
phase, despite the apparent correct band
filling and suitable interfullerene spacing. It
appears that the orientational state of the
fullerenes and the intercalate-carbon inter-
action subtly control the pair-binding mech-
anism in the fullerides.

REFERENCES AND NOTES

1. P. W. Stephens et al., Nature 351, 632 (1991).
2. K. Prassides et al., Science 263, 950 (1994).
3. K. Kniaz et al., Solid State Commun. 88, 47

(1993).
4. S. Chakravarty, M. P. Gelfand, S. Kivelson, Sci-

ence 254, 970 (1991).
5. C. M. Varma et al., ibid., p. 989; M. Schluter et al.,

Phys. Rev. Lett. 68, 526 (1992); I. I. Mazin et al.,
Phys. Rev. B45, 5114 (1992).

6. R. M. Fleming et al., Nature 352, 787 (1991).
7. S. Satpathy et al., Phys. Rev. B 46, 1773 (1992);

M. P. Gelfand and J. P. Lu, ibid., p. 4367; Appl.
Phys. A 56, 215 (1993); T. Yildirim, S. Hong, A. B.
Harris, E. J. Mele, Phys. Rev. B48, 12262 (1993);
R. P. Gupta and M. Gupta, ibid. 47,11635 (1993).

8. K. Tanigaki et al., Europhys. Lett. 23, 57 (1993).
9. P. C. Chow etal., Phys. Rev. Lett. 69, 2943 (1992).

10. W. N. Setzer and P. von R. Schleyer, Adv. Orga-
nomet. Chem. 24, 553 (1985).

11. J. E. Fischer, in Intercalated Layered Materials, F.
L6vy, Ed. (Reidel, Dordrecht, Netherlands, 1979),
pp. 481-532.

12. Li2CSC60 samples were synthesized by direct
reaction between C60 and alkali metals. Stoichio-
metric amounts of C60, Li, and Cs were intro-
duced into tantalum cells that were sealed in
pyrex glass tubes filled with helium to 500 torr.
These tubes were heated at 230'C for 12 to 24
hours and then baked at 430'C for 2 to 3 weeks.
Susceptibility measurements were performed to
50 mK with a dilution refrigerator. DSC measure-
ments were performed with a Mettler (Hightstown,
NJ) DSC 3000 calorimeter on 10 to 30 mg of
sample, sealed in aluminum pans. Measurements
were carried out in the temperature range of 100
to 450 K at rates of 5 and 10 K/min.

13. PROFIL, 5.12; J. K. Cockcroft, Birkbeck College,
London.

14. K. Tanigaki et al., Phys. Rev. B, in press.
15. H. B. Burgi, R. Restori, D. Schwarzenback, Acta

Crystallogr. B 49, 832 (1993); K. Rapcewicz and
J. Przystawa, Phys. Rev. B, in press.

16. W. Press and A. Huller, Acta Crystallogr. A 29,
252 (1973); J. P. Amoureux and M. Bee, Acta
Crystallogr. B 36, 2636 (1980); J. K. Cockcroft
and A. N. Fitch, Z. Kristallogr. 184, 123 (1988).

17. For spherical-shell scatterers, the structure factor
is the Fourier transform of the convolution of the
position of the center of the shell, R, the scattering
density function p(r) of the shell (with the origin for
r at R), and its thermal motion, ,u

Fhki = Fro,(Q)exp(iQ R) * exp[ - W(Q)] (1)

where Q is the scattering vector, W(Q) is the
Debye-Wallerfactor, and the rotational form factor
of the shell is given by

Frot(Q) = | f(Q) exp(iQ * R) * p(r)dr (2)
unit cell

where f (0) is the atomics scattering factor. The-
orientational scattering density, p (r), is expressed
in terms of the SASH functions [K,V,()] obtained
from linear combinations of spherical-harmonic
functions {Yim(,4l) [F. C. von der Lage and H. A.
Bethe, Phys. Rev. 71, 612 (1947)]}, as

p(r)= 1 CivKiv(0,4r) 8(r - R)/4TrR2 (3)
Iv

where R is the radius of the shell and C,, are
refinable coefficients. Substitution into Eq.2 and
use of the orthonormality of the SASH functions
results in

Frot(Q) =

(4.T)'12fC(O) YlVIl(OR) Cli,Vl(00,,Q) (4)
I v

where j, (OR) are the l-th order spherical Bessel
functions and fc(Q) is the carbon scattering fac-
tor. Only the coefficients, C,,, that transform as the
totally symmetric representation of the point
group of the site symmetry of the shell of atoms
are nonzero. The integer v labels the particular
representation within A,g for a given value of /.

18. K. H. Michel, J. R. D. Copley, D. A. Neumann,
Phys. Rev. Lett. 68, 2929 (1992).

19. I. Hirosawa, J. Mizuki, K. Tanigaki, H. Kimura,
Solid State Commun. 89, 55 (1994).

20. We tested our procedure by refining a room
temperature synchrotron x-ray diffraction profile of

pristine C60, collected at Brookhaven National
Laboratory. Reliable cubic harmonic C,., and
C10,1 coefficients were routinely extracted from
the refinement and were in good agreement with
the values deduced by Chow et al., (9) from
single-crystal data. We thank P. A. Heiney for
making his raw data available to us [J. Phys.
Chem. Solids 53, 1333 (1992)].

21. T. Yildirim et al., Phys. Rev. Lett. 71, 1383 (1993).
22. C. Christides et al., Europhys. Lett. 24, 755 (1993).
23. We thank the Engineering and Physical Sciences

Research Council, United Kingdom, for financial
support and access to Daresbury Laboratory, and
K. H. Michel for useful discussions. M.G. is a partic-
ipant of the University of Sussex-University of Wa-
terloo (Canada) student exchange programme.

3 March 1994; accepted 4 April 1994

Critical Behavior in the Satisfiability of Random
Boolean Expressions

Scott Kirkpatrick and Bart Selman
Determining the satisfiability of randomly generated Boolean expressions with k variables
per clause is a popular test for the performance of search algorithms in artificial intelligence
and computer science. It is known that for k = 2, formulas are almost always satisfiable
when the ratio of clauses to variables is less than 1; for ratios larger than 1, the formulas
are almost never satisfiable. Similar sharp threshold behavior is observed for higher values
of k. Finite-size scaling, a method from statistical physics, can be used to characterize
size-dependent effects near the threshold. A relationship can be drawn between thresholds
and computational complexity.

Properties of randomly generated combina-
torial structures often exhibit sharp thresh-
old phenomena. A good example can be
found in random graphs. A graph is defined
as a set of points (vertices) in space with
lines (edges) connecting pairs of vertices. A
random graph is generated by randomly
selecting pairs of vertices to be connected
by edges. Erdds and Renyi (1) showed that
many properties of random graphs can be
predicted with a very high accuracy. Con-
sider the sizes of connected clusters. A
connected cluster is a group of vertices
where, starting at an arbitrary vertex, one
can reach any other vertex in the group by
traversing one or more edges in the graph.
It is intuitively clear that the more edges in
the graph, the more vertices will be inter-
connected and the larger the clusters will
be. What is surprising is that gradually
increasing connectivity leads to sudden
changes in the distribution of cluster sizes.

Let N be the number of vertices and M
be the number of edges. If we make N and
M large but hold their ratio x =_ M/N
constant, then we can identify two regimes:
When a < 1/2, many small isolated clusters
of maximum size InN are found; when a >

S. Kirkpatrick, IBM Thomas J. Watson Research Cen-
ter, Yorktown Heights, NY 10598, USA. E-mail: kirk@
watson.ibm.com
B. Selman, AT&T Bell Laboratories, Murray Hill, NJ
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1/2, a single giant component with size
proportional to N absorbs many of the
clusters. At the boundary between the two
regimes, when a has its critical value ac =
1/2, the largest clusters are proportional to
N213. Subsequent work (2, 3) has made
precise the sharpness of the threshold: Its
characteristics persist across a range of a of
order N`13 about aoc = 1/2. This is now
recognized as the prototype of "percolation"
phase transitions studied in simple models
of real inhomogeneous materials, which
change sharply from nonconducting to con-
ducting on macroscopic scales as a local
measure of connectedness increases (4).
We shall use this well-understood model to
test techniques for the identification of
critical phenomena in less understood com-
binatonc structures.

Threshold phenomena have recently
been observed in randomly generated Bool-
ean expressions or formulas. Mitchell et al.
(5) considered the k-satisfiability problem
(k-SAT). An instance of k-SAT is a Bool-
ean formula in a special form, called con-
junctive normal form (CNF). An example
of such a formula is (x V y) A (x V y) A (x
V y), where x and y are Boolean variables
and A, V, and the overbar are logical
operators denoting, respectively, AND,
OR, and NOT.

Each Boolean variable can be assigned
either true or false. Depending on the
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Fig. 1. (A) The ratio of the size of the second largest cluster to that of the
largest cluster plotted against a for several values of N. We analyzed
10,000 samples for each data point, giving roughly 1% accuracy through-
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out. (B) Rescaled cluster data (from top to bottom, the curves correspond
to k = 2 to 5).

values assigned to the variables, the formula
as a whole evaluates to either true or false.
For example, if we assign x to true and y to
false, each clause, and therefore our whole
formula, evaluates to true. Each disjunction
(logical OR), such as (x V y), is called a

clause. A k-CNF formula consists of a col-
lection of such clauses, each containing k
variables, joined by conjunctions (logical
ANDs). We use N to denote the total
number of Boolean variables, and M the
number of clauses. So, our example formula
has k = 2, N = 2, andM = 3. In a randomly
generated formula, each clause is generated
by randomly selecting k distinct variables
from the set ofN variables or their negations
(logical NOT). The problem is to determine
whether there is an assignment to the vari-
ables such that all clauses evaluate to true, in
which case the formula is called satisfiable.
The values ofM, N, and their ratio a define
the scale and natural parameters of this
problem just as in the random graph model.

For randomly generated 2-SAT instances,
it has been shown analytically that for large
N, when the ratio a < 1, the instances are

almost all satisfiable, whereas for a > 1,
almost all instances are unsatisfiable (6, 7).
For k 2 3, a rigorous analysis has proven to
be elusive. Loose upper and lower bounds
have been obtained, but there is yet no

rigorous proof of the existence of a threshold
(8). Experimental evidence, however,
strongly suggests a threshold with a = 4.2
for 3-SAT (5, 9, 10).

One of the main reasons for studying
randomly generated CNF formulas is for
their use in the empirical evaluation of
combinatorial search algorithms (10-12).
Formulas with k = 3 (3-CNF) are good
candidates for the evaluation of such algo-
rithms because determining their satisfiabil-
ity is an NP-complete problem (13), a mem-

ber of a class of problems that can easily be
transformed into one another yet for which
no efficient (polynomial time, rather than
exponential) algorithm for their exact solu-
tion is known. For k > 3, k-SAT remains
NP-complete. For k = 1 or 2, the satisfiabil-
ity problem can be solved efficiently (14).

One has to be careful in the use of
randomly generated formulas: Simple heuris-

c
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* 0.6-

0.4-
c

0
0.2
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0 10 20 30
a

tic methods can often quite easily determine
the satisfiability of most such formulas. This
has led to some overly strong claims in the
literature about the handling of very large
formulas. Computationally challenging test
instances can be obtained with high proba-
bility by generating formulas at or near the
threshold (5). Cheeseman et al. (15) made a

similar observation of increased computa-
tional cost for heuristic search at a boundary
between two distinct phases or behaviors of a
combinatorial model.
We provide here a precise characteriza-

tion of the dependence on N of the thresh-
old phenomena for k-SAT with k ranging
from 2 to 6. Our analysis shows that the
threshold in k-SAT closely resembles the

Fig. 2. Fraction of unsatisfiable
Boolean expressions for k-SAT
(from left to right, the groups of
curves correspond to k = 2 to 6)
for N from 12 to 50, typically av-
eraged over 10,000 samples for
roughly 1% accuracy. The curves
sharpen up with increasing N at
each k. Values of N were (for k =
2 through 4) 12, 24, and 50; (for k
= 5 and 6) 12, 20, and 40. The
arrows mark aann.
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Fig. 3. (A) Threshold data for 3-SAT, N = 12 to 100. Arrow marks aann. Both
the threshold shift and the increasing slope in the curves can be accounted
for by finite-size scaling. (B) Rescaled 3-SAT data with ac = 4.17 and v =
1.5, which are determined from experimental data (first, ac is determined as
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the crossing point of the curves at large N, and then v is chosen to make the
slopes match up though the critical region). (C) Rescaled 4-SAT data with
et = 9.75 and v = 1.25 lead to a tighter fit to a single curve. The critical
parameters from this analysis are given in Table 1.

phase transition studied in spin glasses (16).
We use finite-size scaling (4, 17), a method
from statistical physics in which the obser-
vation of how the width of a transition
narrows with increasing sample size gives
direct evidence for critical behavior at a
phase transition. We first illustrate the fi-
nite-size scaling approach on random graphs.

The empirical observation behind phe-
nomenological scaling is that sufficiently
close to a threshold or critical point, systems
of all sizes are indistinguishable except for an
overall change of scale. In the random graph
ensemble, the clusters of size N2/3 that occur
close to its threshold in a random graph with
N = 100 should simply look like coarse
versions of the clusters found in a graph with
N = 10,000. However, to make the com-
parison, the narrow threshold observed for
very large graphs must be expanded in scale
to compare it with the broader threshold
seen in small graphs. In the random graph
ensemble, we know exactly how to do this.
Correcting for the knownN /3 dependence
of the width and normalizing ao to its thresh-
old value ao, we define a rescaled parameter
y _= N"32(a - 1/2) against which to plot
data for a graphical analysis.

But what to plot? A well-behaved quan-
tity for this problem proves to be the sizes of
the larger clusters, normalized to the size of
the largest cluster in the same graph. When
a is small, all clusters should be of the same
general magnitude, so these ratios tend to
unity. For a > 1/2, normalization by the
size of the giant cluster makes all the ratios

tend to zero. Let Lk denote the size of the
k-th largest cluster found in a particular
graph, and () represent averaging over many
samples of graphs with the same M and N.
Curves of (L2/L1) plotted against a (Fig. 1A)
show the sharpening of the transition with
increasing N, and all intersect at the critical
point at = 1/2. Plotting them against y (Fig.
1B), we find that the averaged normalized
cluster sizes follow universal forms through
the critical regions, only separating when
IYI> 1. The values of the size ratios at the
critical point are insensitive to N: They are
(L2/L1) = 0.538 ± 0.0015, (L3/L,) = 0.382
+ 0.001, (L4/L1) = 0.302 ± 0.0006, and
(L5/L1) = 0.252 ± 0.0006 (averaged over
160,000 samples at each N).

It is surprising that finite-size scaling
works here because the standard heuristic
derivations (4, 17) explain the size depen-
dence of a crossover between two phases as
a measurement of a correlation length t,
which diverges at the critical point in an
infinite system. If two points in such a
system are separated by more than t, they
are independent. Combinatoric problems
like the random graph ensemble have no
lengths, and there is no geometric criterion
for separating them into independent sub-
problems. Yet it appears that power-law
behavior in the size N replaces scaling with
respect to a length. This is consistent with
renormalization-group derivations of finite-
size scaling (18), in which lengths occur
only through the volume of the system,
measured here by N.

SCIENCE * VOL. 264 * 27 MAY 1994

Table 1. Critical parameters for random k-SAT.
The errors show the range of each parameter
over which the best fits were obtained.

k aann ac Y50 v

2 2.41 1.0 2.25 2.6 + 0.2
3 5.19 4.17 ± 0.05 0.74 1.5 ± 0.1
4 10.74 9.75 ± 0.05 0.67 1.25 ± 0.05
5 21.83 20.9 ± 0.1 0.71 1.10 ± 0.05
6 44.01 43.2 ± 0.2 0.69 1.05 ± 0.05

We now apply the rescaling procedure to
k-SAT, determining the critical concentra-
tion by exact calculation if possible, by
observation of the measured properties if
not. For example, the intersection of all the
lines in Fig. 1A identifies the critical point
even if it were not known to be 1/2.
We generated extensive data on the

satisfiability of randomly generated k-CNF
expressions with k ranging from 2 to 6 and
determined the fraction of expressions that
is unsatisfiable as a function of aL (Fig. 2).
We used a highly optimized implementa-
tion (9) of the Davis-Putnam procedure
(19). This procedure performs a backtrack
search through the space of possible truth
assignments and is the fastest known com-
plete procedure for satisfiability testing on
many classes of formulas (20).

Figure 2 shows a clear threshold for each
value of k. Except for the case k = 2, the
curves cross at a single point and sharpen up
with increasing N. For k = 2, the intersec-
tions between the curves for the largest
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values of N seem to converge to a single
point as well, although the curves for small-
er N deviate. The thresholds move rapidly
to the right with increasing k. This is
because a clause with k distinct variables
prohibits only one of the 2k truth assign-
ments to the k variables, and thus, the
constraints get weaker as k increases.
We can estimate the behavior of the

threshold and crossover for large values of k
by neglecting the overlap between clauses.
This is called an annealed estimate, by
analogy with annealed theories of materials
(16), which average independently over
sources of disorder. Each of the M clauses
reduces the expected number of satisfying
variable assignments from 2N by a factor of
(2k 1)/(2k) = (1 - 2 -k) - z.W e
plausible estimate for the threshold by asking
when, on average, only one satisfying assign-
ment survives. If 2NyM = 2N(l+al0g2Yk) = 1,
then aann = -l/log2yk 2k In 2. The
annealed estimate aLann is identical to the
upper bound described in (6). See Table 1
for values of atann.

The annealed estimate can be extended
(21) to describe the crossover for large k.
We estimate the probability that there are
no satisfying configurations as (1y-ykN)2
This can be transformed into

[1 -2 (a/an)]2
= [1 - 2-N(a-a...)/aann/2NfN

Io

c
.3
a
S

.2
A
U'

-2 0

where

Yann = N(a - aann)/aann
The extension of this to finite-size (4, 17)
scaling is just

y = Nl/v(a -o)/axc
Figure 3A shows the threshold in more

detail for several values of N for random
3-CNF formulas. Rescaling with ac = 4.17
and v = 1.5 (Fig. 3B), we find that these
two parameters capture both the threshold
shift and the steepening of the curves.
Rescaling the data for random 4-SAT (Fig.
3C) leads to a tighter fit to a single curve.
In Table 1 we give the critical parameters
obtained from this analysis for k from 2 to 6:
v tends to 1, the annealed value, and atann
becomes an increasingly good approxima-
tion to ex, as k increases.

The rescaled curves in Fig. 3, B and C,
are similar in form. Combining the rescaled
curves for all values of k (Fig. 4), we find
that the curves for k > 3 all roughly
coincide. As k --> , the curves approach
the annealed limit derived above. The
curve for k = 2 is also similar but shifted to
the right from the others.

From the perspective of performance
evaluation for search algorithms, the point
where 50% of the formulas are unsatisfiable
is thought to be where the computationally
hardest problems are found (5, 15). Note
that the 50% point lies somewhat to the
right of the scale-invariant point (the point
where the curves cross each other in Figs. 2

2
y

4

Fig. 4. Rescaled crossover functions for k = 2 through 6. The fraction of unsatisfiable formulas is
given by the invariant function fk(y).

and 3A) and shifts with N. Because the
fraction of unsatisfiable formulas is given by
the rescaled function fk(y) (Fig. 4), a de-
scription of the 50% threshold shift follows
immediately. If we define y50 by fk(Y50) =
0.5, then a50 = a,(l + y5oN'1v). For k =
3, a50 Z 4.17 + 3.1N-2/3 (Fig. 3B and
Table 1). Crawford and Auton (9) fit their
data on the 50% point as a function ofN by
arbitrarily assuming that the leading correc-
tion will be 0(1/N). They obtained a50 =
4.24 + 6/N. The two expressions differ by
only a few percent as N ranges from 10 to
00, but our procedure fits better away from
a50. For k = 2, the difference between the
scaling expression and a 1/N extrapolation
will be greater. Given the good fit of our
scaling analysis, we conjecture that this
method can also be of use in the character-
ization of phase transitions in other combi-
natorial problems of interest.

Physicists have speculated that charac-
teristics that lead to interesting critical
phenomena in random systems are at the
root of computational complexity and NP-
completeness. Huberman and colleagues
(22) have focused on the diverging correla-
tion length seen at continuous phase tran-
sitions as the root of computational com-
plexity. This is consistent with the fact that
computationally hard instances of problems
such as graph coloring and 3-SAT are
densest at or near phase transitions (5, 15).
Yet there are other NP-complete problems
(for example, the traveling salesman or
max-clique) that lack a clear phase bound-
ary at which "hard problems" cluster. Per-
colation thresholds are phase transitions
with diverging correlations, yet the cost of
finding the largest cluster never exceeds N
steps. Thus, diverging correlations alone do
not cause exponential complexity.

Fu and Anderson (23) had earlier pro-
posed spin glasses (magnets with two-spin
interactions of random sign) as having in-
herent exponential complexity. Models of
spin glasses are known to possess many
low-lying near-optimal states of no obvious
symmetry and are nonergodic, that is, the
shortest paths between these states can be
arbitrarily long if one moves by the typical
methods of local rearrangement search.
Real spin glass materials exhibit very long
magnetic relaxation times, presumably be-
cause of this nonergodicity.

In fact, both random signs and correla-
tions are important factors in computation-
al complexity but do not necessarily imply
NP-completeness, which is somewhat spe-
cial. In 2-SAT, which has random phases,
finding a satisfying assignment, or proving
its nonexistence, can be done in linear time
by a technique pointed out by Aspvall et al.
(14). The spin glass Hamiltonians studied
in (23) are similar to our 2-SAT formulas,
but the questions studied are different and
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computationally much harder. Finding an
assignment that falsifies the minimum num-
ber of clauses is like finding the ground state
in a spin glass phase and does not reduce to
a single search on the directed graph of
(14). For 2-SAT, in fact, finding such
"ground states" is NP-hard (13). Therefore,
if both diverging correlations (diverging in
size if no lengths are defined) and a "spin
glass" phase occur, we expect search to be
exponentially difficult.
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Langmuir-Blodgett Films of a Functionalized
Molecule with Cross-Sectional Mismatch

Between Head and Tail

J. Garnaes, N. B. Larsen, T. Bj0rnholm,* M. Jorgensen, K. Kjaer,
J. Als-Nielsen, J. F. J0rgensen, J. A. Zasadzinski

A functionalized surfactant has been investigated as floating monolayers by synchrotron
x-ray diffraction and as bilayers transferred to solid supports by the Langmuir-Blodgett
technique through atomic force microscopy. The transfer process is accompanied by an
increase of the unit cell area (about 17 percent) and by an increase of the average domain
diameter of nanometer-scale domains (about three times). The unit cell area of the floating
monolayer corresponds to close packing of the head groups and a noncharacteristic
packing of the tifted alkyl chains. The larger unit cell area of the bilayer film is consistent
with a particular ordered packing ofthe alkyl chains, leaving free space for the head groups.

As a means of organizing complex mole-
cules, the Langmuir-Blodgett (LB) tech-
nique (1) has many potential applications
within molecular electronics, nonlinear op-
tics, and conducting thin films (Fig. 1). In
this context, the structural properties of the
LB films may have important consequences
for applications; for example, the number of
defects may limit electrical contact, while
the degree of order and the sizes of domains
may limit, for example, the conductivity.
In addition, changes of these properties
may occur when the floating monolayers are
transferred to solid substrates. By the com-
bination of x-ray diffraction (XRD) of float-
ing monolayers with atomic force microsco-
py (AFM) of films transferred to solid sup-
ports, it is possible to reveal these features.

Because molecules with relatively large
head groups, compared to alkyl chains, are
often used in functionalized LB films (Fig.
1), the design of the functional organic
molecules requires an understanding of the
packing properties of molecules with a
''cross-sectional mismatch" between head
and tail groups. As an example of such a
molecule, we present a structural study
performed of both a floating monolayer and
a bilayer transferred to a solid substrate.
J. Garnaes and J. F. Jorgensen, Danish Institute of
Fundamental Metrology, Lundtoftevej 100, DK-2800
Lyngby, Denmark.
N. B. Larsen, T. Bjornholm, M. Jorgensen, Centre for
Interdisciplinary Studies of Molecular Interactions, De-
partment of Chemistry, University of Copenhagen,
Fruebjergvej 3, DK-2100 Copenhagen, Denmark.
K. Kjaer and J. Als-Nielsen, Physics Department, Rise
National Laboratory, DK-4000 Roskilde, Denmark.
J. A. Zasadzinski, Department of Chemical and Nu-
clear Engineering, University of California, Santa Bar-
bara, CA 93106, USA.
*To whom correspondence should be addressed.

The particular molecule in question is an
electron acceptor, octadecylthio-1,4-ben-
zoquinone (Fig. lE), which forms nonlinear
optical films when interfaced with electron
donor molecules (2, 3).

Previous comparative studies of floating
monolayers and transferred multilayers
have focused on fatty acids and similar types
of compounds that have head and tail
groups of similar cross-sectional size. Such
compounds have been extensively studied
by XRD in situ at the water surface (4-9)
and by AFM (10-13) and electron diffrac-
tion (14) as transferred multilayers. These
studies have in many cases revealed highly

01~~~~
HO N N N

A B C D E

Fig. 1. Molecules used in LB films in different
areas of research. (A) Fatty acids (26) have
been the prototype for structural studies of LB
films. Opposed to fatty acids, a large head
group is common for electronically active mol-
ecules. The functionalized molecules given in
this table have been used for (B) electrical
rectification (27), (C) conduction/redox activity
(28), (D) nonlinear optics (29), and (E) redox
activity such as electron acceptor (2, 3, 20).
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