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Abstract.
Networks are a convenient way to represent complex systems of interacting entities. Many

networks contain “communities” of nodes that are more densely connected to each other than to nodes
in the rest of the network. In this paper, we investigate the detection of communities in temporal
networks represented as multilayer networks. As a focal example, we study time-dependent financial-
asset correlation networks. We first argue that the use of the “modularity” quality function—which
is defined by comparing edge weights in an observed network to expected edge weights in a “null
network”—is application-dependent. We differentiate between “null networks” and “null models”
in our discussion of modularity maximization, and we highlight that the same null network can
correspond to different null models. We then investigate a multilayer modularity-maximization
problem to identify communities in temporal networks. Our multilayer analysis only depends on
the form of the maximization problem and not on the specific quality function that one chooses.
We introduce a diagnostic to measure persistence of community structure in a multilayer network
partition. We prove several results that describe how the multilayer maximization problem measures
a trade-off between static community structure within layers and higher values of persistence across
layers. We also discuss some implementation issues that the popular “Louvain” heuristic faces with
temporal multilayer networks and suggest ways to mitigate them.
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1. Introduction. In its simplest form, a network is simply a graph: it consists
of a set of nodes that represent entities and a set of edges between pairs of nodes
that represent interactions between those entities. One can consider weighted graphs
(in which each edge has an associated edge weight that quantifies the interaction of
interest) or unweighted graphs (weighted graphs with binary edge weights). Networks
provide useful representations of complex systems across many disciplines [48]. Com-
mon types include social networks (which arise via offline and/or online interactions),
information networks (e.g., hyperlinks between webpages in the World Wide Web),
infrastructure networks (e.g., transportation routes between cities), and biological
networks (e.g., metabolic interactions between cells or proteins, food webs, etc.).

Given a network representation of a system, it can be useful to apply a coarse-
graining technique in order to investigate features that lie between features at the
“microscale” (e.g., nodes and pairwise interactions) and the “macroscale” (e.g., total
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edge weight and degree distribution) [49,55]. One thereby studies “mesoscale” features
such as core-periphery structure and (especially) community structure. Loosely speak-
ing, a community (or cluster) in a network is a set of nodes that are “more densely”
connected to each other than they are to nodes in the rest of the network [23, 55].
Giving a precise definition of “densely connected” is, of course, necessary to have a
method for community detection. It is important to recognize at the outset that this
definition is subjective and in particular, may depend on the application in question.
Correspondingly, community detection methods may need to be tailored. We restrict
ourselves to hard partitions, in which each node is assigned to exactly one community,
and we use the term “partition” to mean “hard partition”. It is also important, but
beyond the scope of this paper, to consider “soft partitions”, in which communities
can overlap [23,33,52,55].

Analysis of community structure has been very useful in a wide range of applica-
tions; many of which are described in [23,25,49,55]. In social networks, communities
can reveal groups of people with common interests, places of residence, or other sim-
ilarities [50,66]. In biological systems, communities can reveal functional groups that
are responsible for synthesizing or regulating an important chemical product [29,40].
In the present paper, we use financial-asset correlation networks as examples [8, 15].
Despite the diversity of markets, financial products, and geographical locations, finan-
cial assets can exhibit strong time-dependent correlations, both within and between
asset classes. It is a primary concern for market practitioners (e.g., for portfolio di-
versification) to estimate the strengths of these correlations and to identify sets of
assets that are highly correlated [43,67].

Most methods for detecting communities are designed for static networks. How-
ever, in many applications, entities and/or interactions between entities evolve in time.
In such applications, one can use the formalism of temporal networks, where nodes
and/or their edges weights vary in time [31]. This is important for numerous applica-
tions, including person-to-person communication [68], one-to-many information dis-
semination (e.g., Twitter networks [27] and Facebook networks [70]), cell biology [31],
neuroscience [7], ecology [31], finance [20–22,51], and more.

Two main approaches have been adopted to detect communities in time-dependent
networks. The first entails constructing a static network by aggregating snapshots of
the evolving network at different points in time into a single network (e.g., by taking
the mean or total edge weight for each edge across all time points, which can be prob-
lematic if the set of nodes varies in time and which also makes restrictive assumptions
on the interaction dynamics between entities [30]). One can then use standard network
techniques. The second approach entails using static community-detection techniques
on each element of a time-ordered sequence of networks at different times or on each
element of a time-ordered sequence of network aggregations1 (computed as above)
over different time intervals (which can be either overlapping or nonoverlapping) and
then tracking the communities across the sequence [3, 20,21,32,42,52].

A third approach consists of embedding a time-ordered sequence of networks in a
larger network [18,44,54]. Each element of the sequence is a network layer, and nodes
at different time points are joined by inter-layer edges. This approach was introduced

1One needs to distinguish between this kind of aggregation and the averaging of a set of time
series over a moving window to construct a correlation matrix, which one can then interpret as a
fixed-time snapshot of a time-evolving network. Although both involve averaging over a time window,
the former situation entails averaging a network, and the latter situation entails averaging over a
collection of time series (one for each node) with no directly observable edge weights.
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in [44] and the resulting network is a type of multilayer network [11, 35]. The main
difference between this approach and the previous approach is that the presence of
nonzero inter-layer edges introduces a dependence between communities identified in
one layer and connectivity patterns in other layers. Thus far, most computations
that have used a multilayer representation of temporal networks have assumed that
inter-layer connections are “diagonal” (i.e., they exist only between copies of the same
node) and “ordinal” (i.e., they exist only between consecutive layers) [35]. Diagonal
is a natural model of the persistence of node identity in time, while ordinal preserves
the time ordering.

The authors of [44] derived a generalization of modularity maximization, a popular
clustering method for static networks, to multilayer networks. Modularity is a function
that measures the “quality” of a network partition into disjoint sets of nodes by
computing the difference between the total edge weight in sets in the observed network
and the total expected edge weight in the same sets in a “null network” generated
from some “null model” [23, 55]. Modularity maximization consists of maximizing
the modularity quality function over the space of network partitions. (In practice,
given the combinatorial complexity of this maximization problem, one uses some
computational heuristic and finds a local maximum [28].) Intuitively, the null model
controls for connectivity patterns that one anticipates finding in a network, and one
uses modularity maximization to identify connectivity patterns in an observed network
that are stronger than anticipated. We give a precise definition of the modularity
function for single-layer networks in Section 2, where (importantly) we distinguish
between a “null network” and a “null model” in modularity maximization. In Section
4, we discuss the choice of null network for a given application.

In Section 3, we describe the generalization of single-layer modularity to mul-
tilayer networks proposed in [44]. To date, almost no theory has explained how a
multilayer partition obtained with zero inter-layer coupling (which reduces to single-
layer modularity maximization on each layer independently) differs from a multilayer
partition obtained with nonzero inter-layer coupling. In Section 5, we prove several
theoretical properties of an optimal solution for the multilayer maximization problem
to better understand how such partitions differ and how one can exploit this differ-
ence in practice. We also describe two implementation issues that arise when using
the popular Louvain heuristic [10] to solve the multilayer maximization problem, and
we suggest ways to mitigate them. The results of Section 5 are independent of the
choice of quality function on individual layers and only depend on the form of the
maximization problem. Section 6 contains a concluding discussion.

2. Single-layer modularity maximization.

2.1. The modularity function. Consider an N -node network G and let the
edge weights between pairs of nodes be {Aij |i, j ∈ {1, . . . , N}}, so that A = (Aij) ∈
RN×N is the adjacency matrix of G. In this paper, we only consider symmetric
adjacency matrices (and hence undirected networks), so Aij = Aji for all i and j.
The strength of a node i is

ki =

N∑
j=1

Aij =

N∑
j=1

Aji , (2.1)

and it is given by the ith row (or column) sum of A.
When studying the structure of a network, it is useful to compare what is observed

with what is anticipated. We define a null model to be a probability distribution on
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the set of adjacency matrices and a null network to be the expected adjacency ma-
trix under a specified null model. In a loose sense, null models play the role of prior
models, as they control for features that one anticipates to find in the system under
investigation. One can thereby take into account known (or suspected) connectiv-
ity patterns that might obscure unknown connectivity patterns that one hopes to
discover via processes like community detection. For example, in social networks,
one often takes the strength of a node in a null network to be its observed strength
ki [47, 49, 55]. We discuss the use of this null network for financial-asset correlation
networks in Section 4. In spatial networks that represent the spread of a disease
or information between different locations, some authors have used null networks in
which edge weights between two locations scales inversely with the distance between
them [19,60].

As we discussed in Section 1, one uses modularity maximization to partition a
network into sets of nodes called “communities” that have a larger total internal edge
weight than the expected total internal edge weight in the same sets in a null network,
generated from some null model [23, 49, 50, 55]. Modularity maximization consists of
finding a partition that maximizes this difference [23, 55]. (As mentioned earlier,
in practice one uses some computational heuristic and finds a local maximum [28]).
In the present paper, we use the term “modularity” for an arbitrary choice of null
network and we ignore any normalization constant that depends on the choice of null
network but does not affect the solution of the modularity-maximization problem for
a given null network. Modularity thus acts as a “quality function” Q : C → R, where
the set C is the set of all possible N -node network partitions.

Suppose that we have a partition C of a network into K disjoint sets of nodes
{C1, . . . , CK}. We can then define a map c(·) from the set of nodes {1, . . . , N} to the
set of integers {1, . . . ,K} such that c(i) = c(j) = k if and only if nodes i, j lie in Ck.
We call c(i) the set assignment (or community assignment when C is a global or local
maximum) of node i in partition C. The value of modularity for a given partition C
is then

Q(C|A;P ) :=

N∑
i,j=1

(Aij − Pij)δ(ci, cj) , (2.2)

where P = (Pij) ∈ RN×N is the adjacency matrix of the null network, ci is short-
hand notation for c(i), and δ(ci, cj) is the Kronecker delta function. We state the
modularity-maximization problem as follows:

max
C∈C

N∑
i,j=1

(Aij − Pij)δ(ci, cj) , (2.3)

which we can also write as maxC∈C Q(C|B) or maxC∈C
∑N
i,j Bijδ(ci, cj), where B =

A − P is the so-called modularity matrix [47]. It is clear from (2.3) that pairwise
contributions to modularity are only counted when two nodes are assigned to the same
set. These contributions are positive (respectively, negative) when the observed edge
weight Aij between nodes i and j is larger (respectively, smaller) than the expected
edge weight Pij between them. If Aij < Pij for all i and j, then the optimal solution
is N singleton communities. Conversely, if Aij > Pij for all i and j, then the optimal
solution is a single N -node community. To obtain a partition of a network with a high
value of modularity, one hopes to have many edges within sets that satisfy Aij > Pij
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and few edges within sets that satisfy Aij < Pij . As is evident from equation (2.3),
what one regards as “densely connected” in this setting depends fundamentally on
the choice of null network.

It can be useful to write the modularity-maximization problem using the trace of
matrices [47]. As before, we consider a partition C of a network into K sets of nodes
{C1, . . . , CK}. We define the partition matrix S ∈ {0, 1}N×K as

Sij = δ(ci, j) , (2.4)

where j ∈ {1, . . . ,K} and ci = j means that node i lies in Cj . The columns of S
are orthogonal, and the jth column sum of S gives the number of nodes in Cj . This
yields

N∑
i,j=1

Bijδ(ci, cj) =

N∑
i,j=1

K∑
k=1

SikBijSjk = Tr(STBS) ,

where the (i, i)th term of STBS is twice the sum of edge weights in Ci. (The (i, j)th

off-diagonal term is twice the sum of edge weights between Ci and Cj .) It follows that
one can restate the modularity-maximization problem in (2.3) as

max
S∈S

Tr(STBS) , (2.5)

where S is the set of all partition matrices in {0, 1}N×K (with K ≤ N).
Modularity maximization is one of myriad community-detection methods [23],

and it has many limitations (e.g., a resolution limit on the size of communities [24]
and a huge number of nearly degenerate local maxima [28]). Nevertheless, it is a
popular method (which has been used successfully in numerous applications [23,55]),
and the ability to specify explicitly what one anticipates is a useful (and under-
exploited) feature for users working on different applications. In Section 4, we make
some observations on one’s choice of null network when using the modularity quality
function.

2.2. The Louvain computational heuristic. For a given modularity matrix
B, a solution to the modularity-maximization problem is guaranteed to exist in any
network with a finite number of nodes. However, the number of possible partitions
in an N -node network, given by the Bell number [9], grows at least exponentially
with N , so an exhaustive search of the space of partitions is infeasible. Modularity
maximization was proven in [14] to be an NP-hard problem (at least for the null
networks which we consider in this paper), so solving it requires the use of computa-
tional heuristics. In the present paper, we focus on the Louvain heuristic, which is a
locally-greedy modularity-increasing sampling process over the set of partitions [10].

The Louvain heuristic consists of two phases, which are repeated iteratively. Ini-
tially, each node in the network constitutes a set, which gives an initial partition that
consists of N singletons. During phase 1, one considers the nodes one by one (in some
order), and one places each node in a set (including its own) that results in the largest
increase of modularity. This phase is repeated until one reaches a local maximum (i.e.,
until one obtains a partition in which the move of a single node cannot increase mod-
ularity). Phase 2 consists of constructing a reduced network G′ from the sets of nodes
in G that one obtains after the convergence of phase 1. We denote the sets in G at
the end of phase 1 by {Ĉ1, . . . , ĈN̂} (where N̂ ≤ N) and the set assignment of node i
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in this partition by ĉi. Each set Ĉk in G constitutes a node k in G′, and the reduced
modularity matrix of G′ is

B′ = ŜTBŜ ,

where Ŝ is the partition matrix of {Ĉ1, . . . , ĈN̂}. This ensures that the all-singleton
partition in G′ has the same value of modularity as the partition of G that we identified
at the end of phase 1. One then repeats phase 1 on the reduced network and continues
iterating until the heuristic converges (i.e., until phase 2 induces no further changes).

Because we use a nondeterministic implementation of the Louvain heuristic—in
particular, the node order is randomized at the start of each iteration of phase 1—the
network partitions that we obtain for a fixed modularity matrix can differ across runs.2

To account for this, one can compute the frequency of co-classification of nodes into
communities for a given modularity matrix B across multiple runs of the heuristic
instead of using the output partition of a single run. (See [39] for an application
of such an approach to “consensus clustering” and [59] for an application of such
an approach to hierarchical clustering.) We use the term association matrix for a
matrix that stores the mean number of times that two nodes are placed in the same
community across multiple runs of a heuristic, and we use the term co-classification
index of nodes i and j to designate the (i, j)th entry of an association matrix.

There are many other heuristics that one can employ to maximize modularity
[23, 48, 55], but the Louvain heuristic is a popular choice in practice [38]. It is very
fast [23, 38], which is an important consideration in multilayer networks, for which
the total number of nodes is the number of nodes in each layer multiplied by the
number of layers. In Section 5, we point out two issues that the Louvain heuristic
(independently of how it is implemented) faces with temporal multilayer networks.

2.3. Multiscale community structure. Many networks include community
structure at multiple scales [23, 55], and some systems even have a hierarchical com-
munity structure of “parts-within-parts” [62]. In such a situation, although there
are dense interactions within communities of some size (e.g., friendship ties between
students in the same school), there are even denser interactions in subsets of nodes
that lie inside these communities (e.g., friendship ties between students in the same
school and in the same class year). Some variants of the modularity function have
been proposed to detect communities at different scales. A popular choice is to scale
the null network by a resolution parameter γ ≥ 0 to yield a multiscale modularity-
maximization problem [58]:

max
C∈C

N∑
i,j=1

(Aij − γPij)δ(ci, cj) . (2.6)

In some sense, the value of the parameter γ determines the importance that one
assigns to the null network relative to the observed network. The corresponding
modularity matrix and modularity function evaluated at a partition C are B =

2The implementation [1, 34] of the heuristic that we use in this paper is a generalized version of
the implementation in [10]. It is independent of the null network—so it takes the modularity matrix
as an input to allow an arbitrary choice of null network—and it randomizes the node order at the
start of each iteration of the heuristic’s first phase to increase the search space of the heuristic. When
one chooses the same null network that was assumed in [10] and uses a node order fixed to {1, . . . , N}
at each iteration of phase 1 (the value of N can change after each iteration of the heuristic’s second
phase), then these implementations return the same output.
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A− γP and Q(C|A;P ; γ) =
∑N
i,j=1(Aij − γPij)δ(ci, cj). The special case γ = 1

yields the modularity matrix and modularity function in the modularity-maximization
problem (2.3). This formulation of multiscale modularity has a dynamical interpre-
tation [36,37] that we will discuss in the next subsection.

In most applications of community detection, the adjacency matrix of the ob-
served and null networks have nonnegative entries. In these cases, the solution to
(2.6) when 0 ≤ γ ≤ γ− = mini 6=j,Pij 6=0 (Aij/Pij) is a single community regardless of
any structure, however clear, in the observed network, because then

Bij = Aij − γPij ≤ 0 for all i, j ∈ {1 . . . N} .

(We exclude diagonal terms because a node is always in its own community.) How-
ever, the solution to (2.6) when γ > γ+ = maxi6=j,Pij 6=0 (Aij/Pij) is N singleton
communities because

Bij = Aij − γPij < 0 for all i, j ∈ {1 . . . N} .

Partitions at these boundary values of γ correspond to the coarsest and finest possible
partitions of a network, and varying the resolution parameter between these bounds
makes it possible to examine a network’s community structure at intermediate scales.

For an observed and/or null network with signed edge weights, the intuition be-
hind the effect of varying γ in (2.6) on an optimal solution is not straightforward. A
single community and N singleton communities do not need to be optimal partitions
for any value of γ ≥ 0. In particular, Bij has the same sign as Aij for sufficiently
small values of γ, and Bij has the opposite sign to Pij for sufficiently large values of
γ. For further discussion, see Section 4, where we explore the effect of varying the
resolution parameter on an optimal partition for an observed and null network with
signed edge weights. We take γ− = 0 in numerical experiments with signed networks
because optimal partitions can vary in the interval γ ∈ [0, γ−].3

It is important to differentiate between a “resolution limit” on the smallest com-
munity size that is imposed by a community-detection method [24] and inherently
multiscale community structure in a network [23,55,62]. For the formulation of mul-
tiscale modularity in (2.6), the resolution limit described in [24] applies to any fixed
value of γ. By varying γ, one can identify communities that are smaller than the limit
for any particular γ value. In this sense, multiscale formulations of modularity help
“mitigate” the resolution limit, though there remain issues [2, 28, 36]. In this paper,
we do not address the issue of how to identify communities at different scales, though
we note in passing that the literature includes variants of multiscale modularity (e.g.,
see [2]). We make observations on null networks in Section 4, and we illustrate how
our observations can manifest in practice using the formulation of multiscale modu-
larity in (2.6). (Our observations hold independently of the formulation of multiscale
modularity that one adopts, but the precise manifestation can be different for different
variants of multiscale modularity.)

We use the term multiscale community structure to refer to a set Clocal(γ) of local
optima that we obtain with a computational heuristic for a set of (not necessarily
all distinct) resolution-parameter values γ = {γ1, . . . , γl}, where γ− = γ1 ≤ . . . ≤
γl = γ+. We use the term multiscale association matrix for an association matrix

3For γ ≥ γ+, one can show that all modularity contributions no longer change signs: these are
negative (respectively, positive) between pairs of nodes with Pij ≥ 0 (respectively, Pij ≤ 0).
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Â ∈ [0, 1]N×N that stores the co-classification index of all pairs of nodes for partitions
in this set:

Âij =

∑
C∈Clocal(γ) δ(ci, cj)

|Clocal(γ)|
. (2.7)

We use this matrix repeatedly in our computational experiments of Section 4.

2.4. Null models and null networks. In this section, we describe three null
networks. We make several observations on the interpretation of communities that
we obtain from Pearson correlation matrices using each of these null networks in the
computational experiments of Section 4.

2.4.1. Newman-Girvan (NG) null network. A popular choice of null net-
work for networks with positive edge weights is the Newman-Girvan (NG) null net-
work, whose adjacency-matrix entries are Pij = kikj/(2m), where ki are the observed
node strengths [46,50]. This yields the equivalent maximization problems

max
C∈C

N∑
i,j=1

(
Aij −

kikj
2m

)
δ(ci, cj) ⇔ max

S∈S
Tr

[
ST

(
A− kk

T

2m

)
S

]
, (2.8)

where k = A1 is the N×1 vector of node strengths and 2m = 1TA1 is the total edge
weight of the observed network. This null network can be derived from a variety of null
models. One way to generate an unweighted network with expected adjacency matrix
kkT /(2m) is to generate each of its edges and self-edges with probability kikj/(2m)
(provided kikj ≤ 2m for all i, j). That is, the presence and absence of edges and
self-edges is a Bernoulli random variable with probability kikj/(2m) [12, 13]. More
generally, any probability distribution on the set of adjacency matrices that satisfies
E
(∑N

j=1Wij

)
= ki (i.e., the expected strength equals the observed strength, see for

e.g., [16]) and E(Wij) = f(ki)f(kj) for some real-valued function f has an expected

adjacency matrix of E(W ) = kkT /(2m).4 The adjacency matrix of the NG null
network is symmetric and positive semidefinite.

We briefly describe a way of deriving the NG null network from a model on time-
series data (in contrast to a model on a network). The partial correlation corr(a, b | c)
between a and b given c is the Pearson correlation between the residuals that result
from the linear regression of a with c and b with c, and it is given by

corr(a, b | c) =
corr(a, b)− corr(a, c)corr(b, c)√
1− corr2(a, c)

√
1− corr2(b, c)

. (2.9)

Suppose that the data used to construct the observed network is a set of time series
{zi|i ∈ {1, . . . , N}}, where zi = {zi(t)|t ∈ T} and T is a discrete set of time points.
The authors in [41] pointed out that when Aij = corr(zi, zj) then ki = cov(ẑi, ẑtot)
and thus that

kikj
2m

= corr(ẑi, ẑtot)corr(ẑj , ẑtot) , (2.10)

4The linearity of the expectation and the assumptions E
(∑N

j=1 W ij

)
= ki and E(W ij) =

f(ki)f(kj) imply that f(ki) = ki/
∑N

j=1 f(kj) and
∑N

j=1 f(kj) =
√

2m. Combining these equations
gives the desired result.
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where ẑi(t) = (zi(t)−〈zi〉)/σ(zi) is a standardized time series and ẑtot(t) =
∑N
i=1 ẑi(t)

is the sum of the standardized time series.5 Taking a = ẑi, b = ẑj , and c = ẑtot,
equation (2.9) implies that if corr(ẑi, ẑj | ẑtot) = 0 then corr(ẑi, ẑj) = kikj/(2m).
That is, Pearson correlation coefficients between pairs of time series that satisfy
corr(ẑi, ẑj | ẑtot) = 0 are precisely the adjacency-matrix entries of the NG null net-
work. One way of generating a set of time series in which pairs of distinct time
series satisfy this condition is to assume that each standardized time series depends
linearly on the mean time series and that residuals are mutually uncorrelated (i.e.,
ẑi = αiẑtot/N + βi + εi for some αi, βi ∈ R and corr(εi, εj) = 0 for i 6= j).

The multiscale modularity-maximization problem in (2.6) was initially introduced
in [58] using an ad hoc approach. Interestingly, one can derive this formulation of
the maximization problem for sufficiently large values of γ by considering a quality
function based on a continuous-time Markov process X(t) on an observed network [36,
37]. The probability density of a continuous-time Markov process with exponentially
distributed waiting times at each node parametrized by λ(i) satisfies

ṗ = pΛM − pΛ , (2.11)

where the vector p(t) ∈ [0, 1]1×N is the probability density of a random walker at
each node [i.e., pi(t) := P(X(t) = i) for each i], Λ is a diagonal matrix with the rate
λ(i) on its ith diagonal entry, and M is the transition matrix of a random walker
(i.e., Mij := Aij/ki). The solution to equation (2.11) is p(t) = p0e

Λ(M−I)t and its

stationary distribution is π = kTΛ−1/(2m). The stability of a partition is a quality
function defined by [17,36,37]

r(S, t) = Tr
[
ST
(
ΠeΛ(M−I)t − πTπ

)
S
]
,

where Πij = δ(i, j)πi. Equivalently, the stability is

r(C, t) =

N∑
i,j=1

[
πi

(
eΛ(M−I)t

)
ij
− πiπj

]
δ(ci, cj) . (2.12)

Taking p0 = π, the term in brackets on the left-hand side of (2.12) is P(X(0) = i ∩
X(t) = j) and the term in brackets on the right-hand side is P(X(0) = i∩X(t→∞) =
j) (provided the system is ergodic). The intuition behind the stability quality function
is that a good partition at a given time before reaching stationarity corresponds to
one in which the time that a random walker spends within communities is large
compared with the time that it spends transiting between communities. In other
words, a random walker that starts out at a community ends up there again in the
early stages of the random walk, long before stationarity. The resulting maximization
problem is maxS∈S r(S, t), or equivalently maxC∈C r(C, t). By linearizing eΛ(M−I)t

at t = 0 and taking Λ = I, one obtains the multiscale modularity-maximization
problem in (2.6) at short timescales with γ = 1/t and Pij = kikj/(2m). This approach
provides a dynamical interpretation of the resolution parameter γ as the inverse (after
linearization) of the time used to explore a network by a random walker.

5The equality (2.10) holds for signed correlation networks. The strength of a node i is given by
the ith (signed) column or row sum of the correlation matrix.
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2.4.2. Generalization of Newman-Girvan null network to signed net-
works (NGS). In [26], Gómez et al. proposed a generalization of the NG null
network to signed networks. They separated A into its positive and negative edge
weights:

A = A+ −A− ,

where A+ denotes the positive part of A and −A− denotes its negative part. Their
generalization of the NG null network to signed networks (NGS) is Pij = k+i k

+
j /(2m

+)−
k−i k

−
j /(2m

−). This yields the maximization problem

max
C∈C

N∑
i,j=1

[(
A+
ij −

k+i k
+
j

2m+

)
−

(
A−ij −

k−i k
−
j

2m−

)]
δ(ci, cj) , (2.13)

where k+i and 2m+ (respectively, k−i and 2m−) are the strengths and total edge weight
in A+ (respectively, A−). The intuition behind this generalization is to use an NG
null network on both unsigned matrices A+ and A− but to count contributions to
modularity from negative edge weights (i.e., the second group of terms in (2.13)) in
an opposite way to those from positive edge weights (i.e., the first group of terms in
(2.13)). Negative edge weights that exceed their expected edge weight are penalized
(i.e., they decrease modularity) and those that do not are rewarded (i.e., they increase
modularity). One can generate a network with edge weights 0, 1, or −1 and expected
edge weights k+i k

+
j /(2m

+)− k−i k
−
j /(2m

−) by generating one network with expected

edge weights W+
ij = k+i k

+
j /(2m

+) and a second network with expected edge weights

W−ij = k−i k
−
j /(2m

−) using the procedure described for the NG null network in Section
2.4.1, and then defining a network whose edge weights are given by the difference
between the edge weights of these two networks. More generally, any probability
distribution on the set of signed adjacency matrices {W ∈ RN×N} with the same
properties as those for the NG null network for W+ and W− (where W = W+ −
W− defined as above) will have expected edge weights of Wij = k+i k

+
j /(2m

+) −
k−i k

−
j /(2m

−) for all i, j ∈ {1, . . . , N} (by linearity of the expectation).
The authors of [44] derived a variant of the multiscale formulation of modularity

in (2.6) for the NGS null network at short time scales by building on the random-walk
approach used to derive the NG null network.6 They considered the function

r̂(C, t) =

N∑
i,j=1

(
πi
[
δij + tΛii(Mij − δij)

]
− πiρi|j

)
δ(ci, cj) , (2.14)

where the term in brackets on the left-hand side is a linearization of the exponential
term in (2.12), M and πi are as defined in (2.12) on a network with adjacency matrix
|A| := A+ + A−, and ρi|j is the probability of jumping from node i to node j at
stationarity conditional on the network structure [44]. If the network is unipartite,
unsigned, and undirected, then ρi|j reduces to the stationary probability πj .

6In particular, they derived the multiscale formulation of modularity obtained using a Potts-
model approach in [64]. This multiscale formulation results in one resolution parameter γ1 for the
term (k+i k

+
j )/(2m+) and a second resolution parameter γ2 for the term (k−i k

−
j )/(2m−) in (2.13)

(see [42] for an application of this multiscale formulation to the United Nations General Assembly
resolution networks). Without an application-driven justification for how to choose these parameters,
this increases the parameter space substantially, so we only consider the case γ1 = γ2 in this paper.
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2.4.3. Uniform (U) null network. A third null network that we consider is
a uniform (U) null network, with adjacency-matrix entries Pij = 〈k〉2/(2m), where

〈k〉 :=
(∑N

i=1 ki
)
/N denotes the mean strength in a network. We thereby obtain the

equivalent maximization problems

max
C∈C

N∑
i,j=1

(
Aij −

〈k〉2

2m

)
δ(ci, cj)⇔ max

S∈S
Tr

[
ST
(
A− 〈k〉

2

2m
1N

)
S

]
, (2.15)

where A is an unsigned adjacency matrix and 1N is an N ×N matrix in which every
entry is 1.7 The expected edge weight in (2.15) is constant and satisfies

〈k〉2

2m
=

(∑N
i=1 ki

/
N
)2

∑N
i=1 ki

=
2m

N2
= 〈A〉 ,

where 〈A〉 denotes the mean value of the adjacency matrix.8 One way to generate
an unweighted network with adjacency matrix 〈A〉1N is to generate each edge with
probability 〈A〉 (provided 〈A〉 ≤ 1). That is, the presence and absence of an edge
(including self-edges) are independent and identically distributed (i.i.d.) Bernoulli
random variables with probability 〈A〉. More generally, any probability distribution

on the set of adjacency matrices that satisfies E
(∑N

i,j=1Wij

)
= 2m and E(Wij) =

E(Wi′j′) for all i, j, i′, j′ has an expected adjacency matrix E(W ) = 〈A〉1N . The
adjacency matrix of the U null network is symmetric and positive semidefinite. One
can derive the multiscale formulation in (2.6) for the U null network from the stability
quality function in precisely the same way as it is derived for the NG null network,
except that one needs to consider exponentially distributed waiting times at each node
with rates proportional to node strength (i.e., Λij = δ(i, j)ki/〈k〉) [37].

3. Multilayer modularity maximization.

3.1. Multilayer representation of temporal networks. We restrict our
attention to temporal networks in which only edges vary in time. (Thus, each
node is present in all layers.) We use the notation As for a layer in a sequence
of adjacency matrices T = {A1, . . . ,A|T |}, and we denote node i in layer s by
is. We use the term multilayer network for a network defined on the set of nodes
{11, . . . , N1; 12, . . . , N2; . . . ; 1|T |, . . . , N|T |} [35].

Thus far, computations that have used a multilayer framework for temporal net-
works have almost always assumed (1) that inter-layer connections exist only between
nodes that correspond to the same entity (i.e., between nodes is and ir for some i
and s 6= r) and (2) that the network layers are “ordinal” (i.e., inter-layer edges exist
only between consecutive layers) [7,35,44,45,57]. It is also typically assumed that (3)
inter-layer connections are uniform (i.e., inter-layer edges have the same weight). In a
recent review article on multilayer networks [35], condition (1) was called “diagonal”
coupling, and condition (2) implies that a network is “layer-coupled”. We refer to the

7For a network in which all nodes have the same strength, the uniform and Newman-Girvan null
networks are equivalent because ki = kj for all i, j ⇔ ki = 2m/N = 〈k〉 for all i. This was pointed
out for an application to foreign exchange markets in [20,21].

8Although we use the uniform null network on unsigned adjacency matrices in this paper, the
expected edge weight in the uniform null network is always nonnegative for correlation matrices, as
positive semidefiniteness guarantees that 〈A〉 = 1TA1/(N2) ≥ 0.
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Layer 1

11 21

31

Layer 2

12 22

32

Layer 3

13 23

33

←→



0 1 1 ω 0 0 0 0 0
1 0 0 0 ω 0 0 0 0
1 0 0 0 0 ω 0 0 0
ω 0 0 0 1 1 ω 0 0
0 ω 0 1 0 1 0 ω 0
0 0 ω 1 1 0 0 0 ω
0 0 0 ω 0 0 0 1 0
0 0 0 0 ω 0 1 0 1
0 0 0 0 0 ω 0 1 0



Fig. 3.1. Example of (left) a multilayer network with unweighted intra-layer connections (solid
lines) and uniformly weighted inter-layer connections (dashed curves) and (right) its corresponding
adjacency matrix. (The adjacency matrix that corresponds to a multilayer network is sometimes
called a “supra-adjacency matrix” in the network-science literature [35].)

type of coupling defined by (1), (2), and (3) as ordinal diagonal and uniform inter-
layer coupling and we denote the value of the inter-layer edge weight by ω ∈ R. We
show a simple illustration of a multilayer network with ordinal diagonal and uniform
inter-layer coupling in Fig. 3.1. One can consider more general inter-layer connections
(e.g., nonuniform ones). Although we restrict our attention to uniform coupling in
our theoretical and computational discussions, we give an example of a nonuniform
choice of inter-layer coupling in Section 5. Results similar to those of subsection 5.2
also apply in this more general case.

3.2. The multilayer modularity function. The authors of [44] generalized
the single-layer multiscale modularity-maximization problem in (2.6) to a multilayer
network using a similar approach as the one used to derive the NGS null network
from a stochastic Markov process on the observed network. For simplicity, we express
intra-layer and inter-layer connections in an N |T |-node multilayer network using a
single N |T | × N |T | matrix. Each node is in layer s has the unique index i′ :=
i + (s − 1)N , and we use A to denote the multilayer adjacency matrix, which has
entries Ai′j′ = Aijsδ(s, r) + ωδ(|s − r|, 1) when the inter-layer coupling is ordinal
diagonal and uniform. (As discussed in [35], one can use either an adjacency tensor
or an adjacency matrix to represent a multilayer network.) The generalization in [44]
consists of applying the function in (2.14) to the N |T |-node multilayer network:

r̂(C, t) =

N |T |∑
i,j=1

(
πi
[
δij + tΛii(Mij − δij)

]
− πiρi|j

)
δ(ci, cj) , (3.1)

where C is now a multilayer partition (i.e., a partition of an N |T |-node multilayer
network), Λ is the N |T | ×N |T | diagonal matrix with the rates of the exponentially
distributed waiting times at each node of each layer on its diagonal, M (with en-
tries Mij := Aij/

∑
j Aij) is the N |T | × N |T | transition matrix for the N |T |-node

multilayer network with adjacency matrix A, πi is the corresponding stationary distri-
bution (with the strength of a node and the total edge weight now computed from the
multilayer adjacency matrix A), and ρi|j is the probability of jumping from node i to
node j at stationarity conditional on the structure of the network within and between
layers. The authors’ choice of ρi|j , which accounts for the sparsity pattern of inter-
layer edges in the multilayer network, leads to the multilayer modularity-maximization
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problem

max
C∈C

N |T |∑
i,j=1

Bijδ(ci, cj) . (3.2)

which we can also write as maxC∈C Q(C|B), where B is the multilayer modularity
matrix

B =



B1 ωI 0 . . . 0

ωI
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . ωI

0 . . . 0 ωI B|T |


, (3.3)

and Bs is a single-layer modularity matrix computed on layer s. (For example,
Bs = As − 〈As〉1N if one uses the U null network and sets γ = 1.) We rewrite the
multilayer modularity-maximization problem in [44] as

maxC∈C

|T |∑
s=1

N∑
i,j=1

Bijsδ(cis , cjs) + 2ω

|T |−1∑
s=1

N∑
i=1

δ(cis , cis+1) , (3.4)

where Bijs denotes the (i, j)th entry ofBs. Equation (3.4) clearly separates intra-layer
contributions (left term) from inter-layer contributions (right term) to the multilayer
quality function.

In practice, one can solve this multilayer modularity-maximization problem with
the Louvain heuristic in subsection 2.2 by using the multilayer modularity matrix B
instead of the single-layer modularity matrix B as an input (the number of nodes
in the first iteration of phase 1 becomes N |T | instead of N). It is clear from (3.4)
that inter-layer merges decrease the value of the multilayer quality function when
ω < 0, so we only consider ω ≥ 0. Furthermore, although merging pairs of nodes
with Bij = 0 into the same set does not change the value of the quality function,
we will assume in the rest of the paper that sets in globally optimal partitions of
the multilayer modularity-maximization problem (3.4) do not contain disconnected
components in the N |T |-node weighted graph with adjacency matrix B.

In Section 5, we try to gain some insight into how to interpret a globally optimal
multilayer partition by proving several properties that it satisfies. The results that we
show are independent of the choice of matrices B1, . . . ,B|T |, so (for example) they
still apply when one uses the stability quality function in (2.12) on each layer instead
of the modularity quality function. For ease of writing (and because modularity is
the quality function that we use in our computational experiments of Section 5), we
will continue to refer to the maximization problem (3.4) as a multilayer modularity
maximization problem.

4. Interpretation of community structure in correlation networks with
different null networks. It is clear from the structure of B in equation (3.3) that
the choice of quality function within layers (i.e., diagonal blocks in the multilayer
adjacency matrix) and the choice of coupling between layers (i.e., off-diagonal blocks)
for a given quality function affect the solution of the maximization problem in (3.4). In



14

this section, we make some observations on the choice of null network for correlation
networks when using the modularity quality function. To do this, we consider the
multilayer modularity-maximization problem (3.4) with zero inter-layer coupling (i.e.,
ω = 0), which is equivalent to performing single-layer modularity maximization on
each layer independently.

4.1. Toy examples. We describe two simple toy networks to illustrate some
features of the NG (2.8) and NGS (2.13) null networks that can be misleading for
asset correlation networks.

4.1.1. NG null network. Assume that the nodes in a network are divided
into K nonoverlapping categories (e.g., asset classes) such that all intra-category edge
weights have a constant value a > 0 and all inter-category edge weights have a constant
value b, with 0 ≤ b < a. Let κi denote the category of node i, and rewrite the strength
of node i as

ki = |κi|a+ (N − |κi|)b = |κi|(a− b) +Nb .

The strength of a node in this network scales linearly with the number of nodes in its
category. Suppose that we have two categories κ1, κ2 that do not contain the same
number of nodes. Taking |κ1| > |κ2| without loss of generality, it follows that

Pi,j∈κ1 =
1

2m

[
|κ1|(a− b) +Nb

]2
>

1

2m

[
|κ2|(a− b) +Nb

]2
= Pi,j∈κ2 , (4.1)

where Pi,j∈κi
is the expected edge weight between pairs of nodes in κi in the NG

null network. That is, pairs of nodes in an NG null network that belong to larger
categories have a larger expected edge weight than pairs of nodes that belong to
smaller categories.

To see how equation (4.1) can lead to misleading results, we perform a simple
experiment. Consider the toy network in Fig. 4.1(a) that contains 100 nodes divided
into four categories of sizes 40, 30, 20, and 10. We set intra-category edge weights
to 1 and inter-category edge weights to 0.3 (i.e., a = 1 and b = 0.3 in equation
(4.1)). In Fig. 4.1(b) (respectively, Fig. 4.1(c)), we show the multiscale association
matrix defined in (2.7) using an NG null network (respectively, a U null network).
Colors scale with the frequency of co-classification of pairs of nodes into the same
community across resolution-parameter values. Because the nodes are ordered by
category, diagonal blocks in Fig. 4.1(b,c) indicate the co-classification index of nodes
in the same category, and off-diagonal blocks indicate the co-classification index of
nodes in different categories. We observe in Fig. 4.1(b) that larger categories are
identified as a community across a smaller range of resolution-parameter than smaller
categories when using an NG null network. In particular, category κ is identified as
a single community when γ < a/Pi,j∈κ (with a/Pi,j∈κ1

< a/Pi,j∈κ2
when |κ1| > |κ2|

by equation (4.1)). When γ ≥ a/Pi,j∈κ, category κ is identified as |κ| singleton
communities. However, we observe in Fig. 4.1(c) that all four categories are identified
as a single community across the same range of resolution-parameter values when
using the U null network. In particular, category κ is identified as a single community
when γ < a/〈A〉 and as |κ| singleton communities when γ ≥ a/〈A〉.

The intuition behind multiscale modularity maximization is that the communities
that one obtains for larger values of γ reveal “more densely” connected nodes in the
observed network. Although all diagonal blocks in Fig. 4.1(a) have the same internal
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Fig. 4.1. (a) Toy unsigned block matrix with constant diagonal and off-diagonal blocks that take
the value indicated in the block. (b) Multiscale association matrix of (a) that gives the frequency
of co-classification of nodes across resolution-parameter values using an NG null network. (c)
Multiscale association matrix of (a) that uses a U null network. (d) Toy signed block matrix with
constant diagonal and off-diagonal blocks that take the value indicated in the block. (e) Multiscale
association matrix of (d) that uses an NGS null network. (f) Multiscale association matrix of (d)
that uses a U null network. For the NG and U (respectively, NGS) null networks, our sample of
resolution-parameter values is the set {γ−, . . . , γ+} (respectively, {0, . . . , γ+}) with a discretization
step of 10−3 between each pair of consecutive values.

connectivity, different ones are identified as communities for different values of γ when
using the NG null network—as γ increases, nodes in the largest category split into
singletons first, followed by those in the second largest category, etc. One would need
to be cautious in using multiscale community structure to gain information about
connectivity patterns in the observed network in this example.

4.1.2. NGS null network. A key difference between an NG null network (2.8)
and an NGS null network (2.13) is that the expected edge weight between two nodes
must be positive in the former but can be negative in the latter. Consider a signed
variant of the example in Section 4.1.1 in which intra-category edge weights equal a
constant a > 0 and inter-category edge weights equal a constant b < 0. The strengths
of node i in the κth category are

k+i = |κ|a and k−i = (N − |κ|)b .

We consider two categories κ1, κ2 with different numbers of nodes. Taking |κ1| > |κ2|
without loss of generality, it follows that

Pi,j∈κ1
=

1

2m+

(
|κ1|a

)2

− 1

2m−

[
(N − |κ1|)b

]2
>

1

2m+

(
|κ2|a

)2

− 1

2m−

[
(N − |κ2|)b

]2
= Pi,j∈κ2 ,
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where Pi,j∈κi
is the expected edge weight between pairs of nodes in κi in the NGS

null network. As was the case for an NG null network, pairs of nodes in an NGS
null network that belong to larger categories have a larger expected edge weight than
pairs of nodes that belong to smaller categories.

However, the fact that the expected edge weight can be negative can further
complicate interpretations of multiscale community structure. A category κ for which
Pi,j∈κ < 0 and Pi∈κ,j /∈κ ≥ 0 is identified as a community when Aij < −γPij for
all i, j ∈ κ (this inequality must hold for sufficiently large γ because Pi,j∈κ < 0)
and does not split further for larger values of γ. This poses a particular problem
in the interpretation of multiscale community structure obtained with the NGS null
network because nodes with negative expected edge weights do not need to be “densely
connected” in the observed network to contribute positively to modularity. In fact, if
one relaxes the assumption of uniform edge weights across categories, one can ensure
that nodes in the category with lowest intra-category edge weight will never split. This
is counterintuitive to standard interpretations of multiscale community structure [36].

In Fig. 4.1(d,e), we illustrate the above feature of the NGS null network using a
simple example. The toy network in Fig. 4.1(d) contains 100 nodes divided into three
categories: one of size 50 and two of size 25. The category of size 50 and one category
of size 25 have an intra-category edge weight of 1 between each pair of nodes. The
other category of size 25 has an intra-category edge weight of 0.4 between each pair
of nodes. All inter-category edges have weights of −0.05. (We choose these values
so that the intra-category expected edge weight is negative for the third category
but positive for the first two and so that inter-category expected edge weights are
positive.) We observe in Fig. 4.1(e) that the first and second categories split into
singletons for sufficiently large γ, that the smaller of the two categories splits into
singletons for a larger value of the resolution parameter, and that the third category
never splits. Repeating the same experiment with the U null network in Fig. 4.1(f)
(after a linear shift of the adjacency matrix to the interval [0, 1], i.e., Aij 7→ 1

2 (Aij+1)
for all i, j), we observe that the co-classification index of nodes reflects the value of
the edge weight between them. It is highest for pairs of nodes in the first and second
category, and it is lowest for pairs of nodes in the third category.

4.2. Data sets. We show how the features discussed in Section 4.1 can manifest
in real data. We use two data sets of financial time series for our computational
experiments. The first is a multi-asset data set and consists of weekly price time series
for N = 98 financial assets during the time period 01 Jan 99–01 Jan 10 (resulting
in 574 prices for each asset). The assets are divided into seven asset classes: 20
government bond indices (Gov.), 4 corporate bond indices (Corp.), 28 equity indices
(Equ.), 15 currencies (Cur.), 9 metals (Met.), 4 fuel commodities (Fue.), and 18
commodities (Com.). This data set was studied in [22] using principal component
analysis and a detailed description of the financial assets can be found in that paper.

The second data set is a single-asset data set that consists of daily price time
series for N = 859 financial assets from the Standard & Poor’s (S&P) 1500 during
the time period 01 Jan 99–01 Jan 13 (resulting in 3673 prices for each asset).9 The
financial assets are all equities and are divided into ten sectors: 62 materials, 141
industrials, 150 financials, 142 information technology, 55 utilities, 47 consumer sta-
ples, 138 consumer discretionary, 48 energy, 68 health care, and 6 telecommunication

9We consider fewer than 1500 nodes because we only include nodes for which data is available
at all time points to avoid issues associated with choices of data-cleaning techniques.
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(a) Data set 1: Surface plot of correlations over
all 238 time windows

(b) Data set 2: Surface plot of correlations over
all 854 time windows

0 0.1 0.2

Fig. 4.2. Surface plots of the correlations over all time windows for (a) the first data set and
(b) the second data set. The colors in each panel scale with the value of the observed frequency.

services.
The precise way that one chooses to compute a measure of similarity between pairs

of time series and the subsequent choices that one makes (e.g., uniform or nonuniform
window length, and overlap or no overlap if one uses a rolling time window) affect
the values of the similarity measure. There are myriad ways to define similarity
measures—the best choices depend on facets such as application domain, time-series
resolution, and so on—and this is an active and contentious area of research [56, 61,
63, 69]. Constructing a similarity matrix from a set of time series and investigating
community structure in a given similarity matrix are separate problems, and we are
concerned with the latter in the present paper. Accordingly, in all of our experiments,
we use Pearson correlation coefficients for our measure of similarity. We compute them
using a rolling time window with a uniform window length and uniform amount of
overlap.

We adopt the same network representation for both data sets. We use the term
time window for a set of discrete time points and divide each time series into overlap-
ping time windows that we denote by T = {Ts}. The length of each time window |T |
and the amount of overlap between consecutive time windows |T | − δt are uniform.10

We fix (|T |, δt) = (100, 2) for the first data set (which amounts to roughly two years
of data in each time window) and (|T |, δt) = (260, 4) for the second data set (which
amounts to roughly one year of data in each time window). Every network layer with
adjacency matrix As is a Pearson correlation matrix between the time series of loga-
rithmic returns during the time window Ts. For each data set, we study the sequence
of matrices {

As ∈ [−1, 1]N×N |s ∈ {1, . . . , |T |}
}
.

We show a surface plot of the observed frequency of correlations in each layer for each
data set in Fig. (4.2).

10The amount of overlap determines the number of data points that one adds and removes from
each time window. It thus determines the number of data points that can alter the connectivity
patterns in each subsequent correlation matrix (i.e., each subsequent layer).
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Fig. 4.3. Multiscale association matrix for the U, NG, and NGS null networks for the entire
correlation matrix and a subset of the correlation in the last layer of the first data set. In panel
(a), we show the entire matrix; in panels (b,c,d), we show the multiscale association matrix that
we obtain from this matrix using each of the three null networks. In panel (e), we show the first
35× 35 block of the correlation matrix from panel (a); and in panels (f,g,h), we show the multiscale
association matrix that we obtain from this subset of the correlation matrix using each of the three
null networks. The colors scale with the entries of the multiscale association and the entries of the
correlation matrix. Black squares on the diagonals correspond to government and corporate bond
assets, and white squares correspond to equity assets.

4.3. Multiscale community structure in asset correlation networks. We
perform the same experiments as in Fig. 4.1 on the correlation matrices of both
data sets. Our resolution-parameter sample is the set {γ−, . . . , γ+} (respectively,
{0, . . . , γ+}) for the U and NG (respectively, NGS) null networks with a discretization
step of the order of 10−3. We store the co-classification index of pairs of nodes
averaged over all resolution-parameter values in the sample. We use the U and NG
null networks for a correlation matrix that is linearly shifted to the interval [0, 1]. For
each null network, we thereby produce |T | multiscale association matrices with entries
between 0 and 1 that indicate how often pairs of nodes are in the same community
across resolution-parameter values.

We show the multiscale association matrices for a specific layer of data set 1 in
Fig. 4.3. The matrix in Fig. 4.3(a) corresponds to the correlation matrix during the
interval 08 Feb 08–01 Dec 10. In accord with the results in [22], this matrix reflects
the increase in correlation between financial assets that took place after the Lehman
bankruptcy in 2008. (One can also see this feature in the surface plot of Fig. 4.2(a).)
The matrices in Fig. 4.3(b,c,d) correspond, respectively, to the multiscale association
matrix for the U, NG, and NGS null networks. We reorder all matrices (identically)
using a node ordering based on the partitions that we obtain with the U null network
that emphasizes block-diagonal structure in the correlation matrix. We observe that
the co-classification indices in the multiscale association matrix of Fig. 4.3(b) are a
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better reflection of the strength of correlation between assets in Fig. 4.3(a) than the
multiscale association matrices in Fig. 4.3(c,d). As indicated by the darker shades of
red in the upper left corner in Fig. 4.3(c,d), we also observe that the government and
corporate bond assets (black squares on the diagonal) remain in the same community
across a larger range of resolution-parameter values than the equity assets (white
squares on the diagonal). In fact, when we use an NGS null network, the expected
weight between two government or corporate bonds is negative (it is roughly −0.1),
and these assets remain in the same community across arbitrarily large values of
the resolution parameter. One would need to be cautious in using the multiscale
association matrices in Fig. 4.3(c,d) to gain insight about the connectivity between
assets in Fig. 4.3(a).

When studying correlation matrices of multi-asset data sets, one may wish to vary
the size of the asset classes included in the data (e.g., by varying the ratio of equity
and bond assets). We show how doing this can lead to further misleading conclusions.
By repeating the same experiment using only a subset of the correlation matrix (the
first 35 nodes), we consider an example where we have inverted the relative sizes of the
bond asset class and the equity asset class. As indicated by the darker shades of red in
the lower right corner in Fig. 4.3(g,h), equity assets now have a higher co-classification
index than government and corporate bond assets. If one uses the co-classification
index in the multiscale association matrices of Fig. 4.3(c,d) (respectively, Fig. 4.3(g,h))
to gain information about the observed correlation between equity and bond assets in
Fig. 4.3(a) (respectively, Fig. 4.3(e)), one may draw different conclusions despite the
fact that these have not changed. However, the multiscale association matrix with
a U null network in Fig. 4.3(f) reflects the observed correlation between equity and
bond assets in Fig. 4.3(e).11

To quantify the sense in which a multiscale association matrix of one null network
“reflects” the values in the correlation matrix, we compute the Pearson correlation
between the upper triangular part of each multiscale association matrix and its cor-
responding adjacency matrix across all time layers of both data sets for the U, NG,
and NGS null networks. We show these correlation plots in Fig. 4.4. Observe that the
correlation between the adjacency and multiscale association matrix in Fig. 4.4(a,b)
is highest in each layer for the U null network and lowest in (almost) each layer for
the NGS null network.

The above observation can be explained as follows. Recall from (2.5) that we
can write the modularity-maximization problem as maxS∈S Tr(STBS), where S is
the set of partition matrices. When one uses a U null network, the entries of the
modularity matrix are the entries of the adjacency matrix shifted by a constant γ〈A〉,
and the quality function reduces to

max
S∈S

[
Tr(STAS)− γ〈A〉||c(S)||2

]
, (4.2)

where ||c(S)||2 = ||Tr(ST 1NS)||2 is the 2-norm of the vector of set sizes in S (i.e., c(S)

is the vector whose kth entry is
∑N
i=1 Sik). It follows that modularity maximization

11The authors of [65] showed that a globally optimal partition for a null network called the
“constants Potts model” (CPM), in which the edge weights are given by a constant that is independent
of the network, is “sample-independent”. Their result can be generalized as follows for the U null
network (in which expected edge weights are constant but are not independent of the observed
network). Suppose that Cmax is a partition that maximizes Q(C|A;P ; γ1) and consider the subgraph
induced by the network on a set of communities C1, . . . , Cl ∈ Cmax. Then {C1∪C2 . . .∪Cl}maximizes
Q(C|Â;P ; γ2), where Â is the adjacency matrix of the induced subgraph and γ2 = γ1〈A〉/〈Â〉. For
the CPM null network, the same result holds with γ1 = γ2.
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Fig. 4.4. Correlation between the adjacency matrix and the multiscale association matrix for the
U (solid curve), NG (dashed curve), and NGS (dotted curve) null networks over all time layers for
(a) data set 1 and (b) data set 2. We compute the Pearson correlation coefficients between entries in
the upper diagonal blocks in each matrix (to avoid double counting, as the matrices are symmetric),
and we exclude diagonal entries (which, by construction, are equal to 1 in both matrices).

with a U null network is equivalent to a block-diagonalization of the adjacency matrix
A (the first term in (4.2)) with a penalty on the size of communities (the second
term). As one increases the resolution parameter, one favors smaller sets of nodes
with stronger internal connectivity. Note that one could also apply equation (4.2) on
adjusted adjacency matrices A′ = A − Ã. For example, one can let Ã be a matrix
that controls for random fluctuations in a correlation matrix A (e.g., the “random
component” Cr in [41]).

For a general null network, equation (4.2) takes the form

max
S∈S

[
Tr(STAS)− Tr(ST (γP )S)

]
,

where P is the adjacency matrix of the null network. That is, modularity maximiza-
tion finds block-diagonal structure in A (first term) that is not in γP (second term).
It is common to avoid using the U null network in applications because “it is not
a good representation of most real-world networks” [47]. The extent to which one
wants a null network to be a good representation of an observed network depends
on the features in an application for which one wants to control. We argue that
whether an NG null network is more appropriate than a U null network for a given
situation depends at least in part on one’s interpretation of node strength for that
application. As we discussed in Section 2.4, the strength of a node in correlation
matrices is given by the covariance between its standardized time series and the mean
time series. When using the NG null network, it thus follows that pairwise differences
Bij−Bi′ j′ in the modularity quality function depend on corr(ẑi, ẑj), corr(ẑi′ , ẑj′ ), and

corr(ẑk, ẑtot), where k ∈ {i, j, i′ , j′}, the quantity ẑi is the standardized time series of

asset i defined in subsection 2.4.1, and ẑtot =
∑N
i=1 ẑi. When using the U null network,

pairwise differences in the modularity quality function depend only on the observed
edge weights corr(ẑi, ẑj) and corr(ẑi′ , ẑj′ ). In contrast, the term corr(ẑk, ẑtot) intro-
duces a dependence between the communities that one finds with the NG null network
and the extent to which nodes in those communities are representative [as measured
by corr(ẑk, ẑtot)] of the mean time series for the sample. In situations in which one
may wish to vary one’s node sample (e.g., by changing the size of asset classes), one
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needs to bear such dependencies in mind when interpreting the communities that one
obtains.

5. Effect of inter-layer coupling on a multilayer partition. In Section 4,
we set the inter-layer connection weights to 0 in the multilayer network. The solution
to the multilayer modularity-maximization problem (3.4) then depends solely on the
values in the modularity matrix of each time layer, and the multilayer modularity-
maximization problem reduces to performing single-layer modularity maximization
on each layer independently.

Recall the multilayer modularity-maximization problem

maxC∈C

|T |∑
s=1

N∑
i,j=1

Bijsδ(cis , cjs) + 2ω

|T |−1∑
s=1

N∑
i=1

δ(cis , cis+1) .

A solution to this problem is a partition of an N |T |-node multilayer network. Its
communities can contain nodes from the same layer and nodes from different layers.
Nodes from different layers can be the same node at different times ((is, ir) with s 6= r)
or different nodes at different times ((is, jr) with i 6= j and s 6= r). We say that a
node is remains in the same community (respectively, changes communities) between
consecutive layers s and s+ 1 if δ(cis , cis+1

) = 1 (respectively, δ(cis , cis+1
) = 0).

Positive ordinal, diagonal, and uniform inter-layer connections favor nodes re-
maining in the same community between consecutive layers. Every time a node does
not change communities between two consecutive layers (i.e., δ(cis , cis+1

) = 1), a posi-
tive contribution of 2ω is added to the multilayer quality function. One thereby favors
communities that do not to change in time because community assignments are tran-
sitive: if δ(cis , cjs) = 1 and δ(cis , cis+1

) = δ(cjs , cjs+1
) = 1, then δ(cis+1

, cjs+1
) = 1.

We define the persistence of a multilayer partition to be the total number of nodes
that do not change communities between layers:

Pers(C) :=

|T |−1∑
s=1

N∑
i=1

δ(cis , cis+1
) ∈ {0, . . . , N(|T | − 1)} . (5.1)

As indicated in equation (5.1), Pers(C) is an integer between 0, which occurs when no
node ever remains in the same community across layers, and N(|T |−1), which occurs
when every node always remains in the same community. (See [7] for a closely related
measure called “flexibility” that has been applied to functional brain networks.) Let
Pers(C)|s denote the number of nodes that remain in the same community between
two consecutive layers s and s+ 1:

Pers(C)|s :=

N∑
i=1

δ(cis , cis+1
) ∈ {0, . . . , N} , (5.2)

so that Pers(C) =
∑|T |−1
s=1 Pers(C)|s. Persistence provides an insightful way of rewrit-

ing the multilayer modularity-maximization problem:

maxC∈C

|T |∑
s=1

N∑
i,j=1

Bijsδ(cis , cjs) + 2ωPers(C) . (5.3)

The multilayer maximization problem thus measures a trade-off between static com-
munity structure within layers (the first term in (5.3)) and temporal persistence across
layers (the second term in (5.3)).
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To better understand the effect of nonzero inter-layer coupling on partitions one
obtains without inter-layer coupling (i.e., ω = 0), we introduce notation that helps
to compare a multilayer partition to single-layer partitions. We denote by Ns :=
{1s, . . . , Ns} the set of nodes in layer s. The restriction of a set of nodes Cl ⊆
{11, . . . , N1; 12, . . . , N2; . . . ; 1|T |, . . . , N|T |} to a layer s is Cl|s := Cl ∩ Ns, and we
define the partition induced by a multilayer partition C ∈ C on layer s by

C|s := {Cl|s, Cl ∈ C} .

We refer to a “globally optimal partition” as an “optimal partition” in this section
for ease of writing. In the next two subsections, we illustrate how the set of partitions
induced by a multilayer partition with ω > 0 on individual layers can differ from
intra-layer partitions obtained with ω = 0.

5.1. Toy examples.

5.1.1. Changes in connectivity patterns. This toy examples illustrates how
inter-layer coupling can enable us to detect and differentiate between changes in con-
nectivity patterns across layers. In Fig. 5.1, we show an unweighted multilayer network
with |T | = 10 layers and N = 8 nodes in each layer. Every layer except for layers 3
and 6 contains two 4-node cliques. In layer 3, node 53 is connected to nodes {13, 23}
instead of nodes {63, 73, 83}. In layer 6, node 56 is connected to nodes {16, 26, 36, 46}
instead of nodes {66, 76, 86}. We show the layers of the multilayer network in pan-
els (a)–(c) of Fig. 5.1. We examine its communities using a U null network with a
resolution-parameter γ = 1. Layer s then has the following single-layer modularity
matrix:

Bijs =

{
1− 〈As〉 , if i is connected to j
−〈As〉 , otherwise .

The optimal partition in each layer is unique and is Cs = {{1s, 2s, 3s, 4s}, {5s, 6s, 7s, 8s}}
in layer s for s /∈ {3, 6} and is Cs = {{1s, 2s, 3s, 4s, 5s}, {6s, 7s, 8s}} in layers 3 and
6. When the value of inter-layer coupling is 0, the optimal multilayer partition is the
union of |T | disconnected optimal single-layer partitions. The resulting multilayer
partition, which we show in panel (d) of Fig. 5.1, has a persistence Pers(C) = 0. We

denote this partition by C0, where C0 =
⋃10
i=1 Cs. For any ω > 0, any partition with

the same intra-layer partitions as C0 and a nonzero value of persistence yields a higher
value of multilayer modularity than C0. This follows immediately from the expression
of the multilayer quality function:

Q(C|B) =

|T |∑
s=1

N∑
i,j=1

Bijsδ(cis , cjs) + 2ωPers(C) .

Increasing persistence without changing intra-layer partitions increases the second
term of Q(C|B) without changing the first. (In Section 5.2, we prove that ω > 0
is both necessary and sufficient for an optimal partition to have a positive value of
peristence.) To obtain the multilayer partition in panel (e), we combine all of the
sets in panel (d) that contain 1s into one set and all of the sets that contain Ns into
another set. This partition has a persistence equal to N(|T | − 1)− 4, and any other
way of combining the sets in C0 yields a lower value of persistence.

Let’s examine Fig. 5.1 further. We now consider the multilayer partitions in
panel (e), where both changes in network structure occurs; panel (f), where only
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Fig. 5.1. Toy example illustrating the use of ordinal diagonal and uniform inter-layer coupling
for detecting changes in community structure across layers. We consider ten layers (|T | = 10) with
eight nodes (N = 8) in each layer. We show the network structures in (a) layers s 6∈ {3, 6}, (b)
layer 3, and (c) layer 6. Panels (d)–(g) illustrate four different multilayer partitions. In each panel,
the sth column of circles represents the nodes in the sth layer, which we order from 1 to 8. We
show sets of nodes in the same community using solid curves in panel (d) (to avoid having to use 20
distinct colors) and using colors in panels (e)–(g). In panel (h), we show the difference between the
multilayer modularity value between the partition in panels (f) (thin line) and (g) (thick line) and
the partition in panel (e) for different values of ω. We include the horizontal dotted line to show the
point at which the thin line intercepts the horizontal axis. The panel labels in the regions defined by
the area between two consecutive vertical lines in panel (h) indicate which of the multilayer partitions
in panels (e), (f), and (g) has a higher value of modularity.

the stronger change occurs; and panel (g), where neither change occurs. We denote
these multilayer partitions by C1, C2, and C3, respectively, and we note that Pers(C1) <
Pers(C2) < Pers(C3). The value ω of inter-layer coupling determines which partition of
these three has the highest value of multilayer modularity. To see this, we compute the
modularity cost of changing static community structure within layers in partition C1 in
favor of persistence. (Such a computation is a multilayer version of the calculations for
static networks in [28].) The intra-layer modularity cost in C1 of moving node 5s from
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the community {1s, 2s, 3s, 4s, 5s} to the community {6s, 7s, 8s} in layers s ∈ {3, 6} is

∆Q(s) = 2

( ∑
j∈{6,7,8}

B5js −
∑

j∈{1,2,3,4}

B5js

)

=

{
−4 + 2〈A〉3 ≈ −3.3 , if s = 3
−8 + 2〈A〉6 ≈ −7.2 , if s = 6 .

The inter-layer modularity cost from this move is +4ω in both cases; the first factor of
2 follows by symmetry of B, and the second factor of 2 follows from the fact that either
move increases persistence by +2. Consequently, for 0 < 4ω < ∆Q(3), the partition
in panel (e) yields a higher multilayer modularity value than the partitions in (f) and
(g). When ∆Q(3) < 4ω < ∆Q(6), the multilayer modularity value of the partition in
(f) is higher than those of (e) or (g). Finally, when 4ω > Q(6), the partition in panel
(g) has the highest multilayer modularity value. When 4ω = ∆Q(3) (respectively,
4ω = ∆Q(6)), the multilayer partition in panels (e) and (f) (respectively, (f) and (g))
have the same value of multilayer modularity. We illustrate these results in Fig. 5.1(h)
by plotting Q(C2|B)−Q(C1|B) and Q(C3|B)−Q(C1|B) against ω. This example is a
simple illustration of how inter-layer connections can help distinguish between changes
in connectivity patterns: stronger changes (in terms of modularity cost) persist across
larger values of inter-layer coupling (see [4,53] for other approaches to “change point
detection” in temporal networks).

5.1.2. Shared connectivity patterns. In the previous toy example, the intra-
layer partitions induced on each layer by the multilayer partitions in Fig. 5.1(e,f,g)
are optimal for at least one layer when ω = 0 (see Fig. 5.1(d)). This second example
illustrates how inter-layer coupling can identify intra-layer partitions that are not
optimal for any individual layer when ω = 0 but which reflect connectivity patterns
that are shared across layers.

In Fig. 5.2, we consider an unweighted multilayer network with |T | = 3 lay-
ers and N = 13 nodes in each layer. Every sth layer contains four 3-node cliques
and a node that is connected to each of the three nodes in the sth clique, and to
nodes 10s and 12s in the 4th clique. We show the layers of the multilayer network in
panels (a)–(c). We examine its communities using a U null network with a resolution-
parameter value of γ = 1. The optimal partition in each layer is unique and is
{{11, 21, 31, 131}, {41, 51, 61}, {71, 81, 91}, {101, 111, 121}} for layer 1, {{12, 22, 32},
{42, 52, 62, 132}, {72, 82, 92}, {102, 112, 122}} for layer 2, and {{13, 23, 33}, {43, 53, 63},
{73, 83, 93, 133}, {103, 113, 123}} for layer 3. We obtain the multilayer partition C1 in
panel (d) by combining these sets such that induced intra-layer partitions are opti-
mal for each layer when ω = 0 and persistence is maximized between layers. The
multilayer partition C2 in panel (e) reflects connectivity patterns that are shared by
all layers (i.e., node 13s is with the fourth 3-node clique instead of the sth 3-node
clique); but its intra-layer partitions are not optimal for any layer when ω = 0. By
carrying out similar calculations to those in the previous toy example, one can show
that when ω > 3/2,12 the multilayer partition in panel (e) yields a higher modularity
value than the multilayer partition in panel (d). We illustrate this result in Fig. 5.2(f)
by plotting Q(C2|B)−Q(C1|B) against ω. This example is a simple illustration of how
inter-layer connections can help identify connectivity patterns that are shared across

12i.e., when 4ω+6[2(1−〈A〉s)−〈A〉s−3(1−〈A〉s)] > 0, with 〈A〉1 = 〈A〉2 = 〈A〉3 by construction
in this example.
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Fig. 5.2. Toy example illustrating the use of ordinal diagonal and uniform inter-layer coupling
for detecting shared connectivity patterns across layers. We consider three layers (|T | = 3) with
thirteen nodes (N = 13) in each layer. We show the network structures in (a) layer 1, (b) layer
2, and (c) layer 3. Solid lines represent edges present in all three layers and dashed lines represent
edges that are only present in one of the layers. Panels (d) and (e) illustrate two different multilayer
partitions. In each panel, the sth column of circles represents the nodes in the sth layer, which we
order 1 to 13. We show sets of nodes in the same community using colors in panels (d) and (e).
In panel (f), we show the difference between the multilayer modularity value between the partition
in panel (e) and the partition in panel (d) for different values of ω. We include the horizontal
dotted line to show the point at which the line intercepts the horizontal axis. The panel labels in the
regions defined by the area between two consecutive vertical lines in panel (f) indicate which of the
multilayer partitions in panels (d) and (e) has a higher value of multilayer modularity.

layers.

5.2. Some properties of multilayer partitions. We now ask how introducing
positive ordinal diagonal and uniform coupling (i.e., ω > 0) alters the set of maximum-
modularity partitions of static networks (i.e., the case ω = 0). To clearly differentiate
between intra-layer and inter-layer modularity contributions, we denote the quality
function by

Q(C|B1, . . . ,B|T |;ω) :=

|T |∑
s=1

N∑
i,j=1

Bijsδ(cis , cjs) + 2ωPers(C)

instead of Q(C|B). Let Cmax(ω) denote the set of optimal partitions for the multi-
layer modularity-maximization problem (5.3), and let Cωmax be an arbitrary partition
in Cmax(ω). We prove several propositions that hold for an arbitrary choice of the
matrices Bs (for example, if one uses the modularity quality function with a U null
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network and a resolution parameter value of 1, then Bs = As − 〈As〉1N ).

Proposition 5.1. Pers(Cωmax) > 0⇔ ω > 0 .

Proposition 5.1 ensures that as soon as (and only when) the value of ω is strictly
positive, the value of persistence of an optimal solution is also positive. To prove
this, it suffices to observe that if one rearranges sets in a multilayer partition by
combining some of the sets into the same set without changing the partitions induced
on individual layers, then one only changes the value of persistence in the expression
of multilayer modularity. For example, this phenomenon occurs in Fig. 5.1 when going
from the partition in panel (d) to the partition in panel (e).

Proof.
⇒: We prove the contrapositive. Assume that ω = 0 and consider a multilayer
partition C such that Pers(C) > 0. The partition C contains at least one set with
disconnected components (because Pers(C) > 0 and nodes in different layers are not
connected), and C is not optimal by our assumption on global optima in Section 3.

⇐: Assume that ω > 0 and consider a multilayer partition C such that Pers(C) = 0.

We will show that C is not optimal. Let C ′ =
⋃|T |
s=1 C|s. It then follows that

Q(C ′|B1, . . . ,B|T |;ω) = Q(C|B1, . . . ,B|T |;ω) .

Choose a node ir at random and let Cir denote the set in C
′

that contains ir. Now
let C

′′
be the partition obtained from C

′
by combining all sets that contain is, for

some s, into one set:

C
′′

=

(
C

′
\
|T |⋃
s=1

{Cis}
)
∪
{ |T |⋃
s=1

Cis

}
.

Consequently,

Q(C
′′
|B1, . . . ,B|T |;ω) ≥ Q(C|B1, . . . ,B|T |;ω) + 2ω(|T | − 1) ,

so C is not optimal. (Note that |T | ≥ 2 for a network with more than a single layer,
so 2ω(T − 1) is strictly positive for ω > 0.)

Proposition 5.2.

If Cl|r = ∅ for some r ∈ {1, . . . , |T | − 1}, then Cl|s = ∅ for all s > r ,

where Cl ∈ Cωmax and Cωmax ∈ Cmax(ω).

Proposition 5.2 ensures that if a community becomes empty in a given layer, then
it remains empty in all subsequent layers. We omit the proof as this result follows
directly from the sparsity pattern of B and our assumption that optimal solutions do
not contain disconnected components.

Proposition 5.3. Cωmax|s = Cωmax|s+1 ⇔ Pers(Cωmax)|s = N .

Proposition 5.3 connects the notion of persistence between a pair of layers to the
notion of change in community structure within layers. Various numerical experiments
that have been performed with ordinal diagonal and uniform inter-layer coupling
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consist of varying the value of ω and using information about when nodes change
communities between layers as an indication of change in community structure within
these layers [6,7,44]. The equivalence relation in Proposition 5.3 motivates the use of
Pers(C)|s (or a variant thereof) as an indication of intra-layer change in community
structure.

Proof.
⇐: This follows straightforwardly by transitivity of community assignments: if δ(cjs , cjs+1) =
δ(cis , cis+1

) = 1 for all i, j, then δ(cis , cjs) = 1 if and only if δ(cis+1
, cjs+1

) = 1 for all
i, j. (This direction holds for any multilayer partition; it need not be optimal.)

⇒: Let C be a multilayer partition that does not contain disconnected components
such that C|s = C|s+1 and Pers(C)|s < N for some s ∈ {1, . . . , |T |}. We show that
C is not optimal.13 Consider a set Cl ∈ C such that Cl|s 6= ∅. If δ(cis , cis+1) = 1
(respectively, δ(cis , cis+1

) = 0) for some is ∈ Cl|s, then δ(cjs , cjs+1
) = 1 (respectively,

δ(cjs , cjs+1
) = 0) for all js ∈ Cl|s by transitivity of community assignments and be-

cause C|s = C|s+1 by hypothesis. Because Pers(C)|s < N by hypothesis, there exists
at least one set of nodes Cl|s, with Cl ∈ C, such that δ(cis , cis+1) = 0 for all is ∈ Cl|s.
Let Ck|s+1 denote the set of nodes in layer s+ 1 that contains is+1 for all is ∈ Cl|s.
Consider the set of nodes ∪r≤sCl|r in Cl that are in layers {1, . . . , s} and the set of
nodes ∪r>sCk|r in Ck that are in layers {s+ 1, . . . , |T |}. Because δ(cis , cis+1

) = 0 for
all is ∈ Cl|s and by Proposition 5.2, it follows that Cl = ∪r≤sCl|r and Ck = ∪r>sCk|r.
Define the partition C

′
by

C ′ =

(
C \

(
{Cl} ∪ {Ck}

))⋃(
{Cl ∪ Ck}

)
.

This partition satisfies C ′|r = C|r for all r ∈ {1, . . . , |T |}, Pers(C ′)|r = Pers(C)|r
for all r 6= s, and Pers(C ′)|s > Pers(C)|s. It follows that Q(C

′ |B1, . . . ,B|T |;ω) >
Q(C|B1, . . . ,B|T |;ω) and C is not optimal.

Propositions 5.1, 5.2, and 5.3 apply to an optimal partition obtained with any
positive value of ω. The next two propositions concern the existence of “boundary”
values for ω.

Proposition 5.4. There exists ω0 > 0 such that

if ω < ω0 , then

|T |⋃
s=1

Cωmax|s ∈ Cmax(0) .

Proposition 5.4 reinforces the idea of thinking of ω as the cost of breaking static
community structure within layers in favor of larger values of persistence across layers.
It demonstrates that there is a positive value of inter-layer coupling such that for any
smaller coupling, multilayer modularity maximization only gives more information
than single-layer modularity maximization in that it identifies the set of partitions in
Cmax(0) with highest persistence. The proof of this property relies on the fact that
the set of possible modularity values for a given modularity matrix is finite.

Proof.

Let C be an arbitrary partition such that ∪|T |s=1C|s /∈ Cmax(0). We will show that there

13Imposing Pers(C)|s = N is not sufficient because changing Pers(C)|s can change partitions
induced on individual layers.
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exists a value ω0 of the inter-layer coupling parameter ω such that C is never optimal
for any inter-layer coupling below ω0. Given a sequence of single-layer modularity
matrices {B1, . . . ,B|T |}, the set of possible multilayer modularity values for a fixed
value of ω > 0 is finite and is given by

Qω =
{
Q(C|B1, . . . ,B|T |;ω), C ∈ C

}
.

Let Q1
0 = maxQ0, Q

2
0 = maxQ0 \ {Q1

0}, and ∆Q = Q1
0 −Q2

0 > 0. By hypothesis,

Q(C|B1, . . . ,B1; 0) < Q(C0
max|B1, . . . ,B1; 0) ,

where C0
max ∈ Cmax(0). Furthermore, by definition of persistence, it follows that

Q(C|B1, . . . ,B1;ω) ≤ Q2
0 + 2ωN(|T | − 1)

for all values of ω. By choosing ω < ω0, with ω0 = ∆Q/2N(|T | − 1), we obtain

Q(C|B1, . . . ,B1;ω) ≤ Q2
0 + 2ωN(|T | − 1) < Q2

0 + ∆Q = Q0
1 ,

so C is not optimal for any inter-layer coupling below ω0.

Clearly, ω0 = ∆Q/2N(|T | − 1) is not an upper bound for the set
{
ω ∈ R+ :⋃|T |

s=1 C
ω
max|s ∈ Cmax(0)

}
,14 but our main concern is that the smallest upper bound of

this set is not zero (in fact, we have shown that it must be larger than ∆Q/2N(|T |−
1) > 0.)

Proposition 5.5. There exists ω∞ > 0 such that

if ω > ω∞ , then Pers(Cωmax)|s = N for all s ∈ {1, . . . , |T |} .

Proposition 5.5 implies that a sufficiently large value of inter-layer coupling ω guar-
antees that Cωmax|s remains the same across layers (by Proposition 5.3). The proof of
this proposition is similar to the proof of Proposition 5.4.

Proof.
Let C be an arbitrary partition of a multilayer network such that Pers(C)|s < N for
some s ∈ {1, . . . , |T |}. We show that there exists a value ω∞ > 0 of the inter-layer
coupling parameter ω such that C is never optimal for ω > ω∞. We first rewrite the
quality function as

Q(C|B1, . . . ,B|T |;ω) = β1 + 2ω(N(|T | − 1)−A) ,

where β1 =
∑|T |
s=1

∑N
i,j=1Bijsδ(cis , cjs) and A ≥ 1 because Pers(C) < N(|T | − 1) by

assumption. Now consider the set of values on the diagonal blocks of the multilayer
modularity matrix B:

Bdiag =
{
Bijs|i, j ∈ {1, . . . , N}, s ∈ {1, . . . , |T |}

}
, (5.4)

14For example, one could replace N(T − 1) in (5.4) by N(|T | − 1)−Pers(C(0)), where Pers(C(0))
denotes the maximum value of persistence that one can obtain by combining sets in each partition of
Cmax(0) without changing the partitions induced on individual layers. Taking ω0 = ∆Q/

[
2N(|T | −

1)− Pers(C(0))
]

satisfies proposition 5.4, and ∆Q/
[
2N(|T | − 1)− Pers(C(0))

]
> ∆Q/2N(|T | − 1).



29

and let Max(Bdiag) and Min(Bdiag), respectively, denote the maximum and minimum
values of the set Bdiag. Let C ′ be any multilayer partition with a maximal value of
persistence. It then follows that

Q(C ′|B1, . . . ,B|T |;ω) = β2 + 2ωN(|T | − 1)

for some β2 ∈ R. Because A ≥ 1, choosing

2ω > N2[Max(Bdiag)−Min(Bdiag)] ≥ β1 − β2

ensures that C ′ yields a higher value of multilayer modularity than C for any β1 and
for all A ∈ {1, . . . , N(|T | − 1)}.

The following proposition follows directly from proposition 5.5.

Proposition 5.6. There exists ω∞ > 0 such that

Cωmax|s is a solution of max
C∈C

Q

C| |T |∑
s=1

Bs


for all ω > ω∞.

Propositions 5.5 and 5.6 imply the existence of a “boundary value” for ω above
which single-layer partitions induced by optimal multilayer partitions (1) are the same
on all layers and (2) are optimal solutions for the single-layer modularity-maximization
problem defined on the mean modularity matrix.

Proof.
Suppose that ω > ω∞, where ω∞ is as defined in Proposition 5.5, and let Cωmax ∈
Cmax(ω). By Proposition 5.5, it then follows that Pers(Cωmax) = N(|T | − 1) and
community assignments in Cωmax are the same across layers. Consequently, for ω > ω∞

max
C∈C

|T |∑
s=1

N∑
i,j

Bijsδ(cis , cjs) + 2ωPers(C)

⇔ max
C∈C

|T |∑
s=1

N∑
i,j=1

Bijsδ(ci, cj) + 2ωN(|T | − 1)

⇔ max
C∈C

N∑
i,j

( |T |∑
s=1

Bijs

)
δ(ci, cj) ,

where ci denotes the community assignment of node i in all layers.

The next two propositions formalize the intuition that an optimal multilayer
partition measures a trade-off between static community structure within layers and
persistence of community structure across layers.

Proposition 5.7. Let ω1 > ω2 > 0. For all Cω2
max ∈ Cmax(ω2), one of the

following two conditions must hold:

(1) Cω2
max ∈ Cmax(ω1) ,

or (2) Pers(Cω2
max) < Pers(Cω1

max) for all Cω1
max ∈ Cmax(ω1) .
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Proof.
Let Cω2

max ∈ Cmax(ω2). If Cω2
max ∈ Cmax(ω1), then condition (1) is satisfied. Suppose

that Cω2
max /∈ Cmax(ω1), and assume that Pers(Cω2

max) ≥ Pers(Cω1
max) for some Cω1

max ∈
Cmax(ω1). By definition of optimality, Cω2

max /∈ Cmax(ω1) implies that

Q(Cω2
max|B1, . . . ,B|T |;ω1) < Q(Cω1

max|B1, . . . ,B|T |;ω1) , (5.5)

where ω1 > ω2 by hypothesis. By writing

Q(Cωk
max|B1, . . . ,B|T |;ωk′) =

|T |∑
s=1

N∑
i,j=1

Bijsδ(c
ωk
is
, cωk
js

) + 2ωk′Pers(Cωk
max) ,

where cωk
is

is the community assignment of node is in Cωk
max and k, k′ ∈ {1, 2}; and by

substituting ω1 by ω2 + ∆ for some ∆ > 0, one can show that the inequality (5.5)
implies

Q(Cω2
max|B1, . . . ,B|T |;ω2) < Q(Cω1

max|B1, . . . ,B|T |;ω2) ,

which contradicts the optimality of Cω2
max.

One can similarly prove the following proposition.

Proposition 5.8. Let ω1 > ω2 > 0. For all Cω2
max ∈ Cmax(ω2), one of the

following two conditions must hold:

(1) Cω2
max ∈ Cmax(ω1) ,

or (2) Q(Cω2
max|B1, . . . ,B|T |; 0) > Q(Cω1

max|B1, . . . ,B|T |; 0) for all Cω1
max ∈ Cmax(ω1) .

(To visualize Propositions 5.7 and 5.8 graphically, it is helpful to think of a multi-
layer quality function Q(C|B1, . . . ,B|T |;ω) for a given partition C as a linear function
of ω with slope Pers(C) that crosses the vertical axis at Q(C|B1, . . . ,B|T |; 0) [see,
for e.g., the last panel of Fig. 5.1 and Fig. 5.2].) The next three corollaries follow
straightforwardly from Propositions 5.7 and 5.8. The first states that the highest
achievable value of persistence for an optimal partition obtained with a given value
of inter-layer coupling is a non-decreasing function in ω. The second states that the
highest achievable value of intra-layer modularity contributions for an optimal parti-
tion obtained with a given value of inter-layer coupling is a non-increasing function
in ω. The third property states that if two distinct values of ω have the same set of
optimal partitions, then this set is also optimal for all intermediate values.

Corollary 5.9. Let ω1 > ω2. Then

Pers(Cmax(ω1)) ≥ Pers(Cmax(ω2)) ,

where Pers(Cmax(ω)) := max
{

Pers(Cωmax), C
ω
max ∈ Cmax(ω)

}
.

Corollary 5.10. Let ω1 > ω2. Then

Q (Cmax(ω1)) |B1, . . . ,B|T |; 0) ≤ Q (Cmax(ω2)) |B1, . . . ,B|T |; 0) ,
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Fig. 5.3. Toy example illustrating the effect of post-processing on a multilayer partition by
increasing multilayer modularity via community-assignment swaps that increase the value of persis-
tence but do not change intra-layer partitions. The colors in panels (a)–(c) scale with the entries of
the adjacency matrix. Panel (d) (respectively, panel (e)) represents the output multilayer partition
obtained with Louvain before (respectively, after) post-processing. The horizontal axis represents
the layers, and the vertical axis represents the nodes. The shading in panels (d,e) represents the
community assignments of nodes in each layer.

where Q(Cmax(ω)|B1, . . . ,B|T |; 0) := max
{
Q(Cωmax|B1, . . . ,B|T |; 0), Cωmax ∈ Cmax(ω)

}
.

Corollary 5.11. Assume that Cmax(ω1) = Cmax(ω2) for ω1 > ω2. Then

Cmax(ω1) = Cmax(ω) = Cmax(ω2) for all ω ∈ (ω2, ω1) .

One can extend the proofs of Propositions 5.1–5.7 so that they apply for inter-
layer coupling that is uniform between each pair of contiguous layers but may differ
from pair to pair.

5.3. Implementation issues. We now examine issues that can arise when using
the Louvain heuristic (see Section 2.2) to maximize multilayer modularity (3.3).

5.3.1. Underemphasis of persistence. Consider the example network in Fig. 5.3,
which is a 3-layer network that has 5 nodes in each layer. Suppose that all nodes are
strongly connected to each other in layers 1 and 3, and that the edge weight be-
tween node 12 and nodes {22, 32, 42, 52} is smaller in layer 2 than the edge weight
between node 1s and nodes {2s, 3s, 4s, 5s} when s = 1, 3. We use the uniform null
network with γ = 0.5 and set ω = 0.1. This produces a multilayer modularity ma-
trix in which all the single-layer modularity entries Bijs except those of node 12
are positive and exceed the value of inter-layer coupling. Suppose that one loops
over the nodes ordered from 1 to N |T | in the first phase of the Louvain heuristic.
The initial partition consists of N |T | singletons, and each node is then moved to
the set that maximally increases modularity. The partition at the end of phase 1 is
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{{11, 21, 31, 41, 51, 12}, {22, 32, 42, 52}, {13, 23, 33, 43, 53}}. In phase 2, the second and
third sets merge to form a single set,15 and the Louvain heuristic gets trapped in a
local optimum in which the smaller set of nodes (i.e., {11}) remains in the same com-
munity across layers 1 and 2 and the larger set of nodes (i.e., {21, 31, 41, 51}) changes
community. We show this multilayer partition in Fig. 5.3(d). Repeating this experi-
ment 1000 times using a randomized node order at the start of each iteration of phase
1 of the Louvain heuristic yields the same multilayer partition. One can modify this
multilayer partition to obtain a new partition with a higher value of multilayer modu-
larity by increasing the value of persistence across layers without changing intra-layer
partitions (we use this idea in the proof of proposition 5.1). We show an example of
this situation in Fig. 5.3(e).

In Fig. 5.3(d) we illustrate the above issue visually via abrupt changes in colors
between layers (these are more noticeable in larger networks). Such changes are
misleading because they imply a strong decrease in persistence that might not be
accompanied by a strong change in intra-layer partitions. In Fig. 5.3(d), for example,
the intra-layer partitions differ in the community assignment of only a single node.
To mitigate this problem, we apply a post-processing function to all output partitions
that increases persistence between layers without changing the partitions that are
induced on each layer (thereby producing a partition with a higher value of multilayer
modularity). We do this by relabeling the community assignments of nodes in each
layer such that 1) the number of nodes that remain in the same community between
consecutive layers is increased and 2) the partition induced on each layer by the
original multilayer partition is unchanged.

5.3.2. Abrupt drop in the number of intra-layer merges. The Louvain
heuristic faces a second problem in multilayer networks. When the value of inter-
layer coupling satisfies

ω > Max(Bdiag) , (5.6)

where Bdiag is the set of values on the diagonal blocks of B defined in equation
(5.4), the inter-layer contributions to multilayer modularity are larger than the intra-
layer contributions for all pairs of nodes. Consequently, only inter-layer merges occur
during the convergence of phase 1 in the first iteration of the Louvain heuristic. In
Fig.5.4(a), we illustrate this phenomenon using data set 1. The mean number of
intra-layer merges drops from roughly N = 98 (almost every node contains at least
one other node from the same layer in its community) to 0. For ω values larger than
Max(Bdiag), every set at the end of the first iteration of phase 1 only contains copies
of each node in different layers and, in particular, does not contain nodes from the
same layer. This can yield abrupt changes in the partitions induced on individual
layers of the output multilayer partition

In Fig. 5.4(c), we show an example using data set 1 of how the above issue
can lead to an abrupt change in a quantitative measure computed from a multilayer
output partition obtained with the Louvain heuristic. Note that the mean size of
the sets after convergence of phase 1 in Fig.5.4(a) is relatively small for data set 1.
(The mean is 3 nodes per set, and the maximum possible number of nodes per set is
|T | = 238.) Nevertheless, there is a sudden drop in the value of (1 − Pers(C)|s/N)

15Note that combining the first and second set into a single set decreases modularity because the
value of inter-layer coupling is too small to compensate for the decrease in intra-layer contributions
to modularity.
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Fig. 5.4. Comparison between the Louvain and LouvainRand algorithms. The sample of inter-
layer coupling values is the set {0, 0.02, . . . , 0.98, 1} with a discretization step of 0.02 between each
pair of consecutive values. (a,b) The number of nodes that have have been merged with at least
one node from the same layer after convergence of the first phase of (a) the Louvain heuristic and
(b) the LouvainRand heuristic. For each heuristic, we average this value over |T | = 238 layers
and 100 iterations. The error bars in panels (a,b) indicate standard deviations. (c,d) The value
of 1 − Pers(C)|s/N averaged over 100 runs of (c) the Louvain heuristic and (d) the LouvainRand
heuristic after convergence of the algorithms to a local optimum.

between consecutive layers at ω = Max(Bdiag) [see Fig. 5.4(c)]. Nonzero values of
(1−Pers(C)|s/N) indicate that community assignments have changed between layers
s and s+ 1 (by proposition 5.3).

This problem manifests itself when the values of inter-layer coupling are large
relative to the entries of Bdiag. In the correlation multilayer networks that we consider
(or in unweighted multilayer networks), entries of the adjacency matrix satisfy |Aijs| ≤
1. Assuming that one uses the modularity quality function on each layer and that
Pijs ≥ 0 (e.g., Pijs = 〈As〉), this implies that

Max(Bdiag) ≤ 1 for all γ ∈ [γ−, γ+] .

For networks in which the modularity cost of changing intra-layer partitions in favor
of persistence is large in comparison to the values of Max(Bdiag), it might be desirable
to use ω > 1 to gain insight into a network’s multilayer community structure (e.g.,
this occurs in both toy examples of Section 5.1).

To mitigate this problem, we change the condition for merging nodes in the Lou-
vain heuristic. Instead of moving a node to a community that maximally increases
modularity, we move a node to a community chosen uniformly at random from those
that increase modularity. We call this heuristic LouvainRand [1], and we illustrate
the results of using it in Figs. 5.4(b,d). Although LouvainRand increases the out-
put variability (by increasing the search space of the optimization process), it seems
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Fig. 5.5. Numerical experiments with data set 1. We sample the set of inter-layer edge weights
uniformly from the interval [0, 50] with a discretization step of 0.1 (so there are 501 values of ω in
total), and we use the uniform null network (i.e., Pijs = 〈As〉) with γ = 1. (a) The persistence
normalized by N(|T | − 1) for each value of ω averaged over 20 runs of LouvainRand. (b) The

intra-layer modularity contributions
∑|T |

s=1

∑N
i,j=1Bijsδ(cis , cjs ) normalized by

∑|T |
s=1

∑N
i,j=1 Aijs

for each value of ω averaged over 20 runs of LouvainRand. (d) Sample output multilayer partition.
Each point on the horizontal axis represents a single time window, and each position on the vertical
axis is an asset. We order the assets by asset class, and the colors represent communities. (e)
Association matrix of normalized persistence values between all pairs of layers averaged over all
values of ω ∈ [0, 50] in our sample and 20 runs for each value. The normalized persistence between

a pair of layers {s, r} is
∑N

i=1 δ(cis, cir)/N . (f) Association matrix indicating the co-classification
of nodes averaged over the set of partitions induced on each layer for each value of ω and 20 runs
of LouvainRand.

to mitigate the problem for multilayer networks with ordinal diagonal and uniform
coupling.

5.4. Multilayer community structure in asset correlation networks. In
this section, we show the results of computational experiments in which we fix the
value of the resolution parameter γ and vary the value of inter-layer coupling ω. We
use the uniform null network (i.e., Pijs = 〈A〉s) and set γ = 1. We use the Lou-
vainRand heuristic to identify multilayer partitions and apply our post-processing
procedure that increases persistence without changing partitions induced on individ-
ual layer to all output multilayer partitions. We showed in proposition 5.5 that for
2ω > ω∞ = N2[Max(Bdiag)−Min(Bdiag)], the set Cmax(ω) of global optima no longer
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changes and every optimal partition in this set has maximal persistence.16 In our ex-
ample, N2[Max(Bdiag)−Min(Bdiag)] ≤ 2N2, with N = 98. However, for the purposes
of the present paper, we take the set {0, 0.1, . . . , 0.49, 50} with a discretization step of
0.1 between consecutive values (giving 501 values in total) as our sample of ω values.

In agreement with the properties derived in propositions 5.7 and 5.8, we observe
in Fig. 5.5(a) that normalized persistence (given by Pers(C)/[N(|T | − 1)]) tends to
be larger for larger values of inter-layer coupling, and in Fig. 5.5(b) that intra-layer

modularity contributions (which we normalize by
∑|T |
s=1(1TAs1)) tend to be smaller

for larger values of inter-layer coupling. The increase of persistence and the decrease of
intra-layer modularity contributions need not be monotonic, because we are a finding
a set of local optima for each value of ω rather than the set of global optima.

In Fig. 5.5(c), we show a sample output of the multilayer partition (which contains
35 communities). Some of the changes in community structure correspond to known
events (e.g., Lehman Bankruptcy in September 2008 [marked by an increase in the
size of the equity asset class]). Observe that the two largest communities are the ones
that contain the government bond assets and the equity assets. In particular, the
community that contains equities becomes noticeably larger in 2006 and in 2008. For
larger values of the resolution parameter, this community instead becomes noticeably
larger only in 2008. (By inspecting the correlation matrices, one can check that the
increase in correlation between equities and other assets is greater in 2008 than in
2006.)

In Fig. 5.5(d), we show the matrix of mean values of persistence between all pairs

of layers. The (s, r)th entry is the term
∑N
i=1 δ(cis , cir ), where s, r ∈ {1, . . . , |T |} need

not be from consecutive layers, averaged over nodes, all values of ω ∈ [0, 50] in our
sample, and multiple runs for each value of ω. Instead of only plotting Pers(C)|s
for consecutive layers, Fig. 5.5 gives some indication as to whether nodes change
communities between layers s and s+ 1 to join a community that contains a copy of
some of these nodes from another time layer (i.e.,

∑N
i=1 δ(cis+1 , cir ) 6= 0 for some r)

or to join a community that does not contain a copy of these nodes in any other time
layer (i.e.,

∑N
i=1 δ(cis+1

, cir ) = 0 for all r). Figure 5.5 also gives some insight into
whether there are sets of consecutive layers across which persistence values remain
relatively large. This may shed light on when connectivity patterns change in a
multilayer network. As indicated by the values on the color scale, the values of
persistence in Fig. 5.5(d) remain relatively high (which can partly be explained by
the fact that equities and bonds remain in the same community across almost all
layers, and these constitute roughly 50 % of the node sample). The most noticeable
diagonal block separation in the middle of Fig. 5.5(d) corresponds to the change in
Fig. 5.5(c) between 2005 and 2006, and the smaller diagonal block at the bottom right
in Fig. 5.5(d) corresponds to the change in Fig. 5.5(c) after the Lehman Bankruptcy
between 2008 and 2009.

In Fig. 5.5(e), we show the co-classification index of nodes in partitions induced
on individual layers, which we average over layers, all values of ω ∈ [0, 50] in our
sample, and multiple runs for each value of ω (we re-order the nodes to emphasize
diagonal blocks in the association matrix). This figure yields insight into what sets
of nodes belong to the same community across layers for increasing values of ω. This
may shed light on connectivity patterns that are shared across layers. Unsurprisingly,

16Note that there can also be smaller values of ω∞ for which this is true; in other words, we did
not show that ω∞ is the smallest lower bound of the set {w : Pers(Cω

max) = N(|T |−1) for all Cω
max ∈

Cmax(ω)}.
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the first diagonal block mainly corresponds to bond assets and the second diagonal
block mainly corresponds to equity assets. Figures 5.5(d,e) complement each other:
at a given resolution, the latter gives an idea about when community structure has
changed, and the former gives an idea about how it has changed.

6. Conclusions. Modularity maximization in temporal multilayer networks is a
clustering technique that produces a time-evolving partition of nodes. We have inves-
tigated two questions that arise when using this method: (1) the role of null networks
in modularity maximization, and (2) the effect of inter-layer edges on the multilayer
modularity-maximization problem. We demonstrated that one must be cautious in
interpreting communities obtained with a null network in which the distribution of
expected edge weights is sample-dependent. Furthermore, we showed that an opti-
mal partition in multilayer modularity maximization reflects a trade-off between static
community structure within layers and persistence of community structure across lay-
ers. One can try to exploit this in practice to detect changes in connectivity patterns
and shared connectivity in a time-dependent network.

At the heart of modularity maximization is a comparison between what one antic-
ipates and what one observes. The ability to specify what is anticipated is a desirable
(albeit under-exploited) feature of modularity maximization, because one can explic-
itly adapt it for different applications [5, 6, 19, 60]. By defining a null model as a
probability distribution over the space of adjacency matrices and a null network as
the expected adjacency matrix under the specified distribution, we highlight the im-
portant point that the same null network can correspond to different null models; this
is not something that has been appreciated properly in the literature. Moreover, one
needs to be very careful with one’s choice of null network because it determines what
one regards as densely connected in a network: different choices in general yield dif-
ferent communities. As we illustrated in Section 4 for financial correlation networks,
this choice can have a large impact on results, and can lead to misleading conclusions,
so one should be cautious when interpreting communities that one obtains with a null
network in which the distribution of expected edge weights is sample-dependent.

In Section 5, we proved several properties that describe the effect of ordinal diago-
nal and uniform inter-layer coupling on multilayer modularity maximization, or more
generally, on any maximization problem that can be cast in the form (3.4). Although
our theoretical results do not necessarily apply to the local optima that one attains
in practice, they do provide useful guidelines for how to interpret the outcome of a
computational heuristic for maximizing modularity: if a multilayer partition is incon-
sistent with one of the proven properties, then it must be an artifact of the heuristic
and not a feature of the quality function.

To further examine multilayer modularity maximization, we defined a measure
that we called persistence to quantify how much community assignments change in
time in a multilayer partition. For zero inter-layer coupling, the value of persistence
is 0, and it achieves a maximum finite value for sufficiently large inter-layer coupling.
We showed that the highest achievable value of persistence for an optimal partition
obtained with a given value of inter-layer coupling ω is an non-decreasing function in
ω. Similarly, the highest achievable value of intra-layer contributions to the quality
function for an optimal partition obtained with a given value of inter-layer coupling
ω is a non-increasing function in ω. The notion of persistence makes it possible to
measure this trade-off between static community structure within layers and temporal
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persistence across layers:

maxC∈C

|T |∑
s=1

N∑
i,j=1

Bijsδ(cis , cjs) + 2ωPers(C) .

We illustrated this trade-off in our numerical experiments.
Finally, we showed that the Louvain heuristic can pose two issues when applied

to multilayer networks with ordinal diagonal and uniform coupling. These can pro-
duce misleading values of persistence (or other quantitative measures of a multilayer
partition) and can cause one to draw false conclusions about temporal changes in
community structure in a network. We proposed ways to mitigate these problems
and showed several numerical experiments on real data as illustrations. To further
interpret these results, one needs to investigate more closely how the increase in per-
sistence and the decrease in intra-layer contributions to the quality function actually
manifest in a multilayer partition between the “boundary cases”. This may help iden-
tify an interval of ω values in which the trade-off between these two quantities yields
the most insights.
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[31] P. Holme and J. Saramäki. Temporal networks. Phys. Rep., 519:97–125, 2012.
[32] J. Hopcroft, O. Khan, B. Kulli, and B. Selman. Tracking evolving communities in large linked

networks. Proc. Natl. Acad. Sci. U.S.A., 101:5250–5253, 2004.
[33] L. G. S. Jeub, P. Balachandran, M. A. Porter, P. J. Mucha, and M. W. Mahoney. Think

locally, act locally: The detection of small, medium-sized, and large communities in large
networks. Phys. Rev. E, in press (arXiv:1403.3795), 2014.

[34] I. S. Jutla, L. G. S. Jeub, and P. J. Mucha. A generalized louvain method
for community detection implemented in matlab, version 2.0. Code available at
http://netwiki.amath.unc.edu/GenLouvain/GenLouvain, 2012.
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