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1. Introduction
LET P(n, k) denote the number of partitions of n into at most k integer
parts, or what is the same, into parts not exceeding A;. In an earlier
paperf I have determined the asymptotic behaviour of P(n, k) when
k is not too large, viz. O-135Jb* ̂  n. In the present paper I shall obtain
an asymptotic formula which is valid for arbitrarily large values of k.
The main result to be proved is

THEOREM 1. Let n/k* be bounded, n < cx k*, and let fi,v be determined
from v

0

(1)
Then, uniformly in n and k,

P(n,k) = i-B0-*/3-»exp|2j3 J -L^ dt-{vp+l)\og(l-e-*)+

^ (2)

for any given m > 0, where

o o

and B^v) = 0(1).

Remarks:
(i) Throughout the paper, clt c2,..., Clt Cj,... denote positive constants,

independent of k and n but possibly depending on some other previously
fixed constants such as the bound for n/fc*, ormin the expansion (2).
The same remark applies to constants appearing in the 0-notations, e.g.
Bfo) = 0 ( 1 ) means \Bfl(v)\ < <?M. The letter c without any suffix is
reserved for the constant c = 6'/w.

t Quart. J. of Math. (Oxford) (2) 3 (1961), 86-108, subsequently quoted ps PI.
Quirt. J. Math. Oxford (3), 4 (1953), * t - l l l .
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(ii) v ^ c,. For, equation (1) implies

J e*-l v &—) V ( ) V
(4)

since n ^ c * * <
v ev— 1 ^ 2

and the last term is negative for v > 0. But the left-hand side of (4) is
certainly greater than l/2w when 0 < v < 1. Hence (4) implies

(iii) cs n* ^ f} < c4 »*. This follows from the fact that the coefficients
of j5*, p, and p° on the left-hand side of (1) are bounded, i.e. 0(1) for
v ^ 0, and „

c6 ^ I -—- di < c~%, by remark (ii).
J e1 1
o

This shows that the expansion (2) proceeds essentially by powers of n~*.
(iv) I t would be possible to determine the functions B^v) if desired,

but it seems difficult to get a general explicit formula. For Bx(v) one
obtains

-\-eiv)(ev — 1) ~8—Jv3er(e1' — 1) ~*} -f-

The expression on the right is bounded since Bo ^ ct for v ^ c, by (3).
(v) Let v = c^An* (A ̂  8), where 8 is a fixed positive number. Then

/?=!*-••*-/
0 v

= c-»+0{n»exp(-c-18n»)},
and one obtains from (1), (3), and (5)

P = c(n-£)*+Jc«+Ac»n-»+0(n-1)>

£ -* = 2-»c+O{nexp(-c-1Sn»)},

Bt = - ^ r

Hence

for jfc = uj3 = An+JcAn*+0(l) ^ 28n. This is the well-known asymp-
totic term of the HarHy-Ramanujan formula.

seee.s.4 H
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The proof of Theorem 1 will be given in the next section. It is entirely
independent of the theory of elliptic modular functions and also of
Sylvester's theory of 'waves' which formed the core of the proof of my
earlier formula in PI. In fact, it depends only on Cauchy's theorem
and Euler's summation formula and is essentially an application of the
so-called 'method of steepest descent'.

If njk* is not bounded, i.e. k = o (n1), then formula (2) must be slightly
modified. The asymptotic term is still correct, provided that k -*• oo,
but the error terms have a different form. Formula (29) of § 3 shows that
the first error term is 0(k~1)'\.

In § 4 I shall investigate p{n, k), the number of partitions of n into
exactly k positive integer parts, and q(n, k), the number of partitions
of n into k unequal parts. The following is the main result:

THEOBEM 2. If n is sufficiently large, then there exists a number
Jfei = ij(n) such thai p(n,k) < p(n, k+1) for k < l^.pfak) > p{n, k+1)
for k> itj. The value ofk^is

where L = log(cn*), c — 6*/w = 0-7796968..., c1 = 0-6079271....

THEOREM 3. Ifn is sufficiently large, then there exists a number k0 = ko(n)
such that q{n,k) < q{n,k+l)for k < k0, q(n,k) > q(n,k+l) for k > k0.
•The value of k0 is

ko= (2 t lo g 2)cni+26( log2)- i_ T ^_l+0(n- i ) , (7)

where b =±= c*(log 2)».

Numerically, k0 = 0-7643041n*—O-5O8428O-|-0(n-*).

Theorem 2 proves a conjecture of Auluck, Chowla, and GuptaJ, and
improves a formula of Erd6s§ who showed that

i i = cn»log(cnl)+o(n>).

It also disproves a conjecture I made in PI, 94.
Theorem 3 was essentially proved in PI. My earlier k0 was greater

by J than the present value, owing to a different interpretation of the
maxima.

t The formula in PI had a different form and procoedod according to powers
of *-».

t J. Indian Math. Soc. 6 (1942), 105-12.
§ Bull. American Math. Soc. 52 (1946), 185-8. ErdOs uses the notation

O = 7T(|)*.
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2. Proof of Theorem 1

Let F(w) = fl (1-W)-1 = f P(n,k)ur. (8)
y-l f t -0

By Cauchy's theorem

P(n, k) = (27rt)-1 j Flwfy-*-1 dw (9)

taken along a circle with centre at 0 and radius p < 1. I choose p to be
the real positive root of the equation w F'/F (w) = n, i.e.

r-l r r-1

The essential point is that with this choice of p we shall be able to
evaluate the integral (9) quite accurately in the neighbourhood of the
'saddle point' w = p and then show that the more remote parts of the
path do not contribute substantially to the value of the integral. This
can be done quite easily, without having recourse to Farey dissections
or similar devices. Thus the influence of the seoondary singularities is
automatically eliminated.

Throughout this section the symbol A(u) denotes some unspecified
continuous function of «, bounded for u ^ 0, which, if desired, can be
determined explicitly. In the following I shall frequently use Euler's
summation formulaf

j

0

v-l *
where Bt = J, Ba = 0,..., generally B, is the vth BemouUi number, and
Pm(t) is the with Bernoulli polynomial.

Take

where t = ax,

t

f(x) = x(eax-

so that

/«(«) = «-h

See K. Knopp,

a

fi"\t) and

Infinite Series

<-!)-> =

/("(0) =

(London

= -<f>(t
a

a*-1!

1928),

K-
526
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Clearly fty)(t) is bounded for t ^ 0 and tends to zero monotonically for
t ^ tv. Hence, for a fixed m,

COJ
o

= 0(1)

and

ak

'/1 I

J
0 0

On writing « — a&, Euler's formula and equation (10) give

u

V -1 -if' -l( U

dt = Ofa™-1).

GJenerally, for 0 ^ « < r, one obtains

(eai'— l)~r = a-'"1 | re«((*—l)-+ dt+
J

Comparing (1) and (11) we find

u = v{l+A(v)p-*+...+A(v)p-'*+i+O(p-'*)}

(12)

(13)

The second relation is a consequence of the first one since u = hot = o£/5».
To prove the first relation, put a = /J-^l+e), u = v(l+«) into (11) and
Bubtract equation (1). The result is

0 = -2j9*e J J—^
o

= -j8«e J ««e«(e«-l)-«
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which implies e — p-*A(v)+O(p-B). This proves (13) for m = 4. In the
general case we use induction on m. Writing

one obtains as before

V

-j8"ex J t V ^ - l ) - * (i<+^-'»+S!4(v)+O(i3-'"+1) = 0,
o

where -4(v) can be determined recursively. I t follows that et has the
form p-v'AW+Oip-™-1).

From (8) and (9) we get

P(n,t) = {2n)-ip-"

I exp - ^ l o g ^ - ^ n%9\dB. (14)

The integral is dissected in three parts:

J = /!+/,+/„ A = { . /, = J , /» = /', (15)

where 0O = n-6^.
For the integrand in Ix we can write

where k' = min{i, [n*]}."f The second sum in (16) is empty unless
k > n*, when (&'-{-l)a > c7n* > 1 for n > cg and

< 3 T e-00' = 0(e-°<fc'+1>)
r-F+l

= 0{eXp(-c8n»)}. (17)

t [z] denotes the greatest integer not exceeding x.
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Since \v6\ < k'6o < n-V*1, the first sum in (16) can be expanded in
powers of iv6,

v-1

K - l V-1 V ' f i - S ^ F - l V ^

( t ^ 1 e v a — 1 ) - M ) , (18)2
F - l

where ^a(f) = <+ta, gt(t) = t-\-4t*-\-t?, and generally g^t) is a polynomial
of degree ^— 1. Replaoing the upper summation index k' by k, we see
that the error is

( 00

J ^U
and the first sum on the right of (18) becomes ntfl.f The other sums
can be replaced by the corresponding integrals, with the help of Eider's
.formula [equation (12)]. The result is

J ^ ^ <8-0«a-»*!*ii(u)a'
o

f F—0

This and (15), (16), (17) give

/ » - l v-0

where h(8, a) is an odd function of 6. Hence, writing

o

•)• This U the dociflive step where the Baddle-point property of p is used.
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we get
m - l

(m£)) dx,

j) ^

where z0 =
Replacing the limits ±x0 by ±oo, we see that the error is at most

OJ J a*»+*e-*'dz) = 0{nexp(-c1InVi«)}.

Thus It = (27raM^1)*{l+^1(u)«+...+^m_1(u)am-1+0(am)} (19)

for certain functions A^u) which are bounded for u ^ c18. In fact, each
A^u) can be expressed as a fraction a/i(u){Ao(u)}-*>i, where a^u) is
bounded for u ^ 0 and A0(u) ^ c^ for u ^ c18. A simple calculation
gives, e.g.

— A <IL\ — A-*^ • J u I e " ^ • '-m^ vHeu+etu) 3

etu

It remains to be shown that It and / , in (15) are negligible. For the
absolute value 0(6) of the integrand in /, one has, if n~6r> ^ 6 ^ n -1/ l

and k' = min(i,[a-
l],{1T/45])I

erp

expf— 2 ilog{l+2e"1[(e>'a—1)-*(1—

r - l

(21)

since

18

and again
for 8a < 0
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If n~* < 6 < n, then for every positive integer m < m0 = le'dfiir, where
k' = min(Jfc, [a"1]), there isat least one v < h' with

(2m—f )n < vB < (2m-i)jr,
and, for this v,

Hence

Stra

since 2170*710 = aJc'O > c^n-* and 2ira
It follows that

J logfe1""—l)2(e4"oa;+l)-1 dx

-i J

0(6) < erp(—Cjgn*) for »-* < 0 ̂  TT. (22)
Now (21) and (22) give"

and |7B| = |/s | < 27rexp(-cunW«). (23)

. Summarizing, (8), (10), (14), (15), (19), (23) give

P(n,k) = (^^-^exp^f^j-lo^l-e-"0)}] X

X {1 +A1(u)a+...+An_1(u)cr-i+ 0(a»)}, (24)
where A^u) is given by (20).

To evaluate the expresaion in the exponential we once more use Euler'a
formula

2 l o g r = ^ = J logy^z^ dx+Klogi-log(l-e-«)+loga}+

u

J ̂  *_
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This with Stirling's fonnulaf gives .

2
V-1 F - l

Formula (2) with (4) is obtained from this, (11), and (24), by using
(13) and (20).

3. The case k = O(n*)

We now drop the assumption that n/i a is bounded and suppose that
k -»• oo. Equation (11) gives « ^ CJJ and

), (25)

where Blt B%, B3 are bounded for u ^ 0, and ^ ( u ) ^ Cĵ  for 0 ^ u ^ cM.
Therefore

u = 0{kH-% tt-1 = 0(nJr«), ' <x = ujk= 0{kjn), a"1 = O(n/i),
(26)

and the error term in (25) is
If t>, jS are determined from

» = j8fc, n = ich-'B^+kB^+^vB^v), (27)
then

« = v[l + 0(k*n~*)} = v{l + O(n~% <x = /5-»{l + O(n"8)}. (28)

t See K. Knopp, Infinite Series, 531.
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To carry out the dissection (16) we take 60 = n^ft4". Thenfc0o

and (16) becomes

| l (
f - 1 J l - 1

) .

This gives, since z0 = (t4o)»a-*0o > c

To show that 7, is small, we can use the same estimates as for (21) and
(22) except that the intervals for 6 are now 60 ^ 6 ^ jfc~* and
£-* < 5 ^ 7T respectively. Hence

P(n,ft) = (2^0)-i«iexp{ J ( ^

-»)}, (29)

where JB0 = — ; dt and v is determined from (27). This is valid
J {*— 1)
o

uniformly in Jfc provided that i -»• oo and ft
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4. The functions p(n, k) and q(n, k)
Formulae (2) and (29) respectively can be used as asymptotic ex-

pressions for p(n, k) and q{n, k), in virtue of the elementary relations

p(n,k) = P(n-k,k), q(n,k) = p{n-fi+l\ *}. (30)

All we have to do is to replace the right-hand side of (1) by n—k and

n — \ ~T I respectively.

Consider first p(n, k) and suppose that njk* is bounded. Without loss
of generality we may assume that k < $n since p(n, k) = P(n—k, k) for
k > \n by (30). (Hence p(n, k) is steadily decreasing for k ^ \n when
n is fixed.) The hist assumption implies that remark (iii) of the intro-
duction is valid.

To obtain the position of the maximum of p(n, k) when n is fixed, it
is convenient to go back to the relations

> — — = n — k, (31)
v-l

p(n,k) = { 2 ^ ^

(32)

which follow from the equations (10) and (24).

t+i
Let Y ___!L = n — k — l.

r - l

By (31) and Taylor's theorem,

Y v y1

2«—1 2 , e ,
l r - l

__ y v*eya fc+1
_ i — 2 , ( e ^ - 1 ) 1 a e<*+»«—1 +

l v '

e«Aa+a-4(Aa[)
l}= 1, (33)

A<x = Aolcc*(—-—|-a -f0(ue-*a?+a*). (34)
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Also u = a£, tt+Au = (a+Aa)(ifc+l),

A« = iAa-f-a+Aa = -Aa+a+Aa. (35)
a

Furthermore,

eu—1

^ } (36)

since
fc

fc+1

•2 ;
v-l

i^hi

by (33) and (34), and

- I log(l-e
r— 1

t
l
v - 1



ON PARTITIONS 109

Finally

J{log(a+Aa)-loga} = f «-1Aa+ 0{«-«(A«)«}

^ , (37)
€•

' b y ( 3 5 ) ' ( 3 8 )

and A{a41(u)+aMsl(u)} = 0(u*Aa) (39)

by (20), (34), and (35). Hence

Alogp(n.i) = log^(n,i+l)—logp(n.i) '

(^j5] (40)

by (32), (36), (37), (38), and (39).
Put u = Jlogn+A, where A is some funotion of n whioh either tends

to +oo or — oo or remains bounded.
Since cu n~* ^ a ^ cM n~*, the right-hand side of (40) is positive for

sufficiently large n if e" = o (n*), i.e. if A -• — oo, and is negative if
e~" = o (n~*), i.e. if A -•• +oo. Hence we may assume that A is bounded.
Using

and

-+O(<xi) (41)
a

CD

J
0

= c-2-(tt+l)e-«+0(ue- lB), (42)
one obtains
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Noting that Ao = 2c-*4-O(n~*), the right-hand aide of (40) becomes

This becomes zero only if c«~* = 1+/*, fi = 0(n-*log*n),

u = Jlogn+A = L—n+O(n-1logln)>

where L = log(cn*), i.e.

tic-hi-i-lLhi-i+iLn-i+a-lc-*^-1 = 0(n-»log*n),

fi = Jci*n-»—

a =

U k is less than kv the right-hand expression in (40) is positive; if ifc is
greater than j ^ , the expression is negative. This proves Theorem 2 for

For k = 0(11*) one has to use (29) instead of (32). One gets

Alogi>(n,ft) = _ log( l -e - )+O(*-») ,

which is positive since u = 0(1).
The proof of Theorem 3 is very similar except that (31) and (41) must

be replaced by

^ v (k+l\ "^ v (k+2\ . . . .

and
u

«-«J ^rt+wfc^-i j+^-M-W- 1 = »+O(i)- (44)
0

ftp*

From (43), A« = ^o"1 ^6 ^^

$A{loga} =



ON PARTITIONS 111

Hence

which iB zero only if u = log 2+An~* (A bounded).
Writing b = c* log12, we see from (44), in view off

log I

andJ -l-A^Jc-^l-
o

that a = c-1(2n)-t+(^log2-i+Ac2Uog2)n-1+O(n-»).
Hence

which is zero only if

A = - 2 - ^

i = k0 = ua-1 = 2»(clog2)»*-c»log2(log2-i)+2*c(l-2&)A+0(n-*)

= 2*(clog2)n*-6+J6(log2)-1-l+

= 2*(c log 2)n*-

t D. Bierena de Haan, Nouvdlee tables cCinUgralea difiniea (New York, 1939),
151, formula (104, 6).


