
Nature  |  Vol 591  |  25 March 2021  |  633

Article

Multi-kingdom ecological drivers of 
microbiota assembly in preterm infants

Chitong Rao1,8, Katharine Z. Coyte1,2,8 ✉, Wayne Bainter3, Raif S. Geha3, Camilia R. Martin4 & 
Seth Rakoff-Nahoum1,5,6,7 ✉

The gut microbiota of preterm infants develops predictably1–7, with pioneer species 
colonizing the gut after birth, followed by an ordered succession of microorganisms. 
The gut microbiota is vital to the health of preterm infants8,9, but the forces that shape 
these predictable dynamics of microbiome assembly are unknown. The environment, 
the host and interactions between microorganisms all potentially shape the dynamics 
of the microbiota, but in such a complex ecosystem, identifying the specific role of any 
individual factor is challenging10–14. Here we use multi-kingdom absolute abundance  
quantification, ecological modelling and experimental validation to address this 
challenge. We quantify the absolute dynamics of bacteria, fungi and archaea in a 
longitudinal cohort of 178 preterm infants. We uncover microbial blooms and extinctions,  
and show that there is an inverse correlation between bacterial and fungal loads in the 
infant gut. We infer computationally and demonstrate experimentally in vitro and 
in vivo that predictable assembly dynamics may be driven by directed, context-dependent  
interactions between specific microorganisms. Mirroring the dynamics of macroscopic  
ecosystems15–17, a late-arriving member of the microbiome, Klebsiella, exploits the 
pioneer microorganism, Staphylococcus, to gain a foothold within the gut. Notably, 
we find that interactions between different kingdoms can influence assembly, with a 
single fungal species—Candida albicans—inhibiting multiple dominant genera of gut 
bacteria. Our work reveals the centrality of simple microbe–microbe interactions in 
shaping host-associated microbiota, which is critical both for our understanding of 
microbiota ecology and for targeted microbiota interventions.

Humans are colonized by vast communities of microorganisms, 
particularly within the gastrointestinal tract, that have key roles in 
the health of the host8,9. Infants are generally born uninhabited by 
microorganisms, and their gut microbiota gradually assembles after 
birth1–7. Notably, this developmental process occurs in a predictable 
manner, with specific bacterial taxa establishing in the gut at distinct 
points in infant life18–22. The early-life microbiota is critical to infant 
health, and microbiota composition is linked to a range of diseases, 
morbidity and mortality, particularly within preterm infants1,23–27. Yet 
despite its importance, we do not understand what drives the pat-
terned progressions of the infant gut community11–13. Gestational age, 
delivery mode, host epithelial and immune ontogeny, diet, antibiotics 
and the interactions between individual microorganisms may each 
influence microbiota composition2,7,18–22,28,29. But with such complexity, 
the effect of any individual factor on the development of the micro-
biota has remained unclear, and disentangling how and why microbial 
communities change over time remains a major challenge—both for 
the human microbiota and for host-associated and environmental 
microbiomes more broadly.

Our ability to identify drivers of microbiota development has been 
hampered by the complexity of microbial ecosystems and also by fun-
damental limitations in how we quantify the composition of microbial 
communities10–13. First, although next-generation sequencing (NGS) 
has provided a comprehensive map of bacterial diversity within the 
human gut30,31, we still know little about the other microorganisms—
such as fungi and archaea—that colonize the infant microbiota32–34, 
which constrains our ability to identify inter-kingdom interactions 
that drive ecosystem dynamics35. Second, NGS data typically chart only 
the relative abundances of taxa, providing the proportions of different 
microorganisms within a community, but not the absolute amounts. 
If a species increases in relative abundance over time we cannot deter-
mine whether that species is blooming or others are dying out (Fig. 1a). 
The compositional nature of relative abundance data can thus mask 
community dynamics, which undermines our ability to identify biotic 
and abiotic forces that shape changes in the microbiota36–38. Here we 
used a scalable multi-kingdom quantification method to map abso-
lute microbiota dynamics in a longitudinal cohort of preterm infants. 
Combining ecological models with in vitro and in vivo validation, we 
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reveal that within- and between-kingdom microbial interactions shape 
the predictability of early-life microbiome assembly.

Quantifying multi-kingdom abundances
To identify drivers of change within any microbial community, it is 
necessary to quantify the absolute changes in community members 
over time. To achieve this, we developed a cell-based multi-kingdom 
spike-in method (MK-SpikeSeq) that quantifies the absolute abun-
dances of bacteria, fungi and archaea simultaneously within any given 
microbiome (Fig. 1b, Supplementary Information). Specifically, we 
add to each sample defined numbers of exogenous microbial cells of 
each kingdom and perform kingdom-specific ribosomal DNA (rDNA) 
amplicon sequencing to obtain relative abundances in each kingdom. 
The spike-in cells serve as internal controls for sample processing and, 
as spike-in cell abundances are known, we can then back-normalize and 
calculate absolute abundances of all community members (Fig. 1b, Sup-
plementary Fig. 1). As our primary objective was to study mammalian 
microbiota, our spike-in contained the bacterium Salinibacter ruber39, 
the fungus Trichoderma reesei and the archaeon Haloarcula hispanica, 
selected on the basis of their absence or rarity in mammalian microbi-
omes (Supplementary Table 2). However, our approach can be adapted 
by choosing the spike-in to target any host-associated or environmental 
microbiome, and can be combined with shotgun metagenomics to 
capture viruses and enable strain-level quantification. We validated the 
ability of MK-SpikeSeq to measure absolute abundances using a series 
of defined mock communities, and then compared the performance 
of MK-SpikeSeq to that of existing approaches for absolute abundance 
quantification (total DNA, cytometry-based imaging, quantitative PCR 
(qPCR) and DNA-based spike-in) using a set of test samples (Supplemen-
tary Information, Extended Data Figs. 1–5). Together, these data showed 
that MK-SpikeSeq generates highly sensitive and robust measurements 
of absolute abundances for individual taxa across multiple kingdoms—a 
key requisite for identifying drivers of microbiota dynamics.

Multi-kingdom microbiota assembly dynamics
Having validated MK-SpikeSeq, we built a high-resolution multi- 
kingdom picture of infant microbiota dynamics. We assembled a pro-
spective cohort of 178 preterm infants from a tertiary-care neonatal 
intensive care unit (NICU). The assembly of the preterm microbiota 
differs substantially from that of term infants. Most preterm infants 
are born by Caesarean section and thus are seeded with skin- and 
hospital-associated microorganisms, and are devoid of key maternally 
derived bacteria7,21,29. The preterm microbiota also exhibits ‘delayed’ 
maturity, with a prolonged membership of facultative anaerobic bacte-
ria compared to the predominantly strict anaerobic community of term 
infants7,21,29. We focused on preterm infants owing to their clinical rel-
evance and because they are amenable to high-frequency longitudinal 
sampling with readily available clinical metadata. These features render 
the preterm gut an important and tractable system for establishing a 
proof-of-principle understanding of the assembly of the microbiota. 
We sampled each infant within our cohort on approximately their 1st, 
14th, 28th and 42nd day of life, and for 13 infants we gathered nearly 
daily stools for their first 6 weeks of life (940 samples in total). Together, 
this cohort enabled us to build a high-resolution picture of microbiota 
development within the preterm infant gut.

Consistent with previous studies18–23, we observed that bacterial com-
munities in the preterm infant gut cluster primarily into four distinct com-
munity states that are characterized by the domination of one of four 
genera: Staphylococcus, Klebsiella, Escherichia or Enterococcus (Fig. 2a). In 
contrast to full-term infants, these microbiome clusters were independent 
of diet or delivery mode (Extended Data Fig. 6). Notably, the bacterial com-
munity within our preterm cohort, as previously observed18–23, developed 
in a predictable and highly dynamic manner over time. Most infants were 
dominated by Staphylococcus at first, and then transitioned to a state 
dominated by Klebsiella, Enterococcus or Escherichia as they aged (Fig. 2a, 
b, Extended Data Fig. 6), with the total bacterial load in the infant gut gradu-
ally increasing over time (Fig. 2f, g, Extended Data Fig. 7). Comparing the 
absolute and relative abundances of these dominant genera illustrated how 
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Fig. 1 | MK-SpikeSeq enables robust quantification 
of absolute abundances. a, Schematic illustrating 
how relative abundance data can mask underlying 
community dynamics, rendering it challenging to 
distinguish different ecological scenarios.  
b, Overview of the MK-SpikeSeq pipeline. Before DNA 
extraction, defined amounts of each spike-in cell 
(bacteria (B), fungi (F) and archaea (A)) are added to 
each microbiome sample. Relative abundances of 
each microbial kingdom are then quantified using 
standard kingdom-specific rDNA amplicon 
sequencing. As the absolute abundances of rDNA for 
each spike-in cell are known, these quantities can be 
used as back-normalization factors to calculate the 
absolute abundances of all other organisms present in 
each sample. The spike-in cells also serve as internal 
controls for the entire sample-processing procedure, 
rendering the absolute quantification robust to 
factors such as sample-to-sample variability in DNA 
extraction efficiency.
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compositional data can misattribute both how and when communities 
change. In several infants, relative abundances initially masked blooms in  
Klebsiella and Escherichia, and showed Staphylococcus and Enterococcus 
collapsing in the community when their abundances were instead com-
paratively stable (Fig. 2c, Supplementary Figs. 2–16). Such comparisons 
also indicated that, although the bacterial communities within our cohort 
were typically dominated by just one genus, often the other major genera 
remained stable at high levels within the preterm infant gut (Supplemen-
tary Figs. 2–16).

In contrast to the predictable dynamics of bacterial communities, 
we uncovered diverse but unpredictable fungal communities within 
the preterm infant gut. On average, fungal dynamics were noisier and 
exhibited less temporal structure than bacterial communities, with no 
clear correlation between fungal community composition or load and 
infant age (Fig. 2d, e, Extended Data Fig. 8). Notably, although rarely 
occurring in adults32, Cryptococcus was the dominant fungal genus in 
approximately 5% of samples; whereas Saccharomyces species32 were 
detected in only five infants, despite being a common inhabitant of the 
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Fig. 2 | The gut of preterm infants exhibits rich bacterial and fungal 
community dynamics. a, Principal coordinate analysis (PCoA) plot of Bray–
Curtis dissimilarities between bacterial samples at the genus level. Each dot 
represents a sample, coloured by the dominant genus present or white if 
diversity was high (inverse Simpson index (IS) > 4). b, The same PCoA as a with 
samples instead coloured by infant day of life, illustrating how bacterial 
community composition changes predictably over time. c, Microbiota 
dynamics of a single representative infant, highlighting the importance of 
gathering absolute abundances when studying microbiome ecology. Stacked 
bars represent total community composition (for full colour schemes, see 
Extended Data Figs. 3, 4). Line plots illustrate the relative (coloured) and 

absolute (grey) abundances of individual genera. d, e, PCoA plots of fungal 
community composition coloured by dominant genus (d) or infant age (e), 
indicating that fungal community composition does not correlate with infant 
age. f, Effects of clinical and microbial factors on total bacterial load, quantified 
by a linear mixed-effects model, suggesting a potential relationship between 
kingdoms within the preterm infant gut (centres and error bars indicate 
estimated fixed effects and 95% confidence intervals, respectively). g, Total 
abundances of bacteria, fungi and archaea over time. h, Proportion of samples 
in which archaea could be detected during each week of life. For a, b, g (left), 
number of samples (n) = 934; for d, e, g (centre), n = 772; for f, n = 770; for g 
(right), h, n = 596.
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adult gut. As with bacterial communities, MK-SpikeSeq uncovered fun-
gal blooms and collapses masked by relative abundances. For example, 
in several infants Candida stably maintained a high relative abundance, 
despite dropping multiple orders of magnitude in absolute load over 
time (Fig. 2c, Supplementary Figs. 4–18). However, although the fun-
gal dynamics were themselves unpredictable, a linear mixed-effects 
model that accounted for infant age, antibacterial agents and antifungal 
agents revealed a weak negative correlation between bacterial and 
fungal loads (normalized effect size, −0.060; 95% Wald confidence 
interval, [−0.119, −0.001]) (Fig. 2f, Extended Data Fig. 7). That is, when 
accounting for clinical covariates, samples with higher fungal loads 
tended to have lower bacterial loads. This inverse relationship led us 
to wonder whether cross-kingdom interactions might be influencing 
preterm microbiota dynamics.

Archaea were rare within our cohort, with most samples showing no 
archaeal signal. However, we detected a weak positive trend in both the 
frequency of archaeal detection (Χ2 test for trend, P = 0.002) and total 
archaeal load over time (Spearman’s R = 0.13, P = 0.002), with higher 
archaeal abundances generally detected in later weeks of life (Fig. 2g, h,  
Extended Data Fig. 7).

Ecological drivers of microbiota assembly
Having generated a high-resolution multi-kingdom map of the assembly 
of the microbiota in infants, we next sought to identify factors that drive 
the predictable dynamics observed. To achieve this, we used Bayesian 
regularized regression to fit our longitudinal data to an extended gen-
eralized Lotka–Volterra (gLV) model, an approach only possible with 
absolute abundances. The gLV model assumes that the growth rate of 
an individual taxon depends on the taxon’s intrinsic growth rate and 
interaction with kin, the effect of clinically administered antimicrobi-
als and interactions between the focal taxon and other community 
members40–42 (Fig. 3a, Supplementary Information). Specifically, the 
model allows microorganisms to interact in a number of different ways—
from bidirectional competition (−/−) such as nutrient competition, 
to exploitation (+/−), in which one microorganism takes advantage of 
another—or to not interact at all (0/0). The model also allows each clini-
cally administered antimicrobial agent to inhibit, promote or have no 
effect on each microorganism. Together this yields a highly parameter-
ized model of community dynamics, which we fitted to our data using 
a conservative regularization framework. By doing so, we were able to 
identify those microbe–microbe or antibiotic–microbe interactions 
that have a strong, consistent role in shaping community dynamics, 
while avoiding overfitting and filtering weak interactions that do not 
influence community dynamics. This approach thus enabled us to 
disentangle the effects of different biotic and abiotic interactions on 
microbiota assembly, independently of missing community members 
(for example, viruses), or underlying host variability.

Our ecological inference predicted that strong intra- and 
inter-kingdom interactions between specific microbial genera have a 
pivotal role in shaping the assembly of the microbiota in the infant gut 
(Fig. 3b, Extended Data Fig. 9, Supplementary Information). Of note, 
we inferred that the early colonizing Staphylococcus enhanced growth 
of Klebsiella within the infant gut but was itself inhibited by Klebsiella. 
Thus our model suggests that the characteristic transition observed 
in preterm infants from the domination of Staphylococcus to that of 
Klebsiella (Fig. 2a, b) is shaped, in part, by Klebsiella exploiting the 
early colonizer. We also inferred that Klebsiella itself was inhibited by 
another dominant genus, Enterococcus, suggesting that the distinct 
domination states of these two genera may be partly driven by one 
excluding the other. Most notably, consistent with the inverse correla-
tion between bacterial and fungal loads, our analyses suggested that 
between-kingdom interactions have a key role in community dynamics. 
Specifically, we inferred that the fungal genus Candida inhibited both 
Klebsiella and Escherichia, but was itself inhibited by Staphylococcus. 

These results suggested not only that diverse fungal communities are 
present in preterm infants, but that members of these communities 
influence overall community dynamics.

Notably, we discovered that a substantial proportion of the inter-
actions that shape the microbiota assembly of preterm infants are 
exploitative (+/−), with these asymmetric interactions comprising 
over 20% of inferred microbe–microbe interactions (Extended Data 
Fig. 9c). The importance of these directed, asymmetric interactions 
in shaping the assembly of the microbiota underlines the power of 
our absolute-abundance-based approach. Without absolute abun-
dances, ecological inferences are limited to correlational analyses. 
These analyses identify positive or negative correlations between taxa, 
but cannot determine directionally which taxa are interacting with 
which, nor identify asymmetric interactions36,43–45. As a consequence, 
correlational analyses cannot identify exploitative, commensal or 
amensal interactions. Indeed, when applied to our dataset, corre-
lational analyses of relative abundance46 erroneously inferred that 
Staphylococcus inhibited Klebsiella and promoted Candida (Extended 
Data Fig. 9d). In other words, relative abundances and correlation 
analysis not only misrepresented the dynamics of infant microbiome 
assembly (Fig. 2), but also misclassified the ecological processes that 
underlie these dynamics.

Validation of interactions shaping assembly
Our ecological inference indicated that microbe–microbe interac-
tions are central to predictable assembly of the gut microbiome in 
infants. However, although we used a conservative regularization 
framework to ensure robustness to spurious correlations, our pre-
dictions may still be vulnerable to unobserved confounding factors 
that are not incorporated in the model, such as diet, viruses or the 
host. Indeed, although a number of studies have used similar mod-
elling approaches to infer interactions, few predictions have been 
experimentally validated42,47,48. We therefore sought to determine 
whether we could reproduce our inferred interactions in a reductionist 
experimental system. Focusing first on our predicted within-kingdom 
interactions, we isolated Staphylococcus, Klebsiella, Escherichia and 
Enterococcus strains from five infants in our cohort, capturing several 
distinct species of each genus (Supplementary Table 13). We then per-
formed monoculture and pairwise co-culture of these strains and used 
colony-forming units (CFU) to determine the pairwise fitness effects 
of strains on one another (Supplementary Table 14). We were able to 
reproduce in vitro all of the inhibitory interactions predicted by our 
model, with growth effects largely conserved within genera (Fig. 3c). 
Klebsiella strongly inhibited Staphylococcus, reducing Staphylococcus 
yields by over 1,000-fold, whereas Enterococcus variably but consist-
ently inhibited Klebsiella (Fig. 3c). As predicted, Klebsiella showed no 
effect on Enterococcus, consistent with this interaction being amen-
salism rather than bidirectional competition, and thus validating the 
directionality of our inference.

In contrast to our prediction that Staphylococcus benefitted  
Klebsiella during microbiome assembly, we did not observe a posi-
tive effect of Staphylococcus on Klebsiella in vitro (Fig. 3c). Given the 
strength of the predicted Klebsiella–Staphylococcus exploitation, we 
hypothesized that this interaction may be context-dependent. That 
is, we hypothesized that, owing to differing environments in vitro ver-
sus in vivo, Klebsiella might only benefit from Staphylococcus within 
the gut. To investigate this, we used two co-resident NICU isolates— 
Klebsiella pneumoniae and Staphylococcus epidermidis—to test whether 
Klebsiella benefited from Staphylococcus in vivo in the mammalian 
gut, using a mouse model of intestinal colonization (Fig. 3d). We used 
CFU counts and MK-SpikeSeq to measure the fitness of K. pneumo-
niae in mice pre-colonized with or without S. epidermidis (Fig. 3d, 
Extended Data Fig. 10a, c). As predicted, S. epidermidis significantly 
enhanced the ability of K. pneumoniae to colonize the mouse gut, with  
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K. pneumoniae exhibiting faster colonization if the gut was pre- 
colonized with S. epidermidis (Fig. 3d). Moreover, mice that were 
colonized with K. pneumoniae had significantly reduced levels of  
S. epidermidis compared to those colonized without K. pneumoniae,  
with S.  epidermidis declining alongside the increase in levels of 
K. pneumoniae (Fig. 3d). These in vivo data recapitulated the dynam-
ics observed in the microbiome assembly of infants (Fig. 2c) and sug-
gested that the predictable patterns in the assembly of infants may 
indeed be due to exploitation of an early pioneer by a late colonizer. 
These data also underlined the importance of context when studying 
microbiota interactions, illustrating how taxa may interact differently 
in vitro versus within a host.

Having validated our inferred within-kingdom interactions, we 
sought to validate the between-kingdom interactions predicted to 
influence the gut assembly of preterm infants (Fig. 3e). Again using 
isolates from infants, each of our predicted between-kingdom interac-
tions could also be reproduced within our in vitro system (Fig. 3e). As 

predicted, Candida members caused an approximately 100–1,000-fold 
inhibition of each Enterobacteriaceae isolate and experienced a growth 
reduction of around 10–100-fold when co-cultured with Staphylococ-
cus, consistent with previous observations49. Notably, we observed a 
bimodal distribution in the strength of inhibition of different Candida 
isolates by Staphylococcus (Fig. 3e), with the two modes corresponding 
to two Candida species—Candida albicans and Candida parapsilosis. 
Moreover, these two species also exerted differing inhibitory effects 
on Enterobacteriaceae; overall, C. albicans both resisted Staphylo-
coccus and inhibited Enterobacteriaceae more than C. parapsilosis 
did (Fig. 3e). To examine whether this species-specific inhibition of 
Enterobacteriaceae by Candida occurred in vivo, we pre-colonized 
mice with C. albicans, C. parapsilosis or vehicle control, then introduced 
K. pneumoniae and measured microbial colonization dynamics. We 
observed a significantly reduced colonization of K. pneumoniae in mice 
that were pre-colonized with C. albicans, compared to control mice 
or those that were pre-colonized with C. parapsilosis, validating both 
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pairwise co-culture, testing the predicted 
cross-kingdom interactions. Black and grey dots 
indicate co-cultures with C. albicans and 
C. parapsilosis, respectively. f, CFU counts 
quantifying microbial fitness in vivo in a SPF mouse 
model, reproducing the species-specific 
differences in the cross-kingdom inhibition 
observed in vitro. Gavage 2 indicates the day of 
inoculation with K. pneumoniae. For c, e, each dot 
denotes one unique pair of strains of the indicated 
genera, with each pair replicated at least once 
(Supplementary Table 14a). For d, f, Klebsiella was 
undetected at time 0 at gavage; n = 5 per group; data 
are mean ± s.e.m.; *P < 0.05, **P < 0.01, NS, not 
significant (by two-tailed Student’s t-test); 
see Supplementary Table 15 for exact P values; see 
Extended Data Fig. 10c, d for repeats of in vivo 
experiments.
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the species specificity in the fungi–bacteria interaction and its occur-
rence within the mammalian gut (Fig. 3f, Extended Data Fig. 10b, d). 
Together, our data reveal a species-specific cross-kingdom interaction 
that appears to shape the microbiota of preterm infants.

Discussion
The de novo assembly of the infant gut microbiome is notably ordered, 
with pioneer microorganisms colonizing first, followed by predictable 
waves of other microorganisms. However, the forces that drive these 
predictable transitions have so far remained unknown. Priority effects, 
diet, antibiotics and the developing immune system are all thought to 
affect microbiota dynamics, but given that there are multiple interact-
ing factors at play, disentangling the role of any individual process has 
proved difficult. Here we show that a combination of multi-kingdom 
absolute abundance quantification, ecological modelling and experi-
mental validation can be used to overcome this challenge. We have 
demonstrated that the predictable patterns of assembly of the pre-
term infant gut microbiota can be driven by direct, context-dependent 
interactions between microorganisms. Our findings suggest a common 
mechanism of assembly between the infant microbiota and macro-
scopic ecological succession. Just as in macroscopic ecosystems15–17, 
microorganisms may exploit one another to establish within the infant 
gut, and direct interactions between kingdoms appear to have a cen-
tral role in community dynamics. The reducibility of gut microbiota 
assembly to simple, pair-wise interactions has profound implications 
for understanding and ultimately manipulating microbial ecosystems 
in health and disease.
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Extended Data Fig. 1 | MK-SpikeSeq reliably measures absolute abundances 
across kingdoms. a, d, A set of single-kingdom mock communities with a fixed 
composition of 10 bacterial (a) or 10 fungal (d) species and variable total 
microbial loads (indicated by the pie chart schematics underneath), were 
quantified using MK-SpikeSeq for relative composition (coloured bars) and 
absolute abundance (black or grey bars). b, e, Correlations between expected 
(based on initial microbial densities and known dilution factors) and 
MK-SpikeSeq-measured total absolute abundances of bacteria (b) and fungi (e) 
show that MK-SpikeSeq reliably detects absolute abundances of bacteria and 
fungi. For e, as exact rDNA copy numbers per fungal cell are undefined, the 

expected total abundances of internal transcribed spacer 1 (ITS1) are only 
estimates (here using 200 rDNA copies per fungal cell). c, f, Changes in 
absolute abundance for individual members (colour-coded as in a, d) of the 
bacterial (c) and fungal (f) mock communities are largely consistent with 
known dilution factors. g, A set of serial dilutions of a human faecal sample was 
quantified using MK-SpikeSeq for relative composition (coloured bars; shown 
are the phylum-level taxa) and absolute abundance (empty bars). h, Changes in 
absolute abundance for individual taxa (colour-coded in phyla as in g) across 
kingdoms are largely consistent with known dilution factors.



a

0%

20%

40%

60%

80%

100%

B
ac

te
ria

l p
or

tio
n

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

Fu
ng

al
 p

or
tio

n

0%

20%

40%

60%

80%

100%

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

focal bacterium

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

0%

20%

40%

60%

80%

100%

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

focal fungus

focal-variable, others-fixed

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

absoluterelative

absoluterelative

0%

20%

40%

60%

80%

100%

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

0%

20%

40%

60%

80%

100%

focal bacterium
absoluterelative

focal fungus
absoluterelative

focal-fixed, others-variable

B
ac

te
ria

l p
or

tio
n

Fu
ng

al
 p

or
tio

n

0%

20%

40%

60%

80%

100%

case 1: relative abundance captures true ecological dynamics in cross-kingdom mock communities

case 2: relative abundance captures false ecological dynamics in cross-kingdom mock communities
b

total bacteria

focal bacterium

total fungi

focal fungus

relative abundance: decreasing

absolute abundance: decreasing

relative abundance: increasing

absolute abundance: increasing

negative
relative abundance:

negative
absolute abundance:

total bacteria

focal bacterium

total fungi

focal fungus

relative abundance: decreasing

absolute abundance: constant

relative abundance: increasing

absolute abundance: constant

negative
relative abundance:

no prediction
absolute abundance:

Extended Data Fig. 2 | MK-SpikeSeq captures key ecological dynamics in 
multi-kingdom mock communities. a, b, Two sets of defined multi-kingdom 
consortia, including ten bacteria and ten fungi (left, colour-coded as in 
Extended Data Fig. 1a, d), were assembled to model a ‘true’ (a) and a ‘false’ (b) 
negative interaction between one focal bacterium and one focal fungus, by 
varying the abundances of either these focal species or other background 

members. The MK-SpikeSeq quantifications of focal species highlight either 
consistent (a) or distinct (b) patterns between relative abundance and absolute 
abundance (middle). Relative abundance data may lead to a false prediction of 
cross-kingdom interaction between the focal species, whereas absolute 
abundance data measured by MK-SpikeSeq could disentangle these distinct 
mock ecological dynamics (right).



Article
a

SpikeSeq vs total DNA

c

SpikeSeq vs flow cytometry (prokaryotes)

-2 -1 0 1 2
0

2

4

6

8

10

log10 ng/ul total DNA

lo
g1

0 
rD

N
A 

no
rm

al
iz

ed
 b

y 
Sp

ik
eS

eq

univ16S, n=28, r=0.9096, p<0.0001
arch16S, n=8, r=0.1836, ns
ITS1, n=29, r=0.0785, ns

4 6 8 10

4

6

8

10

log10 rDNA normalized by SpikeSeq

lo
g1

0 
ce

ll 
co

un
ts

univ16S, n=37, r=0.7675, p<0.0001

2 4 6 8
2

4

6

8

log10 rDNA normalized by SpikeSeq

lo
g1

0 
ce

ll 
co

un
ts

SpikeSeq vs flow cytometry (fungi)

ITS1, n=38, r=0.1319, ns
soil sample, arch16S/univ16S = 10.5%
soil sample, arch16S/univ16S = 16.8%

b

SpikeSeq vs qPCR (univ16S)

log10 rDNA normalized by SpikeSeq

40
-C

t (
qP

C
R

)

univ16S, n=37, r= 0.9647, p<0.0001

4 6 8 10
0

10

20

30

40

log10 rDNA normalized by SpikeSeq

40
-C

t (
qP

C
R

)

SpikeSeq vs qPCR (arch16S)

arch16S, n=9, r=0.9578, p<0.0001

0 2 4 6
0

5

10

15

20

25

log10 rDNA normalized by SpikeSeq

40
-C

t (
qP

C
R

)

SpikeSeq vs qPCR (ITS1)

ITS1, n=33, r= 0.9495 p<0.0001

2 4 6 8
0

5

10

15

20

25

d

16
S 

R
el

at
iv

e 
Ab

un
da

nc
e

1.00

0.75

0.50

0.25

0.00
ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s ns  s

s01 s02 s03 s04 s05 s06 s07 s08 s09 s10 s13 s19 s20 s22 s23 s24 s25 s26 s27 s29 s30 s31 s32 s33 s34 s35 s36 s37

e f
Prokaryote gating strategy: cells beads Fungi gating strategy: cells beads

Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | MK-SpikeSeq outperforms other quantification 
methods in cross-kingdom specificity. A set of 40 test samples including 
human stools and soil samples were used to compare kingdom-specific 
quantifications of absolute abundance. a, MK-SpikeSeq compared with total 
DNA yields. Pearson correlation tests show that total DNA yields mostly only 
reflect bacterial community abundances. b, MK-SpikeSeq compared with flow 
cytometry cell enumerations using gating strategies targeted for either 
prokaryotes or fungi. For prokaryotic enumerations, two soil samples are 
highlighted owing to their high archaeal loads that cannot be distinguished 
from bacterial counts by flow cytometry. For fungi enumerations, results using 
one gating strategy are shown; attempts using two additional gating strategies 
show a similar overestimation of fungal counts (Supplementary Table 4).  
c, MK-SpikeSeq compared with kingdom-specific qPCR. Horizontal dashed 
lines show the limit of detection using qPCR, based on the negative control 
(DNA extraction of water); vertical dashed line shows the limit of detection 

using MK-SpikeSeq, based on a minimum of one read of non-spike-in archaeal 
16S (arch16S) normalized against the average arch16S sequencing depth. 
Samples below the limit of detection are excluded from correlational tests. 
Some samples with an arch16S signal lower than the MK-SpikeSeq limit of 
detection showed arch16S qPCR signals that were higher than the negative 
control, probably owing to bacterial signals bleeding into archaea-specific 
qPCR. For a–c, Pearson correlation r and two-sided P values are shown (no 
adjustment for multiple comparisons). d, Comparison of 16S genus-level 
profiles sequenced with (s) or without (ns) spike-in shows largely unaltered 
community compositions having exogenous spike-in. e, f, Flow cytometry 
gating strategies used in prokaryotic (e) and fungal (f) cell counting (see b), 
with green showing bacterial and fungal cells and purple showing microsphere 
particles provided in the bacteria-counting kit. Higher voltage settings were 
used in flow cytometry for prokaryote cell counting than for fungi cell 
counting.
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Extended Data Fig. 4 | MK-SpikeSeq outperforms qPCR in the sensitivity of 
detection and robustness to sample background. a, Comparison of 
sensitivity between MK-SpikeSeq and qPCR using tenfold serial dilutions of 
Escherichia coli and C. albicans. MK-SpikeSeq showed an increase in sensitivity 
of around 100–1,000-fold relative to qPCR in low-bacterial-abundance samples 
(detecting as few as 10 bacterial cells). For MK-SpikeSeq of E. coli samples, two 
levels of spike-in were used to cover the whole range of detection under the 
sequencing depth of around 10,000–100,000 reads per sample. For qPCR, 
horizontal dashed lines indicate the negative control (DNA extraction of water) 

and vertical dashed line shows the threshold below which pooled 16S 
sequencing yielded fewer than 100 reads (sequencing failed, probably owing to 
too low a signal). b, Comparison of robustness to host-cell background 
between MK-SpikeSeq and qPCR using test samples with fixed amounts of 
E. coli and C. albicans and a variable number of Caco-2 colonic cells. 
MK-SpikeSeq detected consistent (<2-fold variations) microbial abundances in 
samples with high host-cell background whereas qPCR under-measured 
microbial abundances by tenfold (ΔCt > 3.3). n = 2 for the 106 host cells group; 
n = 1 for the other groups.



Extended Data Fig. 5 | MK-SpikeSeq identifies errors in sample processing 
of fungal communities. a, In our first phase of NICU sequencing 
(Supplementary Information), we identified a number of samples (highlighted 
in red dots) that failed to yield more than 1,000 ITS1 reads per sample after 
quality filtering (red dashed line). Many of these samples that failed sequencing 
showed much lower (ΔCt > 5) ITS1 qPCR signals than the spike-in control (green 
dashed line), indicating poor DNA extractions of fungi in these samples. 
Frequency histograms of measurements are shown next to the axes.  

b, Reprocessing of 10 of these samples that failed sequencing led to increased 
ITS1 qPCR signals, indicating improved DNA extractions. c, These reprocessed 
samples also yielded the desired number (over 10,000) of ITS1 reads, passing 
our rDNA-sequencing criteria. P values by two-tailed paired Student’s  
t-test (b, c). d, Eight of the reprocessed samples showed non-zero fungal 
communities, and only two had no detectable fungal signal. The composition 
(coloured bars) and total abundance (empty bars) of fungal communities in 
these reprocessed samples are shown.
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Extended Data Fig. 6 | Bacterial samples cluster according to composition 
and infant age, but not according to infant diet, delivery mode or sex.  
a, PCoA based on Bray–Curtis dissimilarities of bacterial community 
composition between samples (genus level). Samples are coloured by 
dominant taxa or are shown in white when diversity is high (IS > 4). b, PCoA with 
samples coloured by infant age. c, PCoA with samples coloured by infant diet. 
d, PCoA with samples coloured by the sex of the infant. e, PCoA with samples 
coloured by delivery mode. f, PCoA with samples coloured by cluster 
membership, calculated using DBSCAN (density-based spatial clustering of 

applications with noise). g, Stacked bars represent the distribution of the 
dominant genus within each cluster and dot plots illustrate the average day of 
life of samples within each cluster. A Kruskal–Wallis test with Bonferroni 
correction showed statistically significant differences in day of life of samples 
between clusters (Χ2 = 254, P << 0.0001, degrees of freedom (df) = 3). Data are 
mean ± s.d. h, Stacked bars indicate the proportion of genera exhibiting each 
type of noise per infant. Dark noise indicates increasing temporal dependence; 
white noise suggests that temporal dynamics are entirely random.



Extended Data Fig. 7 | Trends in total microbial loads for all three 
kingdoms. a–c, Scatter plots of rDNA-based total abundances of bacteria (a), 
fungi (b) and archaea (c) against infant day of life (DOL), measured by 
MK-SpikeSeq in the first phase. The red lines denote the linear regression fit 
and the 90% confidence bands of the best-fit line of absolute abundances on a 
logarithmic scale. Spearman correlations show that bacterial and archaeal—

but not fungal—loads are positively associated with infant age. Samples with an 
undetectable kingdom-specific rDNA signal are not plotted. For archaea that 
show scarce signal in the cohort (c, left), a separate presence–absence plot and 
Χ2 test of binned samples (c, right) also show a positive correlation between 
archaeal loads and infant age. d, Diagnostics for linear mixed-effects model.
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Extended Data Fig. 8 | Fungal community composition does not map to 
infant age, diet, sex or delivery mode. a, PCoA based on Bray–Curtis 
dissimilarities of fungal community composition between samples (genus 
level). Samples are coloured by dominant taxa or are shown in white when 
diversity is high (IS > 4). b, PCoA with samples coloured by infant age. c, PCoA 
with samples coloured by infant diet. d, PCoA with samples coloured by the sex 
of the infant. e, PCoA with samples coloured by delivery mode. f, PCoA with 
samples coloured by cluster membership, calculated using the DBSCAN 
algorithm. g, Stacked bars represent the distribution of the dominant genus 

within each cluster and dot plots illustrate the average day of life of samples 
within each cluster. A Kruskal–Wallis test with Bonferroni correction showed 
no statistically significant differences in day of life of samples between clusters 
(Χ2 = 3.06, P = 0.69, df = 5). Data are mean ± s.d. h, Stacked bars indicate the 
proportion of genera exhibiting each type of noise per infant. Dark noise 
indicates increasing temporal dependence; white noise suggests that temporal 
dynamics are entirely random. Notably, the mycobiomes of five infants could 
not be classified.



Extended Data Fig. 9 | Microbe–microbe interactions are predominantly 
asymmetric, and inferring interactions from data that are based on 
relative abundance generates misleading results. a, Heat map plotting 
interactions inferred by the gLV model. Each row of the heat map illustrates the 
effect on the target genera by other members of the gut community (left 
columns) or documented use of antimicrobial agents according to the clinical 
metadata (right columns). b, Histogram of individual antibacterial (purple) or 
antifungal (green) interaction strengths, split by kingdom. Antibacterial 
agents primarily inhibit bacteria, and antifungal agents primarily inhibit fungi; 
however, there is not a significant bias in the likelihood of either 
antimicrobial agent inhibiting their target kingdom (exact binomial tests, null 
hypothesis H0: P(Inhibition) = 0.5, P > 0.05). c, Stacked bar shows the 
proportion of different interaction types occurring between genera. Over 80% 
of interactions are asymmetric, being either exploitative (+/−), commensal 

(+/0) or amensal (−/0). d, To confirm the value of our absolute abundance 
methods, we inferred inter-genus interactions from relative abundance data 
alone using the FastSpar46 algorithm. This approach robustly identifies 
co-occurrence relationships between different microbial taxa in a manner that 
accounts for the compositional nature of relative abundance data. Notably, 
correlation networks cannot infer asymmetric interactions, thus this approach 
cannot detect the exploitation of Staphylococcus by Klebsiella. It also 
erroneously infers that Staphylococcus increases the growth of Candida, and 
cannot detect the inhibition of Klebsiella by Candida or Enterococcus.  
e, Steady-state relative abundances of bacteria of those subcommunities 
predicted to be feasible and/or linearly asymptotically stable. f, Steady-state 
relative abundances of fungi of those subcommunities predicted to be feasible 
and/or linearly asymptotically stable.
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Extended Data Fig. 10 | MK-SpikeSeq measurement and repeat 
experiments of in vivo colonization. a, b, Biological replicate samples of 
mouse stools characterized by CFU counting of strains of interest in Fig. 3d, f 
were subjected to MK-SpikeSeq to determine rDNA-based absolute 
abundances of the specified strains (a, MK-SpikeSeq measurement for Fig. 3d;  
b, MK-SpikeSeq measurement for Fig. 3f). c, d, Repeat in vivo colonization 

experiments (c, repeat of Fig. 3d; d, repeat of Fig. 3f). Data are mean ± s.e.m.; 
*P < 0.05, **P < 0.01 (by two-tailed Student’s t-test). For c, n = 5 per group, t-test 
of K. pneumoniae CFU between the groups with or without S. epidermidis 
pre-colonization. For d, n = 4 for the C. albicans + K. pneumoniae group, n = 3 for 
the other two groups, t-test of K. pneumoniae CFU between C. albicans and  
C. parapsilosis groups.See Supplementary Table 15 for exact P values.
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