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Abstract

Markov random fields are used to model high dimensional distributions in a number
of applied areas. Much recent interest has been devoted to the reconstruction of the
dependency structure from independent samples from the Markov random fields. We
analyze a simple algorithm for reconstructing the underlying graph defining a Markov
random field on n nodes and maximum degree d given observations. We show that
under mild non-degeneracy conditions it reconstructs the generating graph with high
probability using Θ(dǫ−2δ−4 logn) samples where ǫ, δ depend on the local interactions.
For most local interaction ǫ, δ are of order exp(−O(d)).

Our results are optimal as a function of n up to a multiplicative constant depending
on d and the strength of the local interactions. Our results seem to be the first results
for general models that guarantee that the generating model is reconstructed. Further-
more, we provide explicit O(nd+2ǫ−2δ−4 log n) running time bound. In cases where the
measure on the graph has correlation decay, the running time is O(n2 logn) for all fixed
d. We also discuss the effect of observing noisy samples and show that as long as the
noise level is low, our algorithm is effective. On the other hand, we construct an exam-
ple where large noise implies non-identifiability even for generic noise and interactions.
Finally, we briefly show that in some simple cases, models with hidden nodes can also
be recovered.

1 Introduction

In this paper we consider the problem of reconstructing the graph structure of a Markov
random field from independent and identically distributed samples. Markov random fields
(MRF) provide a very general framework for defining high dimensional distributions and
the reconstruction of the MRF from observations has attracted much recent interest, in
particular in biology, see e.g. [9] and a list of related references [10].
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1.1 Our Results

We give sharp, up to a multiplicative constant, estimates for the number of independent
samples needed to infer the underlying graph of a Markov random field of bounded degree.
In Theorem 1 we use a simple information-theoretic argument to show that Ω(d log n)
samples are required to reconstruct a randomly selected graph on n vertices with maximum
degree at most d. Then in Theorems 2 and 3 we propose two algorithms for reconstruction
that use only O(dǫ−2δ−4 log n) where ǫ and δ are lower bounds on marginal distributions in
the neighbourhood of a vertex. Under mild non-degeneracy conditions ǫ, δ = exp(−O(d))
and for some models ǫ, δ = poly−1d. Examples of the later model include the hardcore
model with fugacity λ = Θ(1d ). Our main focus is on the reconstruction of sparse MRFs
case where d is fixed in which case ǫ and δ are constant. The two theorems differ in their
running time and the required non-degeneracy conditions. It is clear that non-degeneracy
conditions are needed to insure that there is a unique graph associated with the observed
probability distribution.

In addition to the fully-observed setting in which samples of all variables are available,
we extend our algorithm in several directions. In Section 5 we consider the problem of noisy
observations. In subsection 5.1 we show by way of an example that if some of the random
variables are perturbed by noise then it is in general impossible to reconstruct the graph
structure with probability approaching 1. Conversely, when the noise is relatively weak as
compared to the coupling strengths between random variables, we show that the algorithms
used in Theorems 2 and 3 reconstruct the graph with high probability. Furthermore, we
study the problem of reconstruction with partial observations, i.e. samples from only a
subset of the nodes are available. In Theorem 5 we provide sufficient conditions on the
probability distribution for correct reconstruction.

Chickering [2] showed that maximum-likelihood estimation of the underlying graph of
a Markov random field is NP-complete. This does not contradict our results which assume
that the data is generated from a model (or a model with a small amount of noise). Although
the algorithm we propose runs in time polynomial in the size of the graph, the dependence
on degree (the run-time is O(nd+2ǫ−2δ−4 log n)) may impose too high a computational
cost for some applications. Indeed, for some Markov random fields exhibiting a decay of
correlation a vast improvement can be realized: a modified version of the algorithm runs in
time O(dn2ǫ−2δ−4 log n). This is proven in Theorem 4.

1.2 Related Work

Chow and Liu [1] considered the problem of estimating Markov random fields whose un-
derlying graphs are trees, and provided an efficient (polynomial-time) algorithm based on
the fact that in the tree case maximum-likelihood estimation amounts to the computation
of a maximum-weight spanning tree with edge weights equal to pairwise empirical mutual
information. Unfortunately, their approach does not generalize to the estimation of Markov
random fields whose graphs have cycles. Much work in mathematical biology is devoted
to reconstructing tree Markov fields when there are hidden models. For trees, given data
that is generated from the model, the tree can be reconstructed efficiently from samples at
a subset of the nodes given mild non-degeneracy conditions. See [12, 13, 11] for some of the
most recent and tightest results in this setup.

The most closely related works are [3] and [5]. These can be compared in terms of
sampling complexity, running time as well as the generality of the models to which they

2



apply. These are summarized in the Table below. The first line refers to the type of models
that the method cover: Does the model allow clique interactions of just edge interactions?
The next two lines refer to requirements on the strength of interactions: are they not
required to be too weak / are only edges with strong interactions returned? are they not
required to be too strong? The next line refers to the hardness of verifying if a given
model satisfies the conditions of the algorithm (where X denoted that the verification is
exponential in the size of the model). The following line refers to the following question:
is there a guarantee that the generating model is returned with high probability. The final
two lines refers to computational and sampling complexity where cd denotes constants that
depend on d.

Method AKN [3] WRL [5] Alg High Temp Alg

Cliques
√

X
√ √

No Int. Low. Bd.
√

X X X

No Int. Upp. Bd.
√

X
√

X

Verifiable Conds.
√

X
√ √

Output Gen. Model X
√ √ √

Comp. Compl. nO(d) n5 nO(d) cdn
2 log n

Sampl. Compl. nO(d) poly(d) log n cd log n cd log n

Abbeel, et al [3] considered the problem of reconstructing graphical models based on
factor graphs, and proposed a polynomial time and sample complexity algorithm. However,
the goal of their algorithm was not to reconstruct the true structure, but rather to produce a
model whose distribution is close in Kullback-Leibler divergence to the true distribution. In
applications it is often of interest to reconstruct the true structure which give some insights
into the underlying structure of the inferred model.

Note furthermore that two networks that differ only in the neighborhood of one node
will have O(1) KL distance. Therefore, even in cases where it is promised that the KL
distance between the generating distribution and any other distribution defined by another
graph is as large as possible, the lower bounds on the KL distance is Ω(1). Plugging this
into the bounds in [3] yields a polynomial sampling complexity in the size of the network
in order to find the generating network compared to our logarithmic sampling complexity.
For other work based on minimizing the KL divergence see the references in [3].

The same problem as in the present work (but restricted to the Ising model) was studied
by Wainwright, et al [5], where an algorithm based on ℓ1-regularization was introduced.
The algorithm presented is efficient also for dense graphs with running time O(n5) but is
applicable only in very restricted settings. The work only applies to the Ising model and
more importantly only models with edge interactions (no larger cliques are allowed). The
most important restrictions are the two conditions in the paper (A1 and A2). Condition A1
requires (among other things) that the “covariates [spins] do not become overly dependent”.
Verifying when the conditions holds seems hard. However, it is easy to see that this condition
fails for standard models such as the Ising model on the lattice or on random d-regular
graphs when the model is at low temperatures, i.e. for β > 1

2 log(1 +
√
2) in the case of the

two dimensional Ising model and β > tanh−1
(
1/(d − 1)

)
for random d-regular graphs.

Subsequent to our work being posted on the Arxiv, Santhanam and Wainwright [4]
again considered essentially the problem for the Ising model, producing nearly matching
lower and upper bounds on the asymptotic sampling complexity. Again their conditions do
not apply to the low temperature regime. Another key difference from our work is that they
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restrict attention to the Ising model, i.e. Markov random fields with pairwise potentials and
where each variable takes two values. Our results are not limited to pairwise interactions
and apply to the more general setting of MRFs with potentials on larger cliques.

2 Preliminaries

We begin with the definition of Markov random field.

Definition 1. On a graph G = (V,E), a Markov random field is a distribution X taking
values in AV , for some finite set A with |A| = A, which satisfies the Markov property

P (X(W ),X(U)|X(S)) = P (X(W )|X(S))P (X(U)|X(S)) (1)

when W,U and S are disjoint subsets of V such that every path in G from W to U passes
through S and where X(U) denotes the restriction of X from AV to AU for U ⊂ V .

Famously, by the Hammersley-Clifford Theorem, such distributions can be written in a
factorized form as

P (σ) =
1

Z
exp

[∑

a

Ψa(σa)

]
(2)

where Z is a normalizing constant, a ranges over the cliques in G, and Ψa : A|a| → R∪{−∞}
are functions called potentials.

The problem we consider is that of reconstructing the graph G, given k independent
samples X = {X1, . . . ,Xk} from the model. Denote by Gd the set of labeled graphs with
maximum degree at most d. We assume that the graph G ∈ Gd is from this class. A
structure estimator (or reconstruction algorithm) Ĝ : Akn → Gd is a map from the space
of possible sample sequences to the set of graphs under consideration. We are interested in
the asymptotic relationship between the number of nodes in the graph, n, the maximum
degree d, and the number of samples k that are required. An algorithm using number of
samples k(n) is deemed successful if in the limit of large n the probability of reconstruction
error approaches zero.

3 Lower Bound on Sample Complexity

Suppose G is selected uniformly at random from Gd. The following theorem gives a lower
bound of Ω(d log n) on the number of samples necessary to reconstruct the graph G. The
argument is information theoretic, and follows by comparing the number of possible graphs
with the amount of information available from the samples.

Theorem 1. Let the graph G be drawn according to the uniform distribution on Gd. Then
there exists a constant c = c(A) > 0 such that if k ≤ cd log n then for any estimator
Ĝ : X → Gd, the probability of correct reconstruction is P (Ĝ = G) = o(1).

Remark 1. Note that the theorem above doesn’t need to assume anything about the poten-
tials. The theorem applies for any potentials that are consistent with the generating graph.
In particular, it is valid both in cases where the graph is “identifiable” given many samples
and in cases where it isn’t.
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Proof. To begin, we note that the probability of error is minimized by letting Ĝ be the
maximum a posteriori (MAP) decision rule,

ĜMAP(X) = argmaxg∈GP [G = g|X ].

By the optimality of the MAP rule, this bounds the probability of error using any estimator.
Now, the MAP estimator ĜMAP(X) is a deterministic function of X. Clearly, if a graph g
is not in the range of Ĝ then the algorithm always makes an error when G = g. Let S be
the set of graphs in the range of ĜMAP, so P (error|g ∈ Sc) = 1. We have

P (error) =
∑

g∈G

P (error|G = g)P (G = g)

=
∑

g∈S

P (error|G = g)P (G = g) +
∑

g∈Sc

P (error|G = g)P (G = g)

≥
∑

g∈Sc

P (G = g) = 1−
∑

g∈S

|G|−1

≥ 1− Ank

|G| ,

(3)

where the last step follows from the fact that |S| ≤ |X| ≤ Ank. It remains only to express
the number of graphs with max degree at most d, |Gd|, in terms of the parameters n, d. The
following lemma gives an adequate bound.

Lemma 1. Suppose d ≤ nα with α < 1. Then the number of graphs with max degree at
most d, |Gd|, satisfies

log |Gd| = Ω(nd log n). (4)

Proof. To make the dependence on n explicit, let Un,d be the number of graphs with n
vertices with maximum degree at most d. We first bound Un+2,d in terms of Un,d,. Given a
graph G with n vertices and degree at most d, add two vertices a and b. Select d distinct
neighbors v1, . . . , vd for vertex a, with d labeled edges; there are

(n
d

)
d! ways to do this. If vi

already has degree d in G, then vi has at least one neighbor u that is not a neighbor of a,
since there are only d− 1 other neighbors of a. Remove the edge (vi, u) and place an edge
labeled i from vertex b to u. This is done for each vertex v1, . . . , vd, so b has degree at most
d. The graph G can be reconstructed from the resulting labeled graph on n+ 2 vertices as
follows: remove vertex a, and return the neighbors of b to their correct original neighbors
(this is possible because the edges are labeled).

Removing the labels on the edges from a and b sends at most d!2 edge-labeled graphs
of this type on n + 2 vertices to the same unlabeled graph. Hence, the number of graphs
with max degree d on n+ 2 vertices is lower bounded as

Un+2,d ≥ Un,d

(
n

d

)
d!

1

d!2
= Un,d

(
n

d

)
1

d!
.

It follows that for n even (and greater than 2d+ 4)

Un,d ≥
n/2∏

i=1

(
n− 2i

d

)
1

d!
≥

((
n/2

d

)
1

d!

)n/4

. (5)
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If n is odd, it suffices to note that Un+1,d ≥ Un,d. Taking the logarithm of equation (5)
yields

logUn,d = Ω(nd(log n− log d)) = Ω(nd log n), (6)

assuming that d ≤ nα with α < 1.

Together with equation (3), Lemma 1 implies that for small enough c, if the number of
samples k ≤ cd log n, then

P (error) ≥ 1− Ank

|G| = 1− o(1).

This completes the proof of Theorem 1.

4 Reconstruction

We now turn to the problem of reconstructing the graph structure of a Markov random
field from samples. For a vertex v we let N(v) = {u ∈ V − {v} : (u, v) ∈ E} denote the set
of neighbors of v. Determining the neighbors of v for every vertex in the graph is sufficient
to determine all the edges of the graph and hence reconstruct the graph. We test each
candidate neighborhood of size at most d by using the Markov property, which states that
for each w ∈ V − (N(v) ∪ {v})

P (X(v)|X(N(v)),X(w)) = P (X(v)|X(N(v))) . (7)

We give two theorems for reconstructing networks; they differ in their non-degeneracy
conditions and their running time. The first one, immediately below, has more stringent
non-degeneracy conditions and faster running time.

4.1 Conditional Two Point Correlation Reconstruction

Theorem 2. Suppose the graphical model satisfies the following: there exist ǫ, δ > 0 such
that for all v ∈ V , if U ⊂ V − {v} with |U | ≤ d and N(v) * U then there exist values
xv, xw, x

′
w, xu1 , . . . , xul

such that for some w ∈ V − (U ∪ {v})
∣∣P (X(v) = xv|X(U) = xU ,X(w) = xw)

− P (X(v) = xv|X(U) = xU ,X(w) = x′w)
∣∣ > ǫ

(8)

and

|P (X(U) = xU ,X(w) = xw)| > δ,∣∣P (X(u1) = xU ,X(w) = x′w)
∣∣ > δ.

(9)

Then with the constant C =
(
81(d+2)
ǫ2δ42d

+ C1

)
, when k > Cd log n, there exists an estimator

Ĝ(X) such that the probability of correct reconstruction is P (G = Ĝ(X)) = 1 − O(n−C1).
The estimator Ĝ is efficiently computable in O(nd+2 log n) operations.

Remark 2. Condition (8) captures the notion that each edge should have sufficient strength.
Condition (9) is required so that we can accurately calculate the empirical conditional
probabilities.
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Proof. Let P̂ denote the empirical probability measure from the k samples. Azuma’s in-
equality gives that if Y ∼ Bin(k, p) then

P (|Y − kp| > γk) ≤ 2 exp(−2γ2k)

and so for any collection U = {u1, . . . , ul} ⊆ V and x1, . . . , xl ∈ A we have

P
(∣∣∣P̂ (X(U) = xU )− P (X(U) = xU )

∣∣∣ ≤ γ
)
≤ 2 exp(−2γ2k). (10)

There are Al
(n
l

)
≤ Alnl such choices of u1, . . . , ul and x1, . . . , xl. An application of the

union bound implies that with probability at least 1−Alnl2 exp(−2γ2k) it holds that
∣∣∣P̂ (X(U) = xU )− P (X(U) = xU )

∣∣∣ ≤ γ (11)

for all {ui}li=1 and {xi}li=1. If we additionally have l ≤ d + 2 and k ≥ C(γ)d log n, then

equation (11) holds with probability at least 1 − Ad+2nd+22/n2γ2C(γ)d. Choosing C(γ) =
d+2
γ22d +C1, equation (11) holds with probability at least 1− 2Ad+2/nC1 .

For the remainder of the proof assume (11) holds. Taking

γ(ǫ, δ) = ǫδ2/9 , (12)

we can bound the error in conditional probabilities as

|P̂ (X(v) = xv|X(U) = xU )− P (X(v) = xv|X(U) = xU )|

=

∣∣∣∣∣
P̂ (X(v) = xv,X(U) = xU )

P̂ (X(U) = xU )
− P (X(v) = xv,X(U) = xU )

P (X(U) = xU )

∣∣∣∣∣

≤
∣∣∣∣∣
P̂ (X(v) = xv,X(U) = xU )

P (X(U) = xU )
− P (X(v) = xv,X(U) = xU )

P (X(U) = xU )

∣∣∣∣∣

+

∣∣∣∣∣
1

P̂ (X(U) = xU )
− 1

P (X(U) = xU )

∣∣∣∣∣

≤ γ

δ
+

γ

(δ − γ)δ
≤ ǫδ2

9δ
+

ǫδ2

9(δ − ǫδ2

9 )δ
=

ǫδ

9
+

ǫ

(9− ǫδ)
<

ǫ

4
. (13)

For each vertex v ∈ V we consider all candidate neighborhoods for v, subsets U ⊂ V−{v}
with |U | ≤ d. The estimate (13) and the triangle inequality imply that if N(v) ⊆ U then
by the Markov property,

∣∣P̂ (X(v) = xv|X(U) = xU ,X(w) = xw)

− P̂ (X(v) = xv|X(U) = xU ,X(w) = x′w)
∣∣ < ǫ/2 (14)

for all w ∈ V and x1, . . . , xl, xw, x
′
w, xv ∈ A such that

∣∣∣P̂ (X(U) = xU ,X(w) = xw)
∣∣∣ > δ/2,

∣∣∣P̂ (X(U) = xU ,X(w) = x′w)
∣∣∣ > δ/2. (15)

Conversely by conditions (8) and (9) and the estimate (13), we have that for any U with
N(v) * U there exists some w ∈ V and xu1 , . . . , xul

, xw, x
′
w, xv ∈ A such that equation (15)
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holds but equation (14) does not hold. Thus, choosing the smallest set U such that (14)
holds gives the correct neighborhood.

To summarize, with number of samples

k =

(
81(d + 2)

ǫ2δ42d
+ C1

)
d log n

the algorithm correctly determines the graph G with probability

P (Ĝ(X) = G) ≥ 1− 2Ad+2/nC1 .

The analysis of the running time is straightforward. There are n nodes, and for each
node we consider O(nd) neighborhoods. For each candidate neighborhood, we check ap-
proximately O(n) nodes and perform a correlation test of complexity O(log n).

4.2 General Reconstruction

While Theorem 2 applies to a wide range of models, condition (8) may occasionally be too
restrictive. One setting in which condition (8) does not apply is if the marginal spin at some
vertex v is independent of the marginal spins at all its neighbors, (i.e for all u ∈ N(v) and
all x, y ∈ A we have P (X(v) = x,X(u) = y) = P (X(v) = x)P (X(u) = y). In this case the
algorithm would incorrectly return the empty set for the neighborhood of v. The weaker
conditions for Theorem 3 hold on essentially all Markov random fields. In particular, condi-
tion (16) says that the potentials are non-degenerate, which is clearly a necessary condition
in order to recover the graph. Condition (17) holds for many models, for example all models
with soft constraints. This additional generality comes at a computational cost, with the
algorithm for Theorem 2 having a faster running time, O(nd+2 log n) versus O(n2d+1 log n).

Theorem 3. For an assignment xU = (xu1 , . . . , xul
) and x′ui

∈ A, define

xiU(x
′
ui
) = (xu1 , . . . , x

′
ui
, . . . , xul

)

to be the assignment obtained from xU by replacing the ith element by x′ui
. Suppose there

exist ǫ, δ > 0 such that the following condition holds: for all v ∈ V , if N(v) = u1, . . . , ul,
then for each i, 1 ≤ i ≤ l and for any set W ⊂ V − (v ∪ N(v)) with |W | ≤ d there exist
values xv, xu1 , . . . , xui , . . . , xul

, x′ui
∈ A and xW ∈ A|W | such that

∣∣P (X(v) = xv|X(N(v)) = xN(v))

− P (X(v) = xv|X(N(v)) = xiN(v)(x
′
ui
))
∣∣ > ǫ

(16)

and
∣∣P (X(N(v)) = xN(v),X(W ) = xW )

∣∣ > δ,∣∣∣P (X(N(v)) = xiN(v),X(W ) = xW )
∣∣∣ > δ.

(17)

Then for some constant C = C(ǫ, δ) > 0, if k > Cd log n then there exists an estimator
Ĝ(X) such that the probability of correct reconstruction is P (G = Ĝ(X)) = 1 − o(1). The
estimator Ĝ is computable in time O(n2d+1 log n).

8



Proof. As in Theorem 2 we can assume that with high probability we have
∣∣∣P̂ (X(U) = xU )− P (X(U) = xU )

∣∣∣ ≤ γ (18)

for all {ui}li=1 and {xi}li=1 when l ≤ 2d + 1 and k ≥ C(γ)d log n so we assume that (18)
holds. For each vertex v ∈ V we consider all candidate neighborhoods for v, subsets
U = {u1, . . . , ul} ⊂ V − {v} with 0 ≤ l ≤ d. For each candidate neighborhood U , the
algorithm computes a score

f(v;U) =

min
W,i

max
xv,xW ,xU ,x′

ui

∣∣P̂ (X(v) = xv|X(W ) = xW ,X(U) = xU )

− P̂ (X(v) = xv|X(W ) = xW ,X(U) = xiU (x
′
ui
))
∣∣,

where for each W, i, the maximum is taken over all xv,XW , xU , x
′
ui
, such that

P̂ (X(W ) = xW ,X(U) = xU ) > δ/2 (19)

P̂ (X(W ) = xW ,X(U) = xiU (x
′
ui
)) > δ/2

and W ⊂ V − ({v} ∪ U) is an arbitrary set of nodes of size d, xW ∈ Ad is an arbitrary
assignment of values to the nodes in W , and 1 ≤ i ≤ l.

The algorithm selects as the neighborhood of v the largest set U ⊂ V − {v} with
f(v;U) > ǫ/2. It is necessary to check that if U is the true neighborhood of v, then the
algorithm accepts U , and otherwise the algorithm rejects U .

Taking γ(ǫ, δ) = ǫδ2/9, it follows exactly as in Theorem 2 that the error in each of the
relevant empirical conditional probabilities satisfies

|P̂ (X(v) = xv|X(W ) = xW ,X(U) = xU )

− P (X(v) = xv|X(W ) = xW ,X(U) = xU )| <
ǫ

4
. (20)

If U * N(v), choosing ui ∈ U −N(v), we have when N(v) ⊂ W ∪ U

∣∣P (X(v) = xv|X(W ) = xW ,X(U) = xU )− P (X(v) = xv|X(W ) = xW ,X(U) = xiU (x
′
ui
))
∣∣

=
∣∣P (X(v) = xv|X(N(v)) = xN(v))− P (X(v) = xv|X(N(v)) = xN(v))

∣∣
= 0 ,

by the Markov property (7). Assuming that equation (18) holds with γ chosen as in (12), the
estimation error in f(v;U) is at most ǫ/2 by equation (20), and it holds that f(v;U) < ǫ/2
for each U * N(v). Thus all U * N(v) are rejected. If U = N(v), then by the Markov
property (7) and the conditions (16) and (17), for any i and W ⊂ V ,

∣∣P (X(v) = xv|X(W ) = xW ,X(U) = xU )− P (X(v) = xv|X(W ) = xW ,X(U) = xiU (x
′
ui
))
∣∣

=
∣∣P (X(v) = xv|X(N(v)) = xN(v))− P (X(v) = xv|X(N(v)) = xiN(v)(x

′
ui
))
∣∣

> ǫ

for some xv, xW , xU , x
′
ui
. The error in f(v;U) is less than ǫ/2 as before, hence f(v;U) > ǫ/2

for U = N(v). Since U = N(v) is the largest set that is not rejected, the algorithm correctly
determines the neighborhood of v for every v ∈ V when (18) holds.

9



To summarize, with number of samples

k =

(
81(2d + 1)

ǫ2δ42d
+ C1

)
d log n

the algorithm correctly determines the graph G with probability

P (Ĝ(X) = G) ≥ 1− 2A2d+1/nC1 .

The analysis of the running time is similar to the previous algorithm.

4.3 Non-degeneracy of Models

We can expect conditions (16) and (17) to hold in essentially all models of interest. The
following proposition shows that they hold for any model with soft constraints.

Proposition 1 (Models with soft constraints). In a graphical model with maximum degree
d given by equation (2) suppose that all the potentials Ψuv satisfy ‖Ψuv‖∞ ≤ K and

max
x1,x2,x3,x4∈A

|Ψuv(x1, x2)−Ψuv(x3, x2)−Ψuv(x1, x4) + Ψuv(x3, x4)| > γ, (21)

for some γ > 0. Then there exist ǫ, δ > 0 depending only on d,K and γ such that the
hypothesis of Theorem 3 holds.

Proof. It is clear that for some sufficiently small δ = δ(d,m,K) > 0 we have that for all
u1, . . . , u2d+1 ∈ V and xu1 , . . . , xu2d+1

∈ A that

P (X(u1) = xu1 , . . . ,X(u2d+1) = xu2d+1
) > δ. (22)

Now suppose that u1, . . . , ul is the neighborhood of v. Then for any 1 ≤ i ≤ l it follows from
equation (21) that there exists xv, x

′
v, xui , x

′
ui

∈ A such that for any xu1 . . . , xui−1 , xui+1 , . . . , xul
∈

A,

P (X(v) = xv|X(u1) = xu1 , . . . ,X(ui) = x′ui
, . . . ,X(ul) = xul

)

P (X(v) = x′v|X(u1) = xu1 , . . . ,X(ui) = x′ui
, . . . ,X(ul) = xul

)

≥ eγ
P (X(v) = xv|X(u1) = xu1 , . . . ,X(ui) = xui , . . . ,X(ul) = xul

)

P (X(v) = x′v|X(u1) = xu1 , . . . ,X(ui) = xui , . . . ,X(ul) = xul
)
.

Combining with equation (22), condition (16) follows.

Although the results to follow hold more generally, for ease of exposition we will keep
in mind the example of the Ising model with no external magnetic field,

P (~x) =
1

Z
exp


 ∑

(u,v)∈E

βuvxuxv


 , (23)

where βuv ∈ R are coupling constants and Z is a normalizing constant.
The following lemma gives explicit bounds on ǫ, δ in terms of bounds on the coupling

constants in the Ising model, showing that the conditions of Theorem 3 can be expected to
hold quite generally.

10



Proposition 2. Consider the Ising model with all parameters satisfying

0 < c < |βij | < C

on a graph G with max degree at most d . Then the conditions (16) and (17) of Theorem 3
are satisfied with

ǫ ≥ tanh(2c)

2C2 + 2C−2

and

δ ≥ e−4dC

22d
.

Proof. Fix a vertex v ∈ V and let w ∈ N(v) be any vertex in the neighborhood of v. Let
R = N(v) \ {w} be the other neighbors of v. Then

P (X(v) = 1|X(R) = xR,X(w) = xw)

=
P (X(v) = 1,X(R) = xR,X(w) = xw)

P (X(v) = 1,X(R) = xR,X(w) = xw) + P (X(v) = 0,X(R) = xR,X(w) = xw)

=
exp

(∑
j∈R xjβjv + xwβwv

)

exp
(∑

j∈R xjβjv + xwβwv

)
+ exp

(
−∑

j∈R xjβjv − xwβwv

) .

(24)

Defining

A := exp


∑

j∈R

xjβjv


 ,

we have from (24) that

|P (X(v) = 1|X(R) = xR,X(w) = 1)− P (X(v) = 1|X(R) = xR,X(w) = −1)|

=

∣∣∣∣
Aeβwv

Aeβwv +A−1e−βwv
− Ae−βwv

Ae−βwv +A−1eβwv

∣∣∣∣

=

∣∣∣∣
A2(e2βwv − e−2βwv )

A4 +A2(e2βwv + e−2βwv ) + 1

∣∣∣∣

=
A2(e2|βwv | − e−2|βwv|)

A4 +A2(e2|βwv | + e−2|βwv|) + 1

=
(e2|βwv | − e−2|βwv |)

A2 + e2|βwv | + e−2|βwv| +A−2
≥ tanh(2|βwv|)

2A2 + 2A−2
.

It is possible to choose the spins xR in such a way that e−C < A < eC . Thus the expression
above is at least

tanh(2c)

2e2C + 2e−2C
.

Moreover, the probability of any assignment of 2d spins can be very crudely bounded as

P (X(i1) = xi1 , . . . ,X(i2d) = xi2d) ≥
e−4dC

22d
.
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4.4 O(n2 logn) Algorithm For Models with Correlation Decay

The reconstruction algorithm runs in polynomial time O(dn2d+1 lnn). It would be desirable
for the degree of the polynomial to be independent of d and this can be achieved for Markov
random fields with exponential decay of correlations. For two vertices u, v ∈ V let d(u, v)
denote the graph distance and let dC(u, v) denote the correlation between the spins at u
and v defined as

dC(u, v) =
∑

xu,xv∈A

|P (X(u) = xu,X(v) = xv)− P (X(u) = xu)P (X(v) = xv)| .

If the interactions are sufficiently weak the graph will satisfy the Dobrushin-Shlosman con-
dition (see e.g. [8]) and there will be exponential decay of correlations between vertices.

Theorem 4. Suppose that G and X satisfy the hypothesis of Theorem 3 and that for
all u, v ∈ V , dC(u, v) ≤ exp(−αd(u, v)) and there exists some κ > 0 such that for all
(u, v) ∈ E, dC(u, v) > κ. Then for some constant C = C(α, κ, ǫ, δ) > 0, if k > Cd log n
then there exists an estimator Ĝ(X) such that the probability of correct reconstruction is

P (G = Ĝ(X)) = 1 − o(1) and the algorithm runtime is O(nd
d ln(4/κ)

α + dn2 lnn) with high
probability.

Proof. Denote the correlation neighborhood of a vertex v as NC(v) = {u ∈ V : d̂C(u, v) >

κ/2} where d̂C(u, v) is the empirical correlation of u and v. For large enough C with high

probability for all v ∈ V we have that N(v) ⊆ NC(v) ⊆ {u ∈ V : d(u, v) ≤ ln(4/κ)
α }. Now

the size of |{u ∈ V : d(u, v) ≤ ln(4/κ)
α }| ≤ d

ln(4/κ)
α which is independent of n.

When reconstructing the neighborhood of a vertex v we modify the algorithm in Theo-
rem 3 to only test candidate neighborhoods U and sets W which are subsets of NC(v). The
algorithm restricted to the smaller range of possible neighborhoods correctly reconstructs
the graph since the true neighborhood of a vertex is always in its correlation neighborhood.
For each vertex v the total number of choices of candidate neighborhoods U and sets W

the algorithm has to check is O(d
d ln(4/κ)

α ) so running the reconstruction algorithm takes

O(nd
d ln(4/κ)

α ) operations. It takes O(dn2 lnn) operations to calculate all the correlations
which for large n dominates the run time.

5 Noisy and Incomplete Observations

More generally there is the problem of reconstructing a Markov random field from noisy
observations. In this setting we observe Y = {Y 1, . . . , Y k} instead of X = {X1, . . . ,Xk}
where each Yi is a noisy version of Xi. The algorithm in Theorem 3 is robust to small
amounts of noise, even when the errors in different vertices are not necessarily independent.
One sufficient condition is that there exist 0 < ǫ′ < ǫ and 0 < δ′ < δ such that for any
2d+ 1 vertices v1, . . . , v2d+1 and states x1, . . . , x2d+1 we have that

|P (X(v1) = x1, . . . ,X(v2d) = x2d)− P (Y (v1) = x1, . . . , Y (v2d) = x2d)| ≤ δ′/2

and ∣∣P (X(v2d+1) = x2d+1|X(v1) = x1, . . . ,X(v2d) = x2d)

− P (Y (v2d+1) = x2d+1|Y (v1) = x1, . . . , Y (v2d) = x2d)
∣∣ ≤ ǫ′/2.

For some C ′ = C ′(ǫ, ǫ′, δ, δ′) > 0 with k = C ′d log n samples the reconstruction algorithm of
Theorem 3 correctly reconstructs the graph G with high probability (the same proof holds).
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5.1 An Example of Non-Identifiability

Without assumptions on the underlying model or noise, the Markov random field is not in
general identifiable. In other words, a single probability distribution might correspond to
two different graph structures. Thus, the problem of reconstruction is not well-defined in
such a case. The next example shows that even in the Ising model, under unknown noise it
is impossible to distinguish between a graph with 3 vertices and 2 edges and a graph with
3 vertices and 3 edges.

Example 1. Let V = {v1, v2, v3} be a set of 3 vertices and let G and G̃ be two graphs with
vertex set V and edge sets {(u1, u2), (u1, u3)} and {(u1, u2), (u1, u3), (u2, u3)} respectively.

Let P and P̃ be Ising models on G and G̃ with edge interactions β12, β13 and β̃12, β̃13, β̃23
respectively, i.e.

P [X] =
1

Z
exp (β12X(u1)X(u2) + β13X(u1)X(u3))

P̃ [X] =
1

Z
exp

(
β̃12X(u1)X(u2) + β̃13X(u1)X(u3) + β̃23X(u2)X(u3)

)
.

Suppose that X ′(u1), a noisy version of the spin X(u1), is observed which is equal to X(u1)
with probability p and −X(u1) with probability 1−p for some random unknown p while the
spins X(u2) and X(u3) are observed perfectly. This is equivalent to adding a new vertex
u′1 to G and G̃ with an extra edge (u1, u

′
1) and potential Ψ(u1,u′

1)
= β11′X(u1)X(u′1). The

spin at u′1 then represents the noisy observation of the spin at u1. Suppose that all the β

and β̃ are chosen independently with N(0, 1) distribution and let P and P̃ be the random
noisy distributions on A{u′

1,u2,u3}. Then the total variation distance between P and P̃ is
less than 1 and so the graph structure is not identifiable as we shall show below.

By the symmetry of the Ising model with no external field the random element P can
be parameterized by (p1′2, p1′3, p23) ∈ [0, 1]3 where p1′2 = P (Xu′

1
= 1,Xu2 = 1), p1′3 =

P (Xu′
1
= 1,Xu3 = 1), p23 = P (Xu2 = 1,Xu3 = 1). These parameters are given by

pij = h(β1i)h(β1j) + h(−β1i)h(−β1j)

where h(β) = eβ

eβ+e−β . Let ϕ be the function ϕ : R3 → [0, 1]3 which maps (β11′ , β12, β13) 7→
(p1′2, p1′3, p23) and let Jϕ be its Jacobian. Then det(Jϕ(1, 1, 1)) > 0 and by continuity
the Jacobian is positive in a neighborhood of (1, 1, 1). It follows that the random vec-
tor (p1′2, p1′3, p23) has a density with respect to Lebesgue measure in a neighborhood of
(2h(1)2, 2h(1)2, 2h(1)2).

Now let ϕ̃ be the function ϕ̃ : R3 → [0, 1]3 which maps (β̃11′ , β̃12, β̃13, β̃23) 7→ (p̃1′2, p̃1′3, p̃23).

If we fix β̃23 = 0 then ϕ̃ = ϕ induces a positive density in the random vector (p̃1′2, p̃1′3, p̃23)

in a neighborhood of (2h(1)2, 2h(1)2, 2h(1)2). By continuity this also holds when |β̃23| is
small enough and so (p̃1′2, p̃1′3, p̃23) has a positive density around (2h(1)2, 2h(1)2, 2h(1)2).
Hence we have that both P and P̃ have positive densities in an overlapping region so their
total variation distance is less than 1 and so the graph structure is not identifiable.

5.2 Models With Hidden Variables

A related question is can we identify if a vertex is missing and if so where it fits into the
graph. Under the assumption that the vertices all have degree at least 3 and the graph is
triangle-free we can recover missing vertices under mild assumptions.
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Theorem 5. Suppose that the hypothesis of Theorem 3 holds for some Markov random field
X based on a triangle-free graph with minimum degree at least 3 and maximum degree d′.
Let V ∗ ⊆ V such that for any two points v, v′ ∈ V − V ∗ we have d(v, v′) ≥ 3 and suppose
we are given samples from X∗, the restriction of X to V ∗ with which to reconstruct G.

Suppose the following condition also holds: for all v ∈ V if v1, v2 ∈ N(v) and U =
N(v) ∪ N(v1) − {v, v1, v2} and W ⊂ V − (N(v) ∪ N(v1)) with |W | ≤ 2d then there exists
some xv1 , xv2 , x

′
v2 , xU , xW such that

∣∣P (X(v1) = xv1 |X(W ) = xW ,X(U) = xU ,X(v2) = xv2)

− P (X(v1) = xv1 |X(W ) = xW ,X(U) = xU ,X(v2) = x′v2)
∣∣ > ǫ

(25)

and

|P (X(W ) = xW ,X(U) = xU ,X(v2) = xv2)| > δ,∣∣P (X(W ) = xW ,X(U) = xU ,X(v2) = x′v2)
∣∣ > δ.

(26)

Then for some constant C = C(ǫ, δ) > 0, if k > Cd log n then there exists an estimator
Ĝ(X∗) such that the probability of correct reconstruction is P (G = Ĝ(X∗)) = 1− o(1).

Proof. We apply the algorithm from Theorem 3 to X∗ setting the maximum degree as
d = 2d′. The algorithm will output the graph G∗ = (V ∗, E∗). If v,N(v) ⊂ V ∗ then the
algorithm correctly reconstructs the neighborhood N(v). Any vertex in V ∗ is adjacent to at
most one missing vertex so suppose that v1 is a vertex adjacent to a missing vertex v. Then
by condition (25) and (26) we have that the algorithm reconstructs the neighborhood of v1
as N(v)∪N(v1)−{v, v1}. So the edge set E∗ is exactly all the edges in the induced subgraph
of V ∗ plus a clique connecting all the neighbors of missing vertices. Since G is triangle-free
every maximal clique (a clique that cannot be enlarged) of size at least 3 corresponds to a
missing vertex.

So to reconstruct G from G∗ we simply replace every maximal clique in G∗ with a vertex
connected to all the vertices in the clique. This exactly reconstructs the graph with high
probability.

Remark 3. The condition that missing vertices are at distance at least 3 is not necessary,
but this assumption simplifies the algorithm because the cliques corresponding to missing
vertices are disjoint. A slightly more involved algorithm is able to reconstruct graphs where
the missing vertices have d(v, v′) = 2.

The following lemma shows that the conditions for recovery of missing vertices in Theo-
rem 5 are satisfied for a ferromagnetic Ising model satisfying the assumptions of Lemma 2.

Lemma 2. Consider the ferromagnetic Ising model where all coupling parameters satisfy

0 < c < βij < C

on a triangle-free graph G with minimum degree 3. Then the conditions of Theorem 5 are
satisfied with

ǫ ≥ tanh(2c)

32e2(d+1)C (C2 + C−2)
,

and

δ ≥ e−4dC

22d
.
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Proof. To check the first condition we write
∣∣P (X(v1) = 1|X(N) = xN ,X(v2) = 1)

− P (X(v1) = 1|X(N) = xN ,X(v2) = −1)
∣∣

=
∣∣P (X(v1) = 1|X(N) = xN ,X(v2) = 1, v = 1)P (v = 1|X(N) = xN ,X(v2) = 1)

+ P (X(v1) = 1|X(N) = xN ,X(v2) = 1, v = −1)P (v = −1|X(N) = xN ,X(v2) = 1)

− P (X(v1) = 1|X(N) = xN ,X(v2) = −1, v = 1)P (v = 1|X(N) = xN ,X(v2) = −1)

− P (X(v1) = 1|X(N) = xN ,X(v2) = −1, v = −1)P (v = −1|X(N) = xN ,X(v2) = −1)
∣∣

=
∣∣P (X(v1) = 1|X(N) = xN , v = 1)P (v = 1|X(N) = xN ,X(v2) = 1)

+ P (X(v1) = 1|X(N) = xN , v = −1)P (v = −1|X(N) = xN ,X(v2) = 1)

− P (X(v1) = 1|X(N) = xN , v = 1)P (v = 1|X(N) = xN ,X(v2) = −1)

− P (X(v1) = 1|X(N) = xN , v = −1)P (v = −1|X(N) = xN ,X(v2) = −1)
∣∣

whereN = N(v)∪N(v1)−{v, v1, v2} and where the last step follows by the Markov property
(since all paths from v1 to v2 pass through vertices in N or through v). Continuing, we
have that the above is equal to

|(P (v1 = 1|N, v = 1)− P (v1 = 1|N, v = −1)) (P (v = 1|N, v2 = 1)− P (v = 1|N, v2 = −1))| .
(27)

But by Lemma 2,

∣∣ (P (v1 = 1|N, v = 1)− P (v = 1|N, v = −1))
∣∣ > tanh(2c)

2C2 + 2C−2
.

By the ferromagnetic assumption, the second factor can be lower bounded as

∣∣ (P (v = 1|N, v2 = 1)− P (v = 1|N, v2 = −1))
∣∣ > 1

16e2(d+1)C
.

Hence the first condition is satisfied with

ǫ >
tanh(2c)

32e2(d+1)C (C2 +C−2)
.

The second condition, by the same argument as Lemma 2, is satisfied with

δ ≥ e−4dC

22d
.
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