, we still know little about the other microorganisms—
such as fungi and archaea—that colonize the infant microbiota®>*,
which constrains our ability to identify inter-kingdom interactions
thatdrive ecosystem dynamics®. Second, NGS data typically chart only
therelative abundances of taxa, providing the proportions of different
microorganisms within acommunity, but not the absolute amounts.
Ifaspeciesincreasesinrelative abundance over time we cannot deter-
mine whether that speciesis blooming or others are dying out (Fig. 1a).
The compositional nature of relative abundance data can thus mask
community dynamics, which undermines our ability to identify biotic
and abiotic forces that shape changes in the microbiota® %, Here we
used a scalable multi-kingdom quantification method to map abso-
lute microbiota dynamics in alongitudinal cohort of preterminfants.
Combining ecological models with in vitro and in vivo validation, we
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reveal that within- and between-kingdom microbial interactions shape
the predictability of early-life microbiome assembly.

Quantifying multi-kingdom abundances

To identify drivers of change within any microbial community, it is
necessary to quantify the absolute changes in community members
over time. To achieve this, we developed a cell-based multi-kingdom
spike-in method (MK-SpikeSeq) that quantifies the absolute abun-
dances of bacteria, fungiand archaea simultaneously within any given
microbiome (Fig. 1b, Supplementary Information). Specifically, we
add to each sample defined numbers of exogenous microbial cells of
each kingdom and perform kingdom-specific ribosomal DNA (rDNA)
amplicon sequencing to obtain relative abundancesin each kingdom.
The spike-in cells serve as internal controls for sample processing and,
as spike-in cellabundances are known, we can then back-normalize and
calculate absolute abundances of all community members (Fig. 1b, Sup-
plementary Fig.1). As our primary objective was to study mammalian
microbiota, our spike-in contained the bacterium Salinibacter ruber®,
the fungus Trichodermareesei and the archaeon Haloarcula hispanica,
selected on the basis of their absence or rarity in mammalian microbi-
omes (Supplementary Table 2). However, our approach can be adapted
by choosing the spike-in to target any host-associated or environmental
microbiome, and can be combined with shotgun metagenomics to
capture viruses and enable strain-level quantification. We validated the
ability of MK-SpikeSeq to measure absolute abundances using aseries
of defined mock communities, and then compared the performance
of MK-SpikeSeq to that of existing approaches for absolute abundance
quantification (total DNA, cytometry-based imaging, quantitative PCR
(qPCR) and DNA-based spike-in) using aset of test samples (Supplemen-
tary Information, Extended Data Figs.1-5). Together, these datashowed
that MK-SpikeSeq generates highly sensitive and robust measurements
of absolute abundances for individual taxa across multiple kingdoms—a
key requisite for identifying drivers of microbiota dynamics.
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Multi-kingdom microbiota assembly dynamics

Having validated MK-SpikeSeq, we built a high-resolution multi-
kingdom picture of infant microbiota dynamics. We assembled a pro-
spective cohort of 178 preterm infants from a tertiary-care neonatal
intensive care unit (NICU). The assembly of the preterm microbiota
differs substantially from that of term infants. Most preterm infants
are born by Caesarean section and thus are seeded with skin- and
hospital-associated microorganisms, and are devoid of key maternally
derived bacteria’®?. The preterm microbiota also exhibits ‘delayed’
maturity, with aprolonged membership of facultative anaerobic bacte-
riacompared to the predominantly strict anaerobic community of term
infants””?, We focused on preterm infants owing to their clinical rel-
evance and because they are amenable to high-frequency longitudinal
sampling withreadily available clinical metadata. These features render
the preterm gut animportant and tractable system for establishing a
proof-of-principle understanding of the assembly of the microbiota.
We sampled eachinfant within our cohort on approximately their 1st,
14th, 28th and 42nd day of life, and for 13 infants we gathered nearly
daily stools for their first 6 weeks of life (940 samplesin total). Together,
this cohortenabled usto build a high-resolution picture of microbiota
development within the preterm infant gut.

Consistent with previous studies® 2, we observed that bacterial com-
munitiesinthe preterminfant gut cluster primarily into four distinct com-
munity states that are characterized by the domination of one of four
genera: Staphylococcus, Klebsiella, Escherichia or Enterococcus (Fig.2a).In
contrastto full-terminfants, these microbiome clusters wereindependent
ofdietor delivery mode (Extended Data Fig. 6). Notably, the bacterial com-
munity within our preterm cohort, as previously observed'® %, developed
inapredictable and highly dynamic manner over time. Most infants were
dominated by Staphylococcus at first, and then transitioned to a state
dominated by Klebsiella, Enterococcus or Escherichiaasthey aged (Fig.2a,
b, Extended DataFig. 6), withthe total bacterialload in the infant gut gradu-
allyincreasing over time (Fig. 2f, g, Extended Data Fig. 7). Comparing the
absolute and relative abundances of these dominantgeneraillustrated how
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Fig.2| The gut of preterminfants exhibits rich bacterial and fungal
community dynamics. a, Principal coordinate analysis (PCoA) plot of Bray-
Curtisdissimilarities between bacterial samples at the genuslevel. Each dot
representsasample, coloured by the dominant genus present or whiteif
diversity was high (inverse Simpsonindex (IS) >4).b, The same PCoA asawith
samplesinstead coloured by infant day of life, illustrating how bacterial
community composition changes predictably over time. ¢, Microbiota
dynamics of asingle representative infant, highlighting theimportance of
gathering absolute abundances when studying microbiome ecology. Stacked
bars represent total community composition (for full colour schemes, see
Extended DataFigs. 3, 4). Line plotsillustrate the relative (coloured) and

compositional data can misattribute both how and when communities
change. Inseveralinfants, relative abundancesinitially masked bloomsin
Klebsiellaand Escherichia, and showed Staphylococcus and Enterococcus
collapsing in the community when their abundances were instead com-
paratively stable (Fig. 2c, Supplementary Figs. 2-16). Such comparisons
alsoindicated that, although the bacterial communities within our cohort
weretypically dominated by just one genus, often the other major genera
remainedstable at highlevels within the preterminfant gut (Supplemen-
tary Figs.2-16).
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absolute (grey) abundances of individual genera. d, e, PCoA plots of fungal
community composition coloured by dominant genus (d) orinfant age (e),
indicating that fungal community composition does not correlate with infant
age.f, Effects of clinicaland microbial factors on total bacterial load, quantified
by alinear mixed-effects model, suggesting a potential relationship between
kingdoms within the preterminfantgut (centresanderror barsindicate
estimated fixed effects and 95% confidence intervals, respectively). g, Total
abundances of bacteria, fungi and archaea over time. h, Proportion of samples
inwhicharchaeacould be detected during each week of life. For a, b, g (left),
number of samples (n) =934; ford, e, g (centre),n=772; forf,n=770; forg
(right), h, n=596.

In contrast to the predictable dynamics of bacterial communities,
we uncovered diverse but unpredictable fungal communities within
the preterminfant gut. On average, fungal dynamics were noisier and
exhibited lesstemporal structure than bacterial communities, with no
clear correlation between fungal community composition orload and
infant age (Fig. 2d, e, Extended Data Fig. 8). Notably, although rarely
occurring in adults®, Cryptococcus was the dominant fungal genus in
approximately 5% of samples; whereas Saccharomyces species® were
detectedinonly five infants, despite beingacommoninhabitant of the
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adult gut. As withbacterial communities, MK-SpikeSeq uncovered fun-
galblooms and collapses masked by relative abundances. For example,
inseveral infants Candida stably maintained a high relative abundance,
despite dropping multiple orders of magnitude in absolute load over
time (Fig. 2¢, Supplementary Figs. 4-18). However, although the fun-
gal dynamics were themselves unpredictable, a linear mixed-effects
model that accounted for infant age, antibacterial agents and antifungal
agents revealed a weak negative correlation between bacterial and
fungal loads (normalized effect size, —0.060; 95% Wald confidence
interval, [-0.119,-0.001]) (Fig. 2f, Extended Data Fig. 7). Thatis, when
accounting for clinical covariates, samples with higher fungal loads
tended to have lower bacterial loads. This inverse relationship led us
to wonder whether cross-kingdom interactions might be influencing
preterm microbiota dynamics.

Archaeawere rare withinour cohort, with most samples showing no
archaealsignal. However, we detected a weak positive trend inboth the
frequency of archaeal detection (X?test for trend, P=0.002) and total
archaeal load over time (Spearman’s R = 0.13, P= 0.002), with higher
archaeal abundances generally detected in later weeks of life (Fig. 2g, h,
Extended Data Fig. 7).

Ecological drivers of microbiota assembly

Having generated a high-resolution multi-kingdom map of the assembly
ofthemicrobiotaininfants, we next sought toidentify factors that drive
the predictable dynamics observed. To achieve this, we used Bayesian
regularized regressionto fit our longitudinal datato an extended gen-
eralized Lotka-Volterra (gLV) model, an approach only possible with
absolute abundances. The gLV model assumes that the growth rate of
anindividual taxon depends on the taxon’s intrinsic growth rate and
interaction with kin, the effect of clinically administered antimicrobi-
als and interactions between the focal taxon and other community
members*®*? (Fig. 3a, Supplementary Information). Specifically, the
model allows microorganismstointeractinanumber of different ways—
from bidirectional competition (-/-) such as nutrient competition,
to exploitation (+/-), in which one microorganism takes advantage of
another—ortonotinteractatall (0/0). Themodel also allows each clini-
cally administered antimicrobial agent to inhibit, promote or have no
effect oneach microorganism. Together thisyields a highly parameter-
ized model of community dynamics, which we fitted to our datausing
aconservative regularization framework. By doing so, we were able to
identify those microbe-microbe or antibiotic-microbe interactions
that have a strong, consistent role in shaping community dynamics,
while avoiding overfitting and filtering weak interactions that do not
influence community dynamics. This approach thus enabled us to
disentangle the effects of different biotic and abiotic interactions on
microbiotaassembly, independently of missing community members
(for example, viruses), or underlying host variability.

Our ecological inference predicted that strong intra- and
inter-kingdom interactions between specific microbial generahave a
pivotal rolein shaping the assembly of the microbiotain theinfant gut
(Fig. 3b, Extended Data Fig. 9, Supplementary Information). Of note,
weinferred that the early colonizing Staphylococcus enhanced growth
of Klebsiella within the infant gut but was itselfinhibited by Klebsiella.
Thus our model suggests that the characteristic transition observed
in preterm infants from the domination of Staphylococcus to that of
Klebsiella (Fig. 2a, b) is shaped, in part, by Klebsiella exploiting the
early colonizer. We also inferred that Klebsiella itself was inhibited by
another dominant genus, Enterococcus, suggesting that the distinct
domination states of these two genera may be partly driven by one
excludingthe other. Most notably, consistent with the inverse correla-
tion between bacterial and fungal loads, our analyses suggested that
between-kingdom interactions have akey rolein community dynamics.
Specifically, weinferred that the fungal genus Candidainhibited both
Klebsiella and Escherichia, but was itself inhibited by Staphylococcus.
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Theseresults suggested not only that diverse fungal communities are
present in preterm infants, but that members of these communities
influence overall community dynamics.

Notably, we discovered that a substantial proportion of the inter-
actions that shape the microbiota assembly of preterm infants are
exploitative (+/-), with these asymmetric interactions comprising
over 20% of inferred microbe-microbe interactions (Extended Data
Fig. 9¢). The importance of these directed, asymmetric interactions
in shaping the assembly of the microbiota underlines the power of
our absolute-abundance-based approach. Without absolute abun-
dances, ecological inferences are limited to correlational analyses.
These analyses identify positive or negative correlations between taxa,
but cannot determine directionally which taxa are interacting with
which, noridentify asymmetric interactions*****, Asaconsequence,
correlational analyses cannot identify exploitative, commensal or
amensal interactions. Indeed, when applied to our dataset, corre-
lational analyses of relative abundance*® erroneously inferred that
Staphylococcusinhibited Klebsiella and promoted Candida (Extended
Data Fig. 9d). In other words, relative abundances and correlation
analysis not only misrepresented the dynamics of infant microbiome
assembly (Fig.2), but also misclassified the ecological processes that
underlie these dynamics.

Validation ofinteractions shaping assembly

Our ecological inference indicated that microbe-microbe interac-
tions are central to predictable assembly of the gut microbiome in
infants. However, although we used a conservative regularization
framework to ensure robustness to spurious correlations, our pre-
dictions may still be vulnerable to unobserved confounding factors
that are not incorporated in the model, such as diet, viruses or the
host. Indeed, although a number of studies have used similar mod-
elling approaches to infer interactions, few predictions have been
experimentally validated***”*%, We therefore sought to determine
whether we could reproduce our inferred interactionsin areductionist
experimental system. Focusing first on our predicted within-kingdom
interactions, we isolated Staphylococcus, Klebsiella, Escherichia and
Enterococcus strains from five infantsin our cohort, capturing several
distinct species of each genus (Supplementary Table13). We then per-
formed monoculture and pairwise co-culture of these strains and used
colony-forming units (CFU) to determine the pairwise fitness effects
of strains on one another (Supplementary Table 14). We were able to
reproduce in vitro all of the inhibitory interactions predicted by our
model, withgrowth effects largely conserved within genera (Fig. 3c).
Klebsiella strongly inhibited Staphylococcus, reducing Staphylococcus
yields by over1,000-fold, whereas Enterococcus variably but consist-
entlyinhibited Klebsiella (Fig.3c). As predicted, Klebsiella showed no
effect on Enterococcus, consistent with this interaction being amen-
salismrather than bidirectional competition, and thus validating the
directionality of our inference.

In contrast to our prediction that Staphylococcus benefitted
Klebsiella during microbiome assembly, we did not observe a posi-
tive effect of Staphylococcus on Klebsiella in vitro (Fig. 3¢). Given the
strength of the predicted Klebsiella-Staphylococcus exploitation, we
hypothesized that this interaction may be context-dependent. That
is, we hypothesized that, owing to differing environments in vitro ver-
sus in vivo, Klebsiella might only benefit from Staphylococcus within
the gut. To investigate this, we used two co-resident NICU isolates—
Klebsiella pneumoniae and Staphylococcus epidermidis—to test whether
Klebsiella benefited from Staphylococcus in vivo in the mammalian
gut, using amouse model of intestinal colonization (Fig. 3d). We used
CFU counts and MK-SpikeSeq to measure the fitness of K. pneumo-
niae in mice pre-colonized with or without S. epidermidis (Fig. 3d,
Extended Data Fig. 103, c). As predicted, S. epidermidis significantly
enhanced the ability of K. pneumoniaeto colonize the mouse gut, with
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K. pneumoniae exhibiting faster colonization if the gut was pre-
colonized with S. epidermidis (Fig. 3d). Moreover, mice that were
colonized with K. pneumoniae had significantly reduced levels of
S. epidermidis compared to those colonized without K. pneumoniae,
with S. epidermidis declining alongside the increase in levels of
K. pneumoniae (Fig. 3d). These in vivo data recapitulated the dynam-
ics observed in the microbiome assembly of infants (Fig. 2c) and sug-
gested that the predictable patterns in the assembly of infants may
indeed be due to exploitation of an early pioneer by a late colonizer.
These data also underlined the importance of context when studying
microbiotainteractions, illustrating how taxa may interact differently
invitro versus within a host.

Having validated our inferred within-kingdom interactions, we
sought to validate the between-kingdom interactions predicted to
influence the gut assembly of preterm infants (Fig. 3e). Again using
isolates frominfants, each of our predicted between-kingdominterac-
tions could also be reproduced within our in vitro system (Fig. 3e). As

predicted, Candidamembers caused an approximately 100-1,000-fold
inhibition of each Enterobacteriaceaeisolate and experienced agrowth
reduction of around 10-100-fold when co-cultured with Staphylococ-
cus, consistent with previous observations*. Notably, we observed a
bimodal distributionin the strength of inhibition of different Candida
isolates by Staphylococcus (Fig.3e), with the two modes corresponding
to two Candida species—Candida albicans and Candida parapsilosis.
Moreover, these two species also exerted differing inhibitory effects
on Enterobacteriaceae; overall, C. albicans both resisted Staphylo-
coccus and inhibited Enterobacteriaceae more than C. parapsilosis
did (Fig. 3e). To examine whether this species-specific inhibition of
Enterobacteriaceae by Candida occurred in vivo, we pre-colonized
micewith C. albicans, C. parapsilosis or vehicle control, thenintroduced
K. pneumoniae and measured microbial colonization dynamics. We
observed asignificantly reduced colonization of K. pneumoniaein mice
that were pre-colonized with C. albicans, compared to control mice
or those that were pre-colonized with C. parapsilosis, validating both
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the species specificity in the fungi-bacteriainteractionandits occur-
rence within the mammalian gut (Fig. 3f, Extended Data Fig. 10b, d).
Together, our datareveal aspecies-specific cross-kingdominteraction
that appears to shape the microbiota of preterm infants.

Discussion

The de novo assembly of the infant gut microbiome is notably ordered,
with pioneer microorganisms colonizing first, followed by predictable
waves of other microorganisms. However, the forces that drive these
predictable transitions have so far remained unknown. Priority effects,
diet, antibiotics and the developingimmune system are all thought to
affect microbiota dynamics, but given that there are multiple interact-
ing factors at play, disentangling therole of any individual process has
proved difficult. Here we show that a combination of multi-kingdom
absolute abundance quantification, ecological modelling and experi-
mental validation can be used to overcome this challenge. We have
demonstrated that the predictable patterns of assembly of the pre-
terminfantgut microbiota canbedriven by direct, context-dependent
interactions between microorganisms. Our findings suggestacommon
mechanism of assembly between the infant microbiota and macro-
scopic ecological succession. Just as in macroscopic ecosystems™ ™,
microorganisms may exploit one another to establish within the infant
gut, and direct interactions between kingdoms appear to have a cen-
tral role in community dynamics. The reducibility of gut microbiota
assembly to simple, pair-wise interactions has profound implications
forunderstanding and ultimately manipulating microbial ecosystems
in health and disease.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-021-03241-8.

1. Charbonneau, M. R. et al. A microbial perspective of human developmental biology.
Nature 535, 48-55 (2016).

2. Backhed, F. et al. Dynamics and stabilization of the human gut microbiome during the
first year of life. Cell Host Microbe 17, 690-703 (2015).

3. Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from
the TEDDY study. Nature 562, 583-588 (2018).

4.  Derrien, M., Alvarez, A. S. & de Vos, W. M. The gut microbiota in the first decade of life.
Trends Microbiol. 27, 997-1010 (2019).

5. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature
486, 222-227 (2012).

6. Lim, E.S. etal. Early life dynamics of the human gut virome and bacterial microbiome in
infants. Nat. Med. 21,1228-1234 (2015).

7 Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the
human infant intestinal microbiota. PLoS Biol. 5, €177 (2007).

8. Lynch, S.V. & Pedersen, O. The human intestinal microbiome in health and disease.

N. Engl. J. Med. 375, 2369-2379 (2016).

9. Honda, K. &Littman, D. R. The microbiota in adaptive immune homeostasis and disease.
Nature 535, 75-84 (2016).

10. Fischbach, M. A. Microbiome: focus on causation and mechanism. Cell 174, 785-790 (2018).

1. Widder, S. et al. Challenges in microbial ecology: building predictive understanding of
community function and dynamics. ISME J. 10, 2557-2568 (2016).

12. Vrancken, G., Gregory, A. C., Huys, G. R. B., Faust, K. & Raes, J. Synthetic ecology of the
human gut microbiota. Nat. Rev. Microbiol. 17, 754-763 (2019).

13.  Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality
for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180,
221-232(2020).

14.  Wolfe, B. E., Button, J. E., Santarelli, M. & Dutton, R. J. Cheese rind communities provide
tractable systems for in situ and in vitro studies of microbial diversity. Cell 158, 422-433
(2014).

15.  Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their
role in community stability and organization. Am. Nat. 111, 1119-1144 (1977).

638 | Nature | Vol 591 | 25 March 2021

16. Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9,
191-193 (1994).

17.  Shade, A. et al. Macroecology to unite all life, large and small. Trends Ecol. Evol. 33,
731-744 (2018).

18. Gregory, K. E. et al. Influence of maternal breast milk ingestion on acquisition of the
intestinal microbiome in preterm infants. Microbiome 4, 68 (2016).

19. Gibson, M. K. et al. Developmental dynamics of the preterm infant gut microbiota and
antibiotic resistome. Nat. Microbiol.1,16024 (2016).

20. DiBartolomeo, M. E. & Claud, E. C. The developing microbiome of the preterm infant. Clin.
Ther. 38, 733-739 (2016).

21. LaRosa,P.S. etal. Patterned progression of bacterial populations in the premature infant
gut. Proc. Natl Acad. Sci. USA 11, 12522-12527 (2014).

22. Costello, E. K., Carlisle, E. M., Bik, E. M., Morowitz, M. J. & Relman, D. A. Microbiome
assembly across multiple body sites in low-birthweight infants. MBio 4, e00782-13
(2013).

23. Stewart, C. J. et al. Temporal bacterial and metabolic development of the preterm gut
reveals specific signatures in health and disease. Microbiome 4, 67 (2016).

24. Pammi, M. et al. Intestinal dysbiosis in preterm infants preceding necrotizing
enterocolitis: a systematic review and meta-analysis. Microbiome 5, 31(2017).

25. Gasparrini, A. J. et al. Persistent metagenomic signatures of early-life hospitalization and
antibiotic treatment in the infant gut microbiota and resistome. Nat. Microbiol. 4,
2285-2297 (2019).

26. Reynolds, L. A. & Finlay, B. B. Early life factors that affect allergy development. Nat. Rev.
Immunol. 17, 518-528 (2017).

27. Gensollen, T, lyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in
early life shapes the immune system. Science 352, 539-544 (2016).

28. Bokulich, N. A. et al. Antibiotics, birth mode, and diet shape microbiome maturation
during early life. Sci. Transl. Med. 8, 343ra82 (2016).

29. Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in
caesarean-section birth. Nature 574, 117-121 (2019).

30. Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over
150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176,
649-662 (2019).

31. The Integrative HMP (iHMP) Research Network Consortium. The Integrative Human
Microbiome Project. Nature 569, 641-648 (2019).

32. Nash, A. K. et al. The gut mycobiome of the Human Microbiome Project healthy cohort.
Microbiome 5,153 (2017).

33. Limon, J. J., Skalski, J. H. & Underhill, D. M. Commensal fungi in health and disease. Cell
Host Microbe 22,156-165 (2017).

34. Koskinen, K. et al. First insights into the diverse human archaeome: specific detection of
Archaea in the gastrointestinal tract, lung, and nose and on skin. MBio 8, 00824-17 (2017).

35. Duran, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival.
Cell 175, 973-983 (2018).

36. Carr, A., Diener, C., Baliga, N. S. & Gibbons, S. M. Use and abuse of correlation analyses in
microbial ecology. ISME J. 13, 2647-2655 (2019).

37.  Contijoch, E. J. et al. Gut microbiota density influences host physiology and is shaped by
host and microbial factors. eLife 8, e40553 (2019).

38. Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to
microbial load. Nature 551, 507-511 (2017).

39. Stammler, F. et al. Adjusting microbiome profiles for differences in microbial load by
spike-in bacteria. Microbiome 4, 28 (2016).

40. Ishwaran, H. & Rao, J. S. Spike and slab variable selection: frequentist and Bayesian
strategies. Ann. Stat. 33, 730-773 (2005).

41.  Gonze, D., Coyte, K. Z., Lahti, L. & Faust, K. Microbial communities as dynamical systems.
Curr. Opin. Microbiol. 44, 41-49 (2018).

42. Bucci, V. et al. MDSINE: Microbial Dynamical Systems INference Engine for microbiome
time-series analyses. Genome Biol. 17,121 (2016).

43. Freilich, M. A., Wieters, E., Broitman, B. R., Marquet, P. A. & Navarrete, S. A. Species
co-occurrence networks: can they reveal trophic and non-trophic interactions in
ecological communities? Ecology 99, 690-699 (2018).

44. Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLOS
Comput. Biol. 8, €1002687 (2012).

45. Faust, K. et al. Microbial co-occurrence relationships in the human microbiome. PLOS
Comput. Biol. 8, 1002606 (2012).

46. Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: rapid and scalable correlation
estimation for compositional data. Bioinformatics 35, 1064-1066 (2019).

47. Stein, R.R. et al. Ecological modeling from time-series inference: insight into dynamics
and stability of intestinal microbiota. PLOS Comput. Biol. 9, 1003388 (2013).

48. Fisher, C. K. & Mehta, P. Identifying keystone species in the human gut microbiome from
metagenomic timeseries using sparse linear regression. PLoS ONE 9, 102451
(2014).

49. Pammi, M., Liang, R., Hicks, J., Mistretta, T. A. & Versalovic, J. Biofilm extracellular DNA
enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans.
BMC Microbiol. 13, 257 (2013).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021


https://doi.org/10.1038/s41586-021-03241-8

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Allllluminaraw sequencingreads, including cohort samples and valida-
tionsamples, have been deposited at the European Nucleotide Archive
(ENA) under study accession number PRJEB36435. Source data for all
figures are included in the Supplementary Tables. The public rDNA
databases SILVA (119 release; https://www.arb-silva.de/documenta-
tion/release-119/) and UNITE (2017-12-01 release; https://unite.ut.ee/
repository.php) were used to annotate the operational taxonomic
unit (OTU) table.

Code availability

Customscripts for microbiome analyses and interactioninference are
available at https://github.com/katcoyte/MK-SpikeSeq.

Acknowledgements We thank all of the infants and their families who participated in the
study; J. Xavier, J. Ordovas-Montanes, O. Cunrath and members of the Rakoff-Nahoum
laboratory for discussions; and L. Martin for assistance with sample collection. K.Z.C. is funded
by a Sir Henry Wellcome Postdoctoral Research Fellowship (grant 201341/A/16/Z) and a
University of Manchester Presidential Fellowship; R.S.G. is supported by grants
1RO1AI153257-01 and 5RO1AI139633-03; and S.R-N. is supported by a Career Award for Medical
Scientists from the Burroughs Wellcome Fund, a Pew Biomedical Scholarship, a Basil
O’Connor Starter Scholar Award from the March of Dimes, P30DK040561, KO8AI130392-01
and a NIH Director’s New Innovator Award DP2GM136652.

Author contributions C.R., K.Z.C. and S.R.-N. conceived the project. C.R., K.Z.C. and W.B.
performed the experiments. C.R. and K.Z.C. performed the computational analysis. C.R.M.
designed the prospective cohort of infants and performed sample collection and metadata
collation. C.R., K.Z.C. and S.R.-N. wrote the manuscript with contributions from all other authors.

Competing interests C.R.M. receives grant funding from Mead Johnson Nutrition. C.R.M. also
provides consulting services for Mead Johnson Nutrition, Alcresta and Fresenius Kabi, and sits
on the Scientific Advisory Boards of Plakous Therapeutics and LUCA Biologics. All other
authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-021-03241-8.

Correspondence and requests for materials should be addressed to K.Z.C. or S.R.-N.

Peer review information Nature thanks Jeff Gore and the other, anonymous, reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.


http://www.ebi.ac.uk/ena/data/search?query=PRJEB36435
https://www.arb-silva.de/documentation/release-119/
https://www.arb-silva.de/documentation/release-119/
https://unite.ut.ee/repository.php
https://unite.ut.ee/repository.php
https://github.com/katcoyte/MK-SpikeSeq
https://doi.org/10.1038/s41586-021-03241-8
http://www.nature.com/reprints

Article

b c
bacteria mock, composition-fixed, total-variable
B. thetaiotaomicron  © B. ovatus ™ B. uniformis ™ B. vulgatus ™ P. distasonis
L. crispatus M L. rhamnosus ™ C. difficile C. perfringens " E. coli W bacteria_total
100% 1E+10 117 Pearson’s r=0.998, p<0.0001 10'| slope =-0.92 + 0.03
1) y=0.92x+0.48
1E+09 L 107 n
80% -~
5 - ©
e o o
60% 1E+08 o & >
> 81 o~ 9
o .-.. 3
40% 1E+07 '8 7 s E
c o
) g 2
) o 64 Qo
20% 1E+06 a [ [¢)
]
5 T T T T L] 1 T T T 1
0% 1E+05 5 6 7 8 9 10 M 0 1 2 3 4
expected log10 total 16S log10 dilution factor
: - : e f
fungi mock, composition-fixed, total-variable
B (. albicans ™ C. tropicalis ™ C. parapsilosis ™ C. krusei W S. cerevisiae
B A fumigatus W A. terreus A. flavus A. niger S. schenckii M fungi_total
100% 1E+10 9 Pearson’s r=0.988, p<0.0001 107 slope =-1.10 + 0.18
y=1.05x-0.82 °
5 .
*"%.Illll'. 2 . %
= I - =
0 o 71 -9
60% 1E+08 hay ‘ S)
- P kel
2 64 L) kel
40% 1E+07 - [0
3 : 5
2 54 o 2
20% 1E+06 3 re)
8
4 T T T T 1 2 T T 1
0% 1E+05 4 5 6 7 8 9 0 1 2 3
expected log10 total ITS1 (estimated) log10 dilution factor
human fecal sample, serial dilutions
m Bacteria: Firmicutes ® Bacteria: Bacteroidetes Bacteria: Actinobacteria
= Archaea: Euryarchaeota ® Fungi: Ascomycota OrDNA_total
0% g E R E 1E+09 slope =-0.84 £ 0.07
B 2
Q
(8]
80% <
Z
1E+08 @)
60% o
@
kel
40% o
1E+07 g
@
20% 2
€]
3 T T T T 1
o LE106 00 05 10 15 20
raw 1:2 1:5 1:10  1:20  1:50 1:100 |og1 0 dilution factor
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acrosskingdoms. a, d, Aset of single-kingdom mock communitieswithafixed  estimates (here using200 rDNA copies per fungal cell). ¢, f, Changesin
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Extended DataFig.3|See next page for caption.




Extended DataFig. 3 | MK-SpikeSeq outperforms other quantification
methodsincross-kingdomspecificity. Aset of 40 test samplesincluding
humanstools and soil samples were used to compare kingdom-specific
quantifications of absolute abundance. a, MK-SpikeSeq compared with total
DNAvyields. Pearson correlation tests show that total DNA yields mostly only
reflect bacterial community abundances. b, MK-SpikeSeq compared with flow
cytometry cell enumerations using gating strategies targeted for either
prokaryotes or fungi. For prokaryotic enumerations, two soil samples are
highlighted owing to their high archaeal loads that cannot be distinguished
frombacterial counts by flow cytometry. For fungi enumerations, results using
onegating strategy are shown; attempts using two additional gating strategies
show asimilar overestimation of fungal counts (Supplementary Table 4).

¢, MK-SpikeSeq compared with kingdom-specific qPCR. Horizontal dashed
lines show the limit of detection using qPCR, based on the negative control
(DNA extraction of water); vertical dashed line shows the limit of detection

using MK-SpikeSeq, based on aminimum of one read of non-spike-in archaeal
16S (arch16S) normalized against the average arch16S sequencing depth.
Samples below the limit of detection are excluded from correlational tests.
Somesampleswith anarch16S signal lower than the MK-SpikeSeq limit of
detectionshowed arch16S qPCR signals that were higher than the negative
control, probably owing to bacterial signals bleeding into archaea-specific
qPCR.Fora-c,Pearson correlationrand two-sided Pvalues are shown (no
adjustment for multiple comparisons). d, Comparison of 16S genus-level
profiles sequenced with (s) or without (ns) spike-in shows largely unaltered
community compositions having exogenous spike-in. e, f, Flow cytometry
gating strategies used in prokaryotic (e) and fungal (f) cell counting (seeb),
withgreen showingbacterial and fungal cells and purple showing microsphere
particles providedin the bacteria-countingkit. Higher voltage settings were
usedinflow cytometry for prokaryote cell counting than for fungi cell
counting.
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Extended DataFig.4 | MK-SpikeSeqoutperforms qPCRin thesensitivity of
detectionand robustness tosample background. a, Comparison of
sensitivity between MK-SpikeSeq and qPCR using tenfold serial dilutions of

Escherichiacoliand C. albicans. MK-SpikeSeq showed anincrease in sensitivity
of around100-1,000-fold relative to qPCR in low-bacterial-abundance samples
(detecting as few as 10 bacterial cells). For MK-SpikeSeq of E. colisamples, two
levels of spike-in were used to cover the whole range of detection under the
sequencing depthofaround 10,000-100,000 reads per sample.For qPCR,
horizontal dashed linesindicate the negative control (DNA extraction of water)

and vertical dashed line shows the threshold below which pooled 16S
sequencingyielded fewerthan100 reads (sequencing failed, probably owing to
too low asignal). b, Comparison of robustness to host-cell background
between MK-SpikeSeqand qPCR using test samples with fixed amounts of
E.coliand C. albicans and avariable number of Caco-2 colonic cells.
MK-SpikeSeq detected consistent (<2-fold variations) microbial abundancesin
samples with high host-cell background whereas qPCR under-measured
microbial abundances by tenfold (AC, > 3.3).n=2for the 10° host cells group;
n=1forthe other groups.
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Extended DataFig. 6 | Bacterial samples cluster according to composition applications withnoise). g, Stacked bars represent the distribution of the

andinfantage, butnotaccording toinfantdiet, delivery mode or sex. dominant genus withineach cluster and dot plotsillustrate the average day of
a,PCoAbased onBray-Curtis dissimilarities of bacterial community life of samples within each cluster. A Kruskal-Wallis test with Bonferroni
compositionbetween samples (genus level). Samples are coloured by correction showed statistically significant differencesin day of life of samples
dominanttaxaorare showninwhite whendiversityis high (IS>4).b, PCoAwith between clusters (X*=254, P<<0.0001, degrees of freedom (df) =3). Dataare
samples coloured by infant age. ¢, PCoA with samples coloured by infant diet. meanzs.d. h, Stacked barsindicate the proportion of genera exhibitingeach
d, PCoA withsamples coloured by the sex of the infant. e, PCoA with samples type of noise per infant. Dark noise indicates increasing temporal dependence;
coloured by delivery mode. f, PCoA with samples coloured by cluster white noise suggests that temporal dynamics are entirely random.
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Software and code

Policy information about availability of computer code

Data collection None

Data analysis Amplicon sequencing reads were analysed using custom R (v3.0.1) and Python (v2.7 & 3.7) code that is freely available on our github
repository (https://github.com/katcoyte/MK-SpikeSeq). Flow cytometry data were analyzed using BD FACSDiva software (v. 8.0.1).
Statistics of Pearson correlation and Student’s t test were performed in GraphPad Prism (v7.0a). Dimensionality reduction and clustering
were performed using DBSCAN and MDS functions from sklearn (version 0.22.1). Correlation analyses were performed using the FastSpar
algorithm (https://doi.org/10.1093/bioinformatics/bty734). Noise analyses were performed using the R package ‘seqtime’ version 0.1.1
(https://github.com/hallucigenia-sparsa/seqtime).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All non-clinical data associated with the study are available on our github repository (https://github.com/katcoyte/MK-SpikeSeq). De-identified clincal metadata are
available on request. All lllumina sequencing raw read, including cohort samples and validation samples, have been deposited at the European Nucleotide Archive
(ENA) under study accession no. PRIEB36435. Source data for all figures are included in Supplemental Tables (Table 3 - ED Fig 1/2; Table 4 - ED Fig 3; Table 5 - ED Fig
4; Table 6 - ED Fig 5; Table 8~10 - Fig2, ED Fig 6~8; Table 11~12 - Fig 2; Table 14 - Fig 3c/e; Table 15 - Fig 3d/f, ED Fig 10). Public rDNA databases SILVA (119 release,
www.arb-silva.de/documentation/release-119/) and UNITE (2017-12-01 release, unite.ut.ee/repository.php) were used to annotate OTU tables.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For the NICU cohort, no sample size calculation was conducted as we were not testing for end clinical outcomes nor testing any intervention.
Sample sizes therefore represent the maximum number of samples possible given fiscal limitations and are sufficiently broad for a descriptive
study. For animal studies, samples sizes were chosen to ensure statistical power.
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Data exclusions A fraction of NICU rDNA amplicon samples were excluded from OTU tables due to amplicon sequencing not achieving the required depth (>

1K total read counts and > 10 spike-in counts), dropping 3 bacterial, 56 archaeal and 152 fungal samples in the NICU Nextseq data, and 28
fungal samples in the NICU Miseq data.

Replication All'in vitro interaction pairs (Fig 3c/e) were replicated with 4-24 unique strain combinations, each with at least one biological replicate. Allin
vivo experiments contained 3-5 biological replicates (mice) per group, with experiments repeated to ensure against cage effects (8-10
biological replicates per treatment total, Fig 3d/f, Extended Data Figure 10c/d).

Randomization  Norandom allocation was used in the NICU cohort as our study was observational and thus did not test any intervention or grouping. For
animal studies, mice were randomized into separate cages upon arrival from Jackson Laboratory.

Blinding No blinding was used in the NICU cohort study as our study was observational and did not test any intervention or grouping. lllumina
sequencings were not blinded due to the requirement of clear sample labelling. Blinded CFU counting was used in the in vitro and in vivo
experiments (Fig 3, Extended Data Figure 10c/d).

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
[ ] Antibodies [ ] chiP-seq

Eukaryotic cell lines ] Flow cytometry

L]
D Palaeontology D MRI-based neuroimaging
[x]
[x]

Animals and other organisms

Human research participants

=] = = &

D Clinical data

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals C57BL/6J specific pathogen free 6~8 weeks old female mice (Jackson Laboratory, Bar Harbor, Maine), housed under 21.7 °C,
35%-65% humidity and 12:12 light/dark cycle.

Wild animals No wild animals involved
Field-collected samples No field samples collected
Ethics oversight C57BL/6J SPF mice; animal protocol 18-02-3637R approved by the Institutional Animal Care and Use Committee at Boston

Children’s Hospital
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Note that full information on the approval of the study protocol must also be provided in the manuscript.




Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

Discarded stool samples were collected from premature infants less than 33 weeks gestational age (approximately 50:50
male:female). Exclusion criteria for the biorepository included infants who died within 48 hours after birth, required transfer
outside of the hospital immediately after birth, or were born to mothers with limited proficiency in English.

Preterm infants were retrospectively selected from an ongoing biorepository cohort referred to as the Infant Health Research
Pro-gram (IHRP) at Beth Israel Deaconess Medical Center (BIDMC) in Boston, Massachusetts. The IHRP was established to
evaluate the impact of nutrition on health and disease and includes longitudinal discarded biological samples annotated with
clinical data from preterm infants born less than 33 weeks of gestation. The institutional review board at BIDMC in Boston,
Massachusetts, approved the collection of discarded specimens from infants in the neonatal intensive care unit for the IHRP and
the analyses performed in this study. All data was de-identified for use in this study. Verbal consent was obtained from the
infant's parents when in the NICU (IRB protocol number 2009P-000014).

Beth Israel Deaconess Medical Center Institutional Review Board approved the study (protocol 2017P-000632)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:

|Z| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group’ is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument
Software
Cell population abundance

Gating strategy

We diluted samples further by 10 fold in 2% paraformaldehyde. We used the Bacteria Counting Kit (Invitrogen, Cat B7277) for
cell staining.

We did flow cytometry on a LSRFortessa 3-laser cell analyzer (BD Biosciences, San Jose, CA).

We used BD FACSDiva software (v. 8.0.1) for cell enumeration.

We calculated the cell abundances according to the normalization instruction in the Bacteria Counting Kit.

We applied different flow settings and FSC/SSC/Alexa-Fluor-488 gating strategies for prokaryotes and fungi, pre-determined
using axenic bacterial (E. coli) and fungal (C. albicans) cultures as positive controls (see Extended Data Fig 3e, f for example gating
strategies). While prokaryotic gating was relatively robust against background noise, we found it was difficult to identify a gating

specific for fungi against background (e.g., food debris and host cells). As a result, fungal cell counts were consistently over-
estimated using three different gating strategies (see Supplemental Table 3).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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