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1. Introduction

Ler P(n, %) denote the number of partitions of n into at most k integer
parts, or what is the same, into parts not exceeding k. In an earlier
papert I have determined the asymptotic behaviour of P(n,k) when
k is not too large, viz. 0-135k* < n. In the present paper I shall obtain
an asymptotic formula which is valid for arbitrarily large values of k.
The main result to be proved is

TeEEOREM 1. Let njk? be bounded, n < ¢, k3, and let B, v be determined

Jrom
v 1/1 1 ve®
=k f A1)+ iyt o ) =™
(1)
Then, uniformly in n and k,
1 v

P(n,}) = 5~ By gt exp[zﬁ f o d—(uB-+)log(1—e~)+

o
+§(e.,—”_—1—1)}[1+Bl<v>ﬁ~l+...+B,._1<v)ﬁ--+1+0(3-'")] (@)

Jor any given m > 0, where

L4 . v
12t t
o= [mme=2 a5
0 0
and B,(v) = O(1).

Remarks:

(i) Throughout the paper, ¢,, ¢s,..., C, C;,... denote positive constants,
independent of k and n but possibly depending on some other previously
fixed constants such as the bound for n/k?, or m in the expansion (2).
The same remark applies to constants appearing in the O-notations, e.g.
B,(v) = O(1) means |B,(v)| < C,. The letter ¢ without any suffix is
reserved for the constant ¢ = 6i/m.

t Quart.J. of Math. (Oxford) (2) 3 (1951), 85-108, subsoquently quoted ps PL.
Quart. J. Math. Oxford (32), 4 (1953), $6-111.

(3)
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(i) v > cy. For, equation (1) implies

B F e — it af1 1 _of1 1 ve®
v J‘e‘——ldt n/e -4k (;-e’—l)—ﬁk 2(§+e"—l_(e"—l)’)
< 6 +(4kv)t (4)
gince n <k l_# }

v e—1 2
and the last term is negative for v > 0. But the left-hand side of (4) is
certainly greater than 1/2v when 0 << v < 1. Hence (4) implies
1< 2,040 < 20,043, v> (de)) .
(iii) cyn? < B < ¢, nt. This follows from the fact that the coefficients

of B2, B, and 8° on the left-hand side of (1) are bounded, i.e. O(1) for
v > 0, and

f < ¢, by remark (ii).

This shows that the expansion (2) proceeds essentially by powers of n‘*
(iv) It would be possible to determine the functions B, (v) if desired,
but it seems difficult to get a general explicit formula. For B,(v) one
obtains
B,(v) = —[f&wer(e°—1)"24 By {3+ e (er—1)-3}+
+ By Y{hoh(er ) (er— 1) — fotes(er— 1)1}
+diBy *vPer (e — 1)) (5)
The expression on the right is bounded since B, > ¢, for v > ¢, by (3).
(v) Let v = c-'Ant (A > 8), where 3 is a fixed positive number. Then

f e’—l =c?— fte“[l-l—O{exp(—c'lSn‘)}]dt

= ¢34 Of{niexp(—c-13ni)},
and one obtains from (1), (3), and (5)
B = cln—g)t+ 1ot O(n=),
Bt = cin—g) {1 —fen 1+ 0(n 1)},
Byt = 2-ic4 O{nexp(—c-13ni)},
B, = —dc*+O{ntexp(—c-18ni)}.
Hence
P(n, k) = {2wc(n—#)} exp(2c-}(n—)){1—den-1+ O(n-1)}
for k = vB = An-+}cAnt4-0(1) > 28n. This is the well-known asymp-

totic term of the HarHy—Rama.nuJan formula.
3606 2.4 H
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The proof of Theorem 1 will be given in the next section. It is entirely
independent of the theory of elliptic modular functions and also of
Sylvester’s theory of ‘waves’ which formed the core of the proof of my
earlier formula in PI. In fact, it depends only on Cauchy’s theorem -
and Euler’s summation formula and is essentially an application of the
so-called ‘method of steepest descent’.

If n/k? is not bounded, i.e. k = o (ni), then formula (2) must be slightly
modified. The asymptotic term is still correct, provided that & — oo,
but the error terms have a different form. Formula (29) of § 3 shows that
the first error term is O(k-1)t.

In § 4 I shall investigate p(n, k), the number of partitions of » into
exactly k positive integer parts, and ¢(n, k), the number of partitions
of n into k unequal parts. The following is the main result:

THEOREM 2. If n is sufficiently large, then there exists a number
k; = ky(n) suchthat p(n, k) < p(n, k1) for k < ky, p(n, k) > p(n, k+1)
for k > ky. The value of k, +s

ky, = entL4-c*(}+3L—}L*)—§+O0(n-tlog'n), (8)
where L = log(cnt), ¢ = 6t/m = 0-7796968..., ¢* = 0-6079271....

THROREM 3. Ifnissufficiently large, then thereexists a number ky = ky(n)
such that g(n, k) < q(n,k+1) for k < k,, q(n, k) > q(n,k+1) for k > k,.
The value of k, 18 '

k, = (2log 2)ent-+2b(log 2)—1_1_*1’27)..' 14+-0(n-4), (1)
where b = c3(log 2)*.
Numerically, k, = 0-7643041nt—0-5084280+O(n"t).

Theorem 2 proves a conjecture of Auluck, Chowla, and Gupta}, and
improves a formula of Erdds§ who showed that

k, = entlog(cnt)+o (nd).

It also disproves a conjecture I made in PI, 94.

Theorem 3 was essentially proved in PI. My earlier k, was greater
by { than the present value, owing to a different interpretation of the
maxima. .

t The formula in PI had a different form and procoeded according to powers
of k1.

1 J. Indian Math. Soc. 6 (1942), 105-12,

§ Bull. American Math. Soc. 52 (1846), 185-8. Erdss uses the notation
o = m(}i.
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2. Proof of Theorem 1

@D

Lot Fw) = T1 (1—w) = 3 P(s, by, (®)
na=0

y=1

By Cauchy’s theorem
P(n, k) = (2mi) j F(w)w"-1 dw (9)

taken along a circle with centre at O and radius p < 1. I choose p to be
the real positive root of the equation w F'/F (w) = n, i.e.

k
v’ = d = = — . ' 10
2. 1= gy = ke (10)

ye=1

The essential point is that with this choice of p we shall be able to
evaluate the integral (8) quite accurately in the neighbourhood of the
‘saddle point’ w = p and then show that the more remote parts of the
path do not contribute substantially to the value of the integral. This
can be done quite easily, without having recourse to Farey dissections
or similar devices. Thus the influence of the secondary singularities is
* automatically eliminated.

Throughout this section the symbol A(u) denotes some unspecified
continuous function of %, bounded for u > 0, which, if desired, can be
determined explicitly. In the following I shall frequently use Euler’s
summation formulat

g
SO+t fk) = [ f@) dz+HfR)—f(O)}+
0

m 1 k
+ 2 G Bl 1O [ Pai@if i) de,

where B, = }, By = 0,..., generally B, is the vth Bernoulli number, and
B, (t) is the mth Bernoulli polynomial.

Take  f(z) = ale=r—1)"t = Lee— 1)1 = 400
where ¢ = az, so that
fOz) = a>-1¢®(t) and f©Y(0) = a*-1B,.

1 See K. Knopp, Infinite Series (London 1928), 526.
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Clearly ¢*)(¢) is bounded for ¢ >> 0 and tends to zero monotonically for
t >t,. Hence, for a fixed m,

[ 1#m0) 2t = oq
0

and

k ak
J‘ | Py () f+0(z)| dz = am-1 J. F m+1(cl—! t)q‘)"’“’l)(t)l dt = O(e™-1).
o 0

On writing 4 = ok, Euler’s formula and equation (10) give

cve=1 1 e¥—1

n=3uen1)t = ot j g (1) +

1 ]_' we¥ 1 o _
+ﬁ(eu_1_(ex_l)a+§)+a’A(‘u)+...+a 14(u)+0(™1). (11)

Generally, for 0 < 8 < r, one obtains
k “
S verm(e—1)=" = a1 [ res(é— 1)~ di+
y=1l o
+aTA(u)+...Fa 14 (u) 4 O(a"+m). (12)

Comparing (1) and (11) we find

a= g1 +A(°)ﬂ"+---+«4(”)ﬁ‘”‘“+0(5"‘)}}
u = v{14-A(v)4+...+ A(v)B-"14-0(8—™)}

(13)

The second relation is a consequence of the first one since ¥ = ka = offv.
To prove the first relation, put « = 8-1(14¢), 4 = v(14-¢) into (11) and
subtract equation (1). The result is

0= =28t [ L ditBre T O +BO+BA()
[1}

= —B% [ (¢~ 1)1 dt+B1A(0)+B0(N)+BO(e),
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which implies e = 844 (v)+ O(8-5). This proves (13) for m = 4. In the
general case we use induction on m. Writing

€ = BHA(v)+.. B HA(W)fe, & = OB™)
one obtains as before

~Bre, [ ee—1)2dtHBmEA()+O(B~™) = 0,
0

where A(v) can be determined recursively. It follows that ¢, has the
form B-m4(v)+O(8-m-1).
From (8) and (9) we get

P(n, k) = (27)-1p-"F(p) f (Pe ) -4t gg

T

= (2m)Lexp(na+tlog F(p)) f { ZIOg —pe —mB}dO (14)

=1

The integral is dissected in three parts:
0o

f= ot L=[, L
— —-6, I -

i
—2
&
l
—
—
01
S’

where 6, = n-%7,
For the integrand in I, we can write

& k
l—p'e{"a .
o {5 )

-] rem k’

where k' = min{k,[nt]}.+ The second sum in (186) is empty unless
k > n}, when ('+1)a > ¢;nt > I for n > ¢ and

,_gﬂl <'_§+110g{1+2(em_1)—1} < 2'_§+1(e”—1)—1

©
< 3 e—or — O(G—dk’+l))
rell+1

= Ofexp(—cyni)}. (17)
t [x] dendtes the greatest integer not exceeding x.
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Since || < k¥'6, < n-V%, the first sum in (16) can be expanded in
powers of #10,

ZIO'

y=1

= — ilog{l—(e"’—l)-1 i I-% (iv0)l‘+0[(v|0|)”'+1(e'°‘——1)-1]}

y=1 u=1

veiva

m41

—i0S X e + > ptep > T
eve Z (eva 1)2 Z z (evu

vl

+0{0ﬁn+i 3 pame f (e"’—l)—i*, (18)

ye=1l

where gy(t) = t+12, g,(t) = t4-4*4-*, and generally g,,(t) is a polynomial
of degree n—1. Replacing the upper summation index &’ by k, we see
that the error is

0( f %) = O{n*eXP(—~clof*)},

nia

and the first sum on the right of (18) becomes nt6.t The other sums
can be replaced by the corresponding integrals, with the help of Euler’s
formula [equation (12)]. The result is

70—}t f ey Y= "5 A(u)er +

y=1

+7%, ioas z Ao+ O(@tm-34 gon 1 -tm3),

This and (15), (18), (17) give
0,

I, = f exp(—}ﬂ’a" J' wt—_‘f‘l)—’dt)x
0

_9.
x {1+ 3 owa- oS Auer+ih(0,a)+0(" 3 0vam->)} b,
p=1 ye=0 v=1

where A(0, «) is an odd function of §. Hence, writing

&, =z = A}(2a%)"1,

+ This is the docisive step where the saddlo-point proporty of p is used.
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we get
Te »n m—-1
2\~
I, = (234, 1) f e—z'{1+ ,Zl (Z.) oA+ BBt Z‘; A(uw)a"+
+0(aa~'mf1 z")} dz,
r=1

where z, = A}(2a2)-10, > ¢y nH-57 = ¢, nV2,
Replacing the limits 4z, by 40, we see that the error is at most

0{ j Zim+te-2! dz} = Ofnexp(—c,yn4)}.

Thus I, = 2ncPAs)H{1+A4,(w)a4...4+ A4y (8)a™ 14+ O(a™)} (19)

for certain functions 4 ,(u) which are bounded for u > ¢,,. In fact, each
A4,(u) can be expressed as a fraction a,(u)}{4,(x)}~*, where a,(u) is

. bounded for 4 > 0 and 44(u) > ¢,, for u > ¢,5. A simple calculation
gives, e.g.

a1, 1 ute* _of1 ut(e®*+e3) 3 ule
_A““’*A“(EJ”' )+A° '(§ (e*—1)° 'Z<e~—1)')+

8p21s
5 ,_, u'e

+2—'4 o 1) (20)

It remains to be shown that I, and I, in (15) are negligible. For the

absolute value G(6) of the integrand in I, one has, if n=%7 < 6 < n-1?
and &' = min(k, [«~1], {#/46]),

k
1—p”
exp( z log ———-—I_wa)
r=1

< exp[— f} log{1+2e"=(er*—1)-3(1 —cos ve)}]

) =

< exp[—4 3 log{1++20%(8%a%)] = expl— 4’ log(1-+6%/(8a%)],
G(6) < exp(—cyynt™), (21)
since
3k’ log(1+46%/8a?) > fk'0PPa~? > Ha]-303 > c,gn¥3-197

‘= cgnV4  for 6 < 8a
and again

ik log(146%/8a2h> §k'log(f/4a) > ¢;4nt for 8a < 0 < n-i.
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If n—+ < 6 < =, then for every positive integer m < m, = k'6/2m, where
k' = min(k, [«1]), there is at least one v < k' with

(@m—f)m <8 < (2m—)m,
and, for this v, '

log|(1—p")(1—p*e%)2| < }log(1—p)H(1+p%)?

< }log(edmom—1)3(etmom4-1)-1,
Hence .

loé QB < }mgmlog(e"m— 1)3(etrom 4 1)-1.

my
<3 'f log(etma=—1)%(et"=4-1)-1 dz
1

Emam, 1)
= (47%)-1 f log( —1) dt < —cygnt

eZ4-1
242
gince 2mam, = ak’'d = c;ont and 2ma < gent.
It follows that
G(0) < exp(— cnn*) fornt << (22)
Now (21) and (22) give -
G(0) < exp(—cg, ni1¥) forfy <O =
and | = || < 2mexp(—cy; n4). (23)
Summarizing, (8), (10), (14), (15), (19), (23) give

P(n, k) = (2ndy)Hal “P[i{ev:i ;—log(1—e)) |
vl

X {1+ A4,(w)at...+ 4 (w)a™-140(™)}, (24)
where A,(u) is given by (20).

To evaluate the expression in the exponential we once more use Euler’s
formula

z log——— - e""' = f logl — dz+§{log k— log(l—e-")+log a}+

=1

+11,a(;‘1___1___)+ z A(u)a#+0(aﬂ=)
= (b+})logk—k-+a? J' o dt— (e Plog(1—em)+

+§loga+11,a(—-———-——)+ S A(u)ot+O(am).
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This with Stirling’s formulat gives .

3 k
— 2 log(l—e"*) = z log 1_';_m—log k!

ym=] yw=1l
1[ ¢ w 1 «.
== — —_— — - - 1—e-¥ _——
[ (a+2)log< e)+}log =
0

—he(3+ )+ 2, Alw)ar 0.

Formula (2) with (4) is obtained from this, (11), and (24), by using
(13) and (20).

3. The case k = O(nt)

We now drop the assumption that n/k? is bounded and suppose that
k < cygnt but k > c0. Equation (11) gives u < ¢y and

n = B ’f—dt+1}k( _5)4_
1 1 1 ue .
el ) O
= k1B, (u)+kBy(u)+ fuBy(x) 4 O(utk-9), (25)

where B,, B;, B,are bounded for 4 > 0,and B;(u) > c;,for 0 < u <
Therefore

= 0(k*n-1), ul=O0nk1?), o=ulk=O0EkMn), «!=O0Mnk),

(26)
and the error term in (25) is O(k%n-1).
If v, B are determined from
v=pk 5= kvB(v)+EBy(v)+hvB,), (27)

then
= v{1+4+0(k*n3)} = v{14+O0(n3%)}, a = g1+ 0(n-%)}. (28)

t 8ee K. Knopp, Infinite Series, 531.
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To carry out the dissection (16) we take §, = n-1k¥’. Then kf, = O(k—¥7)
and (16) becomes

_ v vl
exp{ Zlog1 ° —mﬂ}

y=] P

= exp[ Zlog{l —

v=]l
k piera o va
= exp[ *G"Z(cm — 46 Z ((:va +1§s )

rolo 38 er0]

- (ivﬂ-—}v’ﬂ’.—%ivsoa)-{-O(ev—fo‘_—l)} '_m'o]

e . Be¥4-¢
- exp{_wa—s J' (_c,__l),dt}{l_;;eaw J _((g:‘*l'Ts)dt-{-
+0(n0‘—i—n‘k"0‘+n°k“'0°)}.
This gives, since z, = (§4,)}a—10, = ¢, k114,
I, = 2ne®A51){14-0(k1)}

To show that I, is small, we can use the same estimates as for (21) and
(22) except that the intervals for  are now 0, <6 <kt and
k-t < 8 < = respectively. Hence

P(n, k) = (274, )-‘a'exp{ z ( —) —Iog(l—e-“)}{l-i-O(k“)}

y=1

2k° t 1/ v
{Tfe‘_—idt+§(m_l)—
]

——(’c—H)IOg(l—e‘°)}{1+0(k“)}. (29)

= 2mrk?

where B, — f @ 1)’& and v i8 determined from (27). This is valid

uniformly in k provided that k -+ co and k < ¢ygnt.
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4. The functions p(n, k) and ¢(n, k)
Formulae (2) and (29) respectively can be used as asymptotic ex-
pressions for p(n, k) and ¢(n, k), in virtue of the elementary relations

pn k) = Pn—k k),  g(n k) = P{n_(";r‘), k}. (30)

All we have to do is to replace the right-hand side of (1) by n—% and
n— (k-;_ 1) respectively.

Consider first p(n, k) and suppose that n/k? is bounded. Without loss
of generaljty we may assume that k < §n since p(n, k) = P(n—k, k) for
k > }n by (30). (Hence p(n, k) is steadily decreasing for k Z> {n when
n is fixed.) The last assumption implies that remark (iii) of the intro-
duction is valid.

To obtain the position of the maximum of p(n, k) when n is fixed, it
is convenient to go back to the relations

1 4
=n— 1
E s =" k, (31)

k
p(n, k) = (2ﬂAo)“a'exp{ Z E:%l_log(l_e—m)} X

r=1

X {144, (u)a+A45(u)a*+0(c)}, (32)
which follow from the equations (10) and (24).

k+1 v
:Lﬂt :E:ERE:EEE:T.== ﬂ-—-k——l-
y=1

By (31) and Taylor’s theorem,

k v k+1 v _ k v’e"“ A k+l
z i1 Z eratdo ] (er®—1)2 c"_e(“’“”"—l-*_
=1 y=1 y=1

+ O{utetAa+a*(Aa)¥} =1, (33)

Aja—Aa—a-! e““ - = 14O(ue™+a"Aa),

A = A;W( u +a)+0(u-ua=+a4). (34)

ev—1
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Also u = ok, u+Au = (a+Aa)(k+1),

Au = kAatatAa = EAa'+a+Aa. (35)
. @
Furthermore,
k
va -

= —a—log(l—e~v)— eu"_ - 314, 0-3(Aa)*+O(Ax)

ud

—¥)—a —1—— o ——— a
= —log(1—e-¥) {1+e._1+;Aol(e,_1),}+0<A) (36)

since
A X va
Z eva__l
k+1 v
= —at > —oma—yla
y=1
k &k
- Y VA ST Aap
= ¢::—|—(,-z1 e""—l)Aa Z T 1) (Ax)?+

k+1
+ e(ij‘:Au)—_l Aa‘*‘ O{G—‘(Aa)a}

k
ot ( S I)Aa—euk_ - Ax—dyo~(Aa)i+O(Aa),

y=1

by (33) and (34), and

k
A{ - 2:1108( 1 —e-’“)}

= —log(1 —e—k+a+sxm) _( z

Y1

)Aa+

eva__l

k 1 41
+1 > o (Aa) - Ofat(Aa)}

1)t
2 . l(e'“ 1)

k
v - a k

era—1 ey

+}4,0-%Aa)'+ O(Aq).
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Finally
#{log(a+Aa)—loga} = Fa'Aa+ O{a~3(Ax)?}
= §A; la
—${log Ao(“+Au)-1°g Ao(w)}

= —}4;1 "”1)’( Aa+a)+0{(Au)'}

Y345 0(a),  (37)

af ,_, ude® _o ube¥
e

and A{xd,(u)+ard4(u)} = O(utAa) (39)
by (20), (34), and (35). Hence .
Alogp(n,k) = logp(n k+1)—logp(n, k) °

_lu(e +l)—§A"1 u +

—1) O ev—1

}+0(u=Aa), by (35), (38)

= —log(l—e*)—a [

+i45 ]HAO 134 O(uiAa)  (40)

l)'
by (32), (38), (37), (38), and (39).

Put u = {logn-A, where A is some function of n which either tends
to +o0 or —oo or remains bounded.

Since cgsn—t < a < ¢y nt, the right-hand side of (40) is positive for
sufficiently large n if e* = o(nt), i.e. if A > —o0, and is negative if
e~¥ = o(n-1), i.e, if A > +00. Hence we may assume that A is bounded.
Using

- ¢ 4 _ u 11N 1 ue%
* ’fe‘—ldt”H“ l(e“—l l)+ﬁ(§+e“—l_(e'—l)a)
0

= n_‘;"'+ O(a®) (41)

and

u__t__ = -2 __ O_t — ¢c-3 —p—N¥)__ 3 ~2,-k
fd_ldt—c J‘e‘—ldt_c +ulog(l—e-*) L'Zlk e~k
0 u

= c3—(u+t1)e-%+O(ue-24), (42)
one obtains

a = ¢ In-t—}(ce2— 1) un-1— ({4 ce 14 O(n-tlogtn).
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Noting that 4, = 2¢-2O(n-1), the right-hand side of (40) becomes
(e —c-1)nt— Jeedutn 1 (Joe-— Pun-1+
+(14-fee—cle? - je-M)n-14 O(n+ logtn).
This becomes zero only if ce = 14-u, p = O(n-tloghn),
u = }logn+4A = L—u+O(n-llogin),
where L = log(cnt), i.e.
po-ind—}Lan-t4 §In-t4 (F—fo-Yn-t = O(n-tlogén),
p = teLin~i—fcLn-t—(jc'—foyn-++0(n- logtn),
a = c-In—t—3n-14 O(n-tlogn),
k=k = uxl=cntL—c*}(}L*—§L—§})—{+ O(n-tlogtn).
If k is less than k,, the right-hand expression in (40) is positive; if k is
greater than k;, the expression is negative. This proves Theorem 2 for
n < c k.
For k = o(nl) one has to use (29) instead of (32). One gets
Alog p(n, k) = —log(1—e-*)+0(kY),
which is positive since v = O(1).
The proof of Theorem 3 is very similar except that (31) and (41) must
be replaced by

v k41 ka v k+2
Z ere1 n-—-( 2 )’ Z ot ] "_( 9 )’ (43)
1

v=1 Ve
and
-t d— - dtt o -l( “ l)—i—}u’a"-}—}ua‘l =n+0(1). (44)
0
From (43), Aa = Aj 1a -|—0(a3),

k

A[ > {em —log(1— e"“)}]

y=1

=—log<e=—1)—a{ 4T ) 4 0,
§A{loga) = 45t +0(a=),
—;A{long}=—;a{Aal(.‘,”l). At S O,

Afad ()} = O(ct).
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Hence

Alogq(n, k) = _log(eu 1)-—&{ +} _lu (e“-}-ei")

(ev—1)
—4 e 2 0,
which is zero only if ¥ = log2+An-t (A bounded).
Writing b = ctlog®2, we asee from (44), in view oft

log 2

j Ldt=jo3(1-b) and 4, = oH1—25)+0(Y)

0
that a = ¢ 1(2n)-t+(§log 2—}+Ac2tlog 2in-14O(n-1).
Hence

Alogq(n, k) = {—2A-2'*c4(2+3 b

1—2b
3b 2bt
—log2(l—2b)+(l—2b)

,)}n-*+0(n-1),
which is zero only if

A= _2—ic-l[1+_ _{l—(log 2) Y+ ——=|+0(®n),

(1— 26)’]
k = ky = ua~! = 2i(clog 2)nt—c*log 2(log 2—})+ 2c(1—2b)A+ O(n-1)
= 2¥(clog 2nt—b+ {b(log 2)-1— 1+

+ 20— {1~ (log2) Y} — 2 + Ofn4)
= 2¥(clog 2)nt—1+2b(log 2) 1 — %b 4+ O(n-1),

1 D. Bierens de Haan, Nouvelles tables d'intégrales définies (New York, 1939),
151, formula (104, 5).



