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Abstract12

How much can connectomes with synaptic resolution help us understand brain function? An optimistic view13

is that a connectome is a major determinant of brain function and a key substrate for simulating a brain. Here we14

investigate the explanatory power of connectomics using a wiring diagram reconstructed from a larval zebrafish15

brainstem. We identify modules of strongly connected neurons that turn out to be specialized for different16

behavioral functions, the control of eye and body movements. We then build a neural network model using a17

synaptic weight matrix based on the reconstructed wiring diagram. This leads to predictions that statistically18

match the neural coding of eye position as observed by calcium imaging. Our work shows the promise of19

connectome-based brain modeling to yield experimentally testable predictions of neural activity and behavior,20

as well as mechanistic explanations of low-dimensional neural dynamics, a widely observed phenomenon in21

nervous systems.22

Introduction23

It has become a truism that the connectome is “necessary but not sufficient” for understanding the brain (Bargmann,24

2012; Briggman and Bock, 2012). This innocuous assertion includes a range of divergent views. Some declare25

that the connectome is “completely insufficient” (Nassim, 2018) and only a weak constraint at best. Others argue26

that the connectome is a major determinant of brain function (Denk et al., 2012), and the proper starting point for27

brain simulation (Seung, 2012). Due to technological advances in connectomics (Lee et al., 2019; Xu et al., 2020),28

the debate is moving into the domain of empirical study. Here we investigate the power of connectome-based29

modeling of brain function using a wiring diagram reconstructed from a larval zebrafish brainstem.30

We reconstructed the synaptic connectivity of 3000 neurons from a 3D electron microscopic image. Despite31

highly intermingled cell bodies and arbors, the high resolution of the data enables graph clustering algorithms32

to identify two modules with stronger connectivity within than between modules. The modules are biologically33

validated using information about known cell types, and turn out to be specialized for different behaviors: one34

for eye movements and the other for body movements. The oculomotor module is in turn subdivided into two35
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submodules, which appear to be specialized for movements of the two eyes. Our linking of structure and behavior36

by modularity analysis at synaptic resolution is novel in the vertebrate nervous system. It is especially remarkable37

in the brainstem reticular formation, which was regarded by classical anatomists as “undifferentiated” (Allen,38

1932) or “diffuse” (Ramón-Moliner and Nauta, 1966). Previous findings of functionally specialized modules by39

connectivity analysis at synaptic resolution were confined to invertebrate nervous systems (Varshney et al., 2011;40

Jarrell et al., 2012; Pavlovic et al., 2014).41

Having found modules, we then consider whether the wiring diagram can elucidate more detailed aspects of42

oculomotor function. When relating the wiring diagram to function, a common approach starts by extracting rules43

of synaptic connectivity between neuronal cell types, and then applies these rules to explain function (Seung,44

2009). This approach has worked well for direction selectivity in the retina (Briggman et al., 2011; Kim et al.,45

2014; Ding et al., 2016), but is not guaranteed to generalize to other vertebrate brain structures that seem less46

stereotyped and precisely organized than the retina. Here we bypass connectivity rules and take a more direct47

approach: use the wiring diagram to estimate a synaptic weight matrix characterizing physiological interactions48

between neurons, and literally insert that matrix into a network model incorporating a minimal number of additional49

constraints from physiology.50

Although the approach is naive, we use it to create a network model that predicts how eye position is encoded51

in neural activity. There are numerous reasons why our approach might have failed. We estimate the physiological52

strength of a connection based on the number of synapses involved, which is a rather crude measure. The model53

largely neglects the complexities of nonlinear dendritic integration, neuromodulation, and many other aspects of54

biophysics and biochemistry of neurons (Bargmann and Marder, 2013). Surprisingly, the predictions turn out to55

be statistically consistent at a population level with neural activity recorded by calcium imaging of larval zebrafish56

during oculomotor behavior. As far as we know, this is the first time that a vertebrate wiring diagram has been57

used to create a neural network model that predicts the encoding of behavior in neural activity. This success58

shows the promise of connectome-based brain modeling, an approach that should become even more powerful59

as more biophysical realism is incorporated.60

The oculomotor system is of broad conceptual interest because it is a classic example of low dimensional61

neural activity dynamics (Seung, 1996). Low dimensional dynamical attractors have been proposed to underlie62

a large range of computations, from storage of working memory to reduction of noise in sensory and cognitive63

representations (Yoon et al., 2013; Daie et al., 2015; Kim et al., 2017; Green et al., 2017). However, it remains64

mysterious how these attractors are created at the level of individual cells and circuits. Furthermore, little attention65

has been paid to what features of the circuitry lead to the observed low-dimensional patterns of activity in recur-66

rently connected networks and their downstream targets. Our reconstructed wiring diagram allows us to address67

these questions and thereby provides unprecedented insights into the cellular resolution circuitry governing the68

generation and transmission to target structures of low-dimensional attractors hypothesized to underlie a broad69

range of cognitive and non-cognitive tasks.70

Results71

Neuronal wiring diagram reconstructed from a vertebrate brainstem72

We applied serial section electron microscopy (EM) to reconstruct synaptic connections between neurons in a73

larval zebrafish brainstem (Figure 1). The imaged dataset targeted a volume that is known to include neurons74

involved in eye movements (Schoonheim et al., 2010; Miri et al., 2011a; Daie et al., 2015; Lee et al., 2015;75

Vishwanathan et al., 2017). First, the dataset of Ref. (Vishwanathan et al., 2017) was extended by additional76

imaging of the same serial sections. By improving the alignment of EM images relative to our original work, we77

created a 3D image stack that was amenable to semiautomated reconstruction (Lee et al., 2019) of 100× more78

neurons than before. We trained a convolutional neural network to detect neuronal boundaries (Methods) (Lee79
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et al., 2019), and used the output to generate an automated segmentation of the volume. To correct the errors80

in the segmentation, we repurposed Eyewire, which was originally developed for proofreading mouse retinal81

neurons (Kim et al., 2014). Eyewirers proofread ~3000 objects, which included neurons with cell bodies in the82

volume as well as “orphan” neurites with no cell body in the volume (Figure 1A). We will refer to all such objects83

as “nodes” of the reconstructed network. Convolutional networks were used to automatically detect synaptic84

clefts, and assign presynaptic and postsynaptic partner nodes to each cleft (Turner et al., 2020) (Figure 1B-D,85

Methods). The reconstructed dataset contained 2824 nodes, 44949 connections between pairs of nodes, and86

75163 synapses. Most connections (65%) involved just one synapse, but some involved two (19%), three (7.9%),87

four (3.7%), or more (4.0%) synapses, up to a maximum of 21 (Figure S1A).88

After registration of our EM volume to the Z-Brain reference atlas (Randlett et al., 2015) (Figure S2), several89

important groups of neurons and neurites were identified (Methods). It was straightforward to recognize two90

populations of reticulospinal (RS) projection neurons involved in escape behaviors and controlling movements of91

the body axis. The neurons of one population were large and dorsally located, and of the other were smaller and92

ventromedially located (Figure 1H) Comparison with transgenic lines and cranial nerves in the atlas yielded the93

abducens (ABD) neurons controlling extraocular muscles, and Descending Octaval (DO) neurons that mediate94

optokinetic and vestibular signals (Pastor et al., 2019) as part of the sensorimotor transformations needed to95

control eye movement (Figure 1E-H; Figure S3, S4; Methods).96

Axial and oculomotor modules in the brainstem97

Before looking for modularity, we divided the reconstructed neurons into “center” and “periphery” (Methods).98

Neurons in the “center” (540 neurons) are recurrently connected to other reconstructed neurons that are expected99

to predominate in establishing collective dynamics. Neurons in the “periphery” (2344 nodes), in contrast, are100

involved in feedforward pathways that supply input to the center, transmit output from the center, or have negligible101

recurrent connectivity as quantified by eigenvector centrality (62 nodes). For example, the periphery includes ABD102

neurons, which mediate a downstream pathway to the extraocular muscles, as mentioned above. The periphery103

also includes most reticulospinal projecting neurons, such as the Mauthner cell, MiV1 and MiV2 cells (Figure 1H).104

Complex systems, both biological (Wagner et al., 2007) and artificial (Baldwin et al., 2000), can often be105

divided into modules, such that interactions within modules are stronger than interactions between them. While106

such modules are structurally defined, they often turn out to be functionally specialized. To identify modules in our107

reconstructed wiring diagram, we applied a graph clustering algorithm to the center of the network (Methods). This108

analysis revealed a block structure in the connection matrix (Figure 2A). The diagonal blocks of the matrix contain109

the connections within modules, and the off-diagonal blocks contain connections between modules. The diagonal110

blocks are more densely connected than the off-diagonal blocks, meaning that within-module connectivity is111

stronger than between-module connectivity, which is what the graph clustering algorithm is meant to achieve. We112

designated the two modules as modA and modO, for reasons explained below.113

For biological validation of the modules, we checked them against information that was not used by the114

clustering algorithm. Namely, we checked the relation of the modules to two neuron classes (RS and ABD)115

identified above (Figure 2A). RS neurons in the periphery received much stronger connectivity from modA than116

from modO (Figure 2A, RS; Figure S8). Of the 10 smaller RS neurons contained in the center, all were in117

modA, and none were in modO (Figure S8A, black arrows). Furthermore, the 15 RS neurons (small and large)118

contained in the periphery received much stronger connectivity from modA than from modO (Figure S8). Since119

the RS neurons are known to be involved in turning or swimming movements (Gahtan et al., 2002; Orger et al.,120

2008; Huang et al., 2013; Bhattacharyya et al., 2017), we propose that modA plays a role in movements of the121

body axis, and refer to it as the “axial module.”122

All 54 ABD neurons were in the periphery, and received much stronger connectivity from modO than from123

modA (Figure 2A). All 34 of the DO neurons (Figure 2c) were members of modO; none were in modA. ABD124

neurons drive extraocular muscles either directly or through a disynaptic pathway. DO neurons are secondary125
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Figure 1: EM reconstructions of brainstem neurons. A. 3D rendering of reconstructed neurons. Large green cell body in the fore-
ground is the Mauthner neuron (ro - rostral; c - caudal; d - dorsal; v - ventral; l - lateral; m - medial). Inset (top left) shows location of the
unilateral EM volume (black box) relative to the olfactory bulb (OB), tectum (TE), hindbrain (HB), and spinal cord (SC). B-D. Automatic
synapse detection and partner assignment. B) Raw EM image. Scale bar is 750nm. C) Postsynaptic densities (PSDs) identified by a
convolutional net. D) PSDs (red) overlaid onto the original raw image, together with an exemplar presynaptic (blue) and postsynaptic
(yellow) partnership identified by a second convolutional net. E. Sagittal view of identified abducens motor (ABDM, green) and abducens
internuclear (ABDI, magenta) neurons overlaid over representative EM planes (R - rhombomere; * - Mauthner cell soma). F. Coronal
planes showing the locations of the ABDM (left) and ABDI (right) neurons at the planes indicated by dotted black lines in e sagittal view.
Black boxes highlight nerve bundles from these populations. G. Representative ABDM and ABDIneurons with arrows indicating the axons.
H. Reconstructions of large and small reticulospinal (RS) neurons and dorsal octaval (DO) neurons.
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Figure 2: Modularity and functional specialization of interneurons. A. (Top) Matrix of connections in the ‘center’ of the wiring
diagram, with neurons clustered into two modules (modA, modO). (Bottom) Matrix of connections from center to select reticulospinal (RS)
and abducens (ABD) neurons in the periphery. B. (Top) Example connected pairs of modA neurons. (Bottom) Example connected pair
of modO neurons (light and dark blue) and the overlap of their axons with the dendrite of an abducens internuclear cell (magenta) (ro
- rostral; c - causal; d - dorsal; v - ventral). Grid in the background is the same in both panels to facilitate comparison. C. Locations of
reconstructed neuron soma (modA - orange, modO - blue) projected onto the horizontal plane and 1D densities along the mediolateral
(bottom) and rostrocaudal (right) axes (DO - descending octaval; R - rhombomere). Closed circles are neurons with complete somas
inside the reconstructed EM volume. Open circles are locations of the primary neurites exiting the top of the EM volume for cells with
somas above the volume. Inset cartoon shows the region of the hindbrain in the figure. Te - tectum, HB - hindbrain. D. Postsynapses
of neurons in modA and modO along with 1D densities. Every 5th postsynaptic density is plotted for clarity. E. Presynapses of neurons
in modA and modO along with 1D densities. Every 10th presynaptic terminal is plotted for clarity. (m - medial; l - lateral). F. Schematic
illustrating the definition of a potential (i.e. false) synaptic connection identified when a presynaptic terminal (e.g. axon 2) is proximal (red)
to a postsynaptic density (e.g. dendrite 1) but not actually in contact with it. G. Ratio of the number of within-module to the number of
between-module synapses versus threshold distance for true and potential synapses. Table lists the actual true synapse (TS) numbers
for data point with asterisk *. H. Ratio of numbers of synapses from neurons in modA and modO to peripheral neurons (ABD, RS).
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vestibular neurons, which provide input to the vestibulo-ocular reflex. We therefore propose that modO plays a126

role in eye movements, and will refer to it as the “oculomotor module.”127

The modules in Figure 2 were obtained with the Louvain algorithm for graph clustering (Blondel et al., 2008;128

Reichardt and Bornholdt, 2006; Rubinov and Sporns, 2010). Similar modules are obtained when spectral clus-129

tering (Chung, 2005) or a degree-corrected stochastic block model (Peixoto, 2014) are used (Figure S7). As we130

will see later, the binary division into two modules is the first step in a hierarchical clustering procedure. (For131

comparison with flat clusterings, see Figure S5.)132

It does not appear that modA and modO can be regarded as traditional brain “nuclei,” because their somas133

are often intermingled and are highly distributed, extending rostrocaudally over all rhombomeres in the EM vol-134

ume (Figure 2C). Postsynapses and presynapses are even more diffusely distributed than somas (Figure 2D,135

E). However, presynapses of modA and modO do exhibit some spatial segregation along the mediolateral axis136

(Figure 2E), which reflects an underlying spatial organization of axonal arbors (data not shown). Therefore we137

decided to probe to what extent spatial organization could be contributing to modularity.138

To quantify modularity, we defined an index of wiring specificity as the ratio of the sum of within-module139

synapse densities to the sum of between-module synapse densities. Here synapse density is defined as the140

number of synapses normalized by the product of presynaptic and postsynaptic neuron numbers. The wiring141

specificity index was roughly 6 for the center neurons (Figure 2G), based on actual synapses. We defined a142

“potential synapse” as a presynapse and a postsynapse within some threshold distance of each other (Figure 2F),143

similar to the conventional definition as an axo-dendritic apposition within some threshold distance (Stepanyants144

and Chklovskii, 2005). Then we computed the wiring specificity index based on potential synapses rather than145

actual synapses. The index dropped to less than 3 for potential synapses defined by a distance threshold of 5μm,146

and close to 2 at a distance threshold of 10μm (Figure 2G, center-to-center).147

The implication is that the division into modA and modO can be explained by spatial organization, as long148

as location information is precise to within a few microns or less (Motta et al., 2019). On the other hand, the149

coarse (tens of microns) mediolateral segregation of presynapses evident in Figure 2E must contribute little to150

modularity.151

We similarly defined an index of wiring specificity for peripheral populations as the synapse density from152

preferred partner in the center divided by the synapse density from non-preferred partner in the center. This153

wiring specificity index decreases greatly for peripheral RS neurons when potential synapses are considered, but154

the decrease is more modest for ABD neurons (Figure 2H, center-to-periphery). We also found some statistical155

differences between modA and modO in total arbor length, synapse size, and synapse distance from soma156

(Figure S6A, B).157

To further validate our claims regarding function, we performed calcium imaging throughout the hindbrain in158

a separate set of 20 age-matched animals. We resorted to comparison with other animals because our calcium159

imaging of the neurons in the EM volume (Vishwanathan et al., 2017) had highly incomplete coverage due to160

technical limitations. Recordings were obtained while the animals performed spontaneous eye movements in the161

dark, with activity ranging from neurons that exhibited bursts during saccades to those with perfectly persistent162

firing during fixations (Ramirez and Aksay, 2018). The images from 20 age-matched animals were combined163

by registering them to a reference atlas (Randlett et al., 2015). We extracted a map for eye movement signals164

(Methods) that was complete, in the sense that each hindbrain voxel was covered by at least three fish (Methods).165

Relative to modA somas, modO somas were more than twice as likely to be neighbors with somas in the map166

of eye movement signals (Figure S9). While this preference is not extremely strong, it seems reasonably strong167

given that there is intermingling of modA and modO somas (Figure 2C), and registration to the reference atlas168

is unlikely to remove all soma location variability across individuals. The preference disappeared when soma169

locations were artificially jittered by more than 10μm (Figure S9).170

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2022. ; https://doi.org/10.1101/2020.10.28.359620doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.359620
http://creativecommons.org/licenses/by-nd/4.0/


Submodules of the Oculomotor network171

There is a rich repertoire of oculomotor behaviors, which vary in speed of movement, patterns of binocular172

coordination, and other properties. Motivated by this functional diversity, we applied the same graph clustering173

algorithm employed in Figure 2A to modO. Doing this revealed the presence of two submodules characterized by174

strong within-submodule connectivity and weak between-submodule connectivity (Figure 3A).175

For biological validation of the submodules, we examined the connectivity from modO to ABD neurons. This176

center-periphery connectivity provides independent validation, because the graph clustering algorithm relied only177

on intra-center connectivity. The abducens complex is composed of two groups, the motor neurons (ABDM) that178

directly drive the lateral rectus muscle of the ipsilateral eye, and the abducens internuclear neurons (ABDI) that179

indirectly drive the medial rectus muscle of the contralateral eye through a disynaptic pathway. Increased activ-180

ities in both ABDM and ABDI neurons drive eye movements toward the side of the brain on which the neurons181

reside (‘ipsiversive’ movements). Neurons in one submodule of modO preferentially connected to ABDM neu-182

rons, while neurons in the other submodule preferentially connected to ABDI neurons. This is evident from both183

visual inspection (Figure 3A) and quantitative analysis (Figs. 3A, F). We therefore refer to the submodules as184

motor-targeting (modOM) and internuclear-targeting (modOI), and suggest they are largely involved in controlling185

movements of the ipsilateral and contralateral eye, respectively.186

The spatial layout of somas, postsynapses and presynapses for these submodules is shown in Figure 3B-187

D. We again quantified the contribution of spatial organization to wiring specificity using the potential synapse188

formalism, and found that the division of modO into modOM and modOI requires spatial precision of a few microns189

(Figure 3E, center-to-center). A similar finding holds for wiring specificity from modO to ABD (Figure 3F, center-190

to-periphery). Preferences of individual neurons can be extreme: many modO cells connect to ABDM only or191

ABDI only (Figure 3G). There were some statistical differences between modOM and modOI in synapse size and192

synapse distance from the soma (Figure S6D, E).193

Predicting neural coding of eye position from the wiring diagram194

We hypothesized that modO contains the “neural integrator” for horizontal eye movements that transforms angular195

velocity inputs into angular position outputs. The necessity of such a velocity-to-position neural integrator (VPNI)196

was pointed out in the 1960s because sensory and command inputs to the oculomotor system encode eye197

velocity, whereas the extraocular motor neurons additionally carry an eye position signal (Robinson, 1968). The198

transformation of velocity into position is “integration” in the mathematical sense of Newtonian calculus. It has199

been suggested that this transformation is dependent on a relatively high degree of recurrent interactions within200

the VPNI. We note that the prevalence of recurrent interactions in modO was significantly higher than in modA201

(Figure 4A).202

We developed a network model to assess if functional properties of VPNI neurons and their oculomotor203

partners could be predicted from connectomic information. The model consisted of four populations: DO neurons,204

VPNI cells, ABD interneurons, and ABD motoneurons (Figure 4B). DO neurons provide optokinetic and vestibular205

velocity signals to the abducens and VPNI; they exhibit little to no change in activity during spontaneous saccades206

and fixations (Pastor et al., 2019). VPNI neurons were identified as all neurons in modO excluding the DO207

cells; this was justified based on comparison of the extent of the reconstructed volume and functional maps208

of oculomotor cell types (see Methods). Abducens neurons receive input from both VPNI and DO neurons.209

We focused on predicting the relative strength of the eye position signal in these different populations during210

spontaneous fixation behavior.211

A minimal set of physiological constraints were imposed on the model. The signs of the weights were chosen212

according to rationales described in the Methods. Briefly, all DO cells were inhibitory (Figure S3C, Methods) (Pas-213

tor et al., 2019), and the remaining cells were excitatory (Lee et al., 2015) (Figure S9C, Methods). The recurrent214

network model omitted interactions with neurons on the other side of the brain, based on previous physiological215
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Figure 3: Submodules specialized for the two eyes. A. (Top) Matrix of connections within modO organized into two sub-modules
termed modOM and modOI. (Bottom) Projections of modOM and modOI onto abducens motor neurons (ABDM) and abducens internuclear
neurons (ABDI) populations. B. Locations of reconstructed neuron soma along with 1D densities for neurons within modOM (blue) modOI

(brown). Symbols, inset, and orientation as in Figure 3C. C-D. Postsynaptic densities (C) and presynaptic terminals (D) in modOI and
modOM. Every 5th synaptic site was plotted for clarity. E. Ratio of the number of synapses within-modules modOM and modOI to the
number between-modules as a function of potential synapses distance. Table lists the actual true synapses numbers for data point with
asterisk *. F. Ratio of the number of synaptic contacts between a modO submodule and its preferred peripheral partner vs those between
a modO submodule and its non-preferred peripheral partner. Numbers in tables represent normalized synapse counts defined as the ratio
of sum of all synapses in a block to the product of the number of elements in the block. G. Ocular Preference index (OPI) for modOM and
modOI neurons. DO vestibular neurons were not included.
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studies indicating that persistent activity in the oculomotor integrator can be generated independently by each half216

of the brain (Aksay et al., 2007a; Fisher et al., 2013; Gonçalves et al., 2014). Likewise, we omitted interactions217

between modO and modA, based upon their separate roles in controlling eye movement versus body movement218

behaviors (Orger et al., 2008; Huang et al., 2013; Pujala and Koyama, 2019) and the body-fixed nature of the219

oculomotor behavior being investigated.220

To create a network model we first derived a synaptic weight matrix from our EM reconstruction as follows.221

Each element Wij of the weight matrix is the physiological strength of the connection received by neuron i from222

neuron j. We approximated Wij as proportional to Nij , the number of synapses received by i from j. This223

approximation effectively assumes that all synapses involved in a connection have the same strength. Then, for224

each neuron i, we divided by ΣkNik, where the sum includes all synapses received by neuron i, including those225

from neurons outside modO. Therefore the final synaptic weight matrix took the form Wij = ±β Nij∑
k Nik

.226

The normalizing factor in the denominator has two interpretations. Scaling the strength of an individual227

synapse by the total number of synapses incoming to a neuron is similar in concept to homeostatic synaptic228

scaling as observed experimentally (Turrigiano, 2012). Alternatively, the normalization can be viewed as a way229

of compensating for truncation of dendritic arbors by the borders of the EM volume. Due to the normalization,230

each recurrent connection strength Wij is proportional to the fraction of the total inputs that neuron j provides to231

neuron i, and the sum ΣjWij over neurons in modO gives the “recurrent fraction” of input to neuron i in modO,232

defined as the fraction of synapses received from other modO neurons (Figure 4A. Average recurrent fraction233

within modA and modO are μmodA = 0.06± 0.05, μmodO = 0.11± 0.08, p = 1.2x10-18, Wilcoxon-rank sum test).234

Linear model neurons (Cannon et al., 1983) were used for simplicity because most VPNI cells have firing235

rates that vary linearly with eye position for ipsilateral eye positions (McFarland and Fuchs, 1992; Aksay et al.,236

2000). For each neuron, the slope of this linear rate-position relationship is known as the neuron’s eye position237

sensitivity. At this point, we could have simulated the dynamics of the network to extract predictions of relative238

eye position sensitivities. This was unnecessary because the results of simulation can be derived analytically239

from an eigenanalysis of the synaptic weight matrix, following previous theoretical work (Seung, 1996). The240

eigenanalysis yielded predictions of the eye position sensitivities of DO, VPNI and downstream ABD neurons, up241

to an overall scale factor (Methods). Each of the four populations displayed a characteristic distribution of eye242

position sensitivities (Figure 4E).243

To test the model prediction, we extracted eye position sensitivities from calcium imaging experiments con-244

ducted in other larval zebrafish (Methods). We assessed eye position sensitivity during spontaneous fixations in245

the dark (Figure 4C, D), when persistent firing depends strictly on the internal dynamics of the VPNI. Because246

the imaged neurons come from other individuals, they cannot be placed in one-to-one correspondence with neu-247

rons in our EM volume. Therefore we resorted to a population-level comparison. The distribution of eye position248

sensitivities for each population matched the model predictions quite well (Figure 4E). We only considered three249

classes of neurons (VPNI, DO, and ABD) in the experiments, which could not easily distinguish between ABDM250

and ABDI neurons. However, the bimodal distribution for the ABD neurons in the experiments corresponds well251

to a mixture of the model ABDM and ABDI distributions.252

Remarkably, the match between model predictions and experiments in Figure 4E involved fitting of only one253

free parameter. As mentioned above, the overall scale of model eye position sensitivities is arbitrary, and is254

related to the “read-out” of eye position from neural activity. This overall scale factor was adjusted to match255

model with experiment for the means of the VPNI distributions. The good match between the shapes of the VPNI256

distributions does not depend on any further parameter fitting. The same is true for the matches between the257

model and experimental distributions for the other neuron classes. There is one other adjustable parameter in the258

model, a scale factor in the weight matrix definition that was tuned to make the network operate as an integrator,259

but this scale factor is not otherwise involved in the prediction of eye position sensitivities.260

To test the robustness of our result, we changed the model by adjusting the threshold for dividing nodes into261

center and periphery (Methods). Even if the number of neurons in the center was reduced by up to 50%, the262
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Figure 4: Connectome-based prediction of functional properties in the oculomotor system. A. Histogram of the fraction of all
neurons that are recurrent within the identified modules. Box and whisker plots show medians (black line), 25th and 75th percentiles
(box edges), and outliers (red +). B. (Left) Connectivity of neurons within modO, with DO neurons grouped separately for visualization.
Connectivity from modO to ABD neurons in the periphery is plotted below. (Right) Schematic of a zebrafish summarizing connectivity
between the different cell types, VPNI (modOM+modOI), DO, and ABD (ABDM+ABDI). C. Raw activity trace (green) from calcium imaging
and the deconvolved fluorescence trace (dotted black line) of an example abducens neuron along with the eye position of the ipsilateral eye
(black). D. For the neuron shown in (C), deconvolved fluorescence vs eye position (gray) and a best-fit relationship (red) that determines
the relative eye position sensitivity k̃. E. Histograms of the relative eye position sensitivity (k̃) predicted from a connectome-based model
(black) as compared to values determined from functional imaging experiments (green). Bimodal distribution of the ABD neurons in the
model corresponds to ABDM (lower) and ABDI (upper) populations. Circles represent the average values and triangles represent medians.
Histograms for experimental data are showing values inside the 1st and 99th percentile.
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model distributions of eye position sensitivities remained similar (Figure S10A). We also corrupted our recon-263

structed wiring diagram by simulating errors in the automated synapse detection, and found that the population264

distributions of eye position sensitivities remained very similar (Figure S10C).265

We wondered whether potential connectivity would have been sufficient for our network modeling. We esti-266

matedNij by the number of potential synapses onto neuron i from neuron j, and then computed the weight matrix267

Wij by the normalization described above (Methods). When our weight matrix based on potential synapses was268

substituted into our network model, we obtained population distributions for eye position sensitivities that were269

qualitatively different from experimental measurements (Figure S10D).270

Discussion271

Brain modules have previously been found by analyzing networks in which nodes represent brain regions (Zingg272

et al., 2014; Oh et al., 2014; Bota et al., 2015). We have instead considered networks in which nodes represent273

individual neurons, and links represent synaptic connections. The modules in our brainstem wiring diagram274

were validated using additional biological information, which also enabled plausible assignments of biological275

functions. A related study in visual cortex (Lee et al., 2016) did not yield modules that could be biologically276

validated or assigned functions. We proposed a hierarchical division (Figure 2, 3), but flat clustering yields similar277

modules (Figure S5).278

When defined at cellular resolution, a module might sound similar to a neuronal cell type (Seung and Sümbül,279

2014). The concepts have some relation but are different. The neurons of a module are strongly connected with280

each other by definition, whereas the neurons of a cell type might not be synaptically connected with each other281

at all.282

We defined a potential synapse as a presynapse-postsynapse pair within some threshold distance, while283

the conventional definition is as an axodendritic apposition (Stepanyants and Chklovskii, 2005; Reimann et al.,284

2015). Our definition is convenient for EM, which reveals the locations of presynapses and postsynapses, but285

is also relevant for light microscopy if these synaptic structures are labeled. We found that some aspects of286

modular organization (Figs. 2D, 3C) and forward modeling of eye position sensitivities (Figure S10d) could be287

predicted from potential synapses if the threshold distance were 2 μm or less. Based on this number, one might288

jump to the conclusion that at least some of our findings could have been obtained by diffraction-limited light289

microscopy. However, this technique usually requires the pooling of sparsely labeled neurons reconstructed from290

many animals (Shepherd et al., 2005; Jefferis et al., 2007), leading to two complications. First, spatial smoothing291

of arbors, typically over tens of microns, may be required to dampen random fluctuations in the number of potential292

synapses (Shepherd et al., 2005; Stepanyants and Chklovskii, 2005). Second, registration of multiple brains293

introduces additional positional uncertainty. Therefore it seems challenging to replace EM by diffraction-limited294

light microscopy, given that our model predictions become very poor or collapse when the threshold distance for295

potential synapses is 10μm (Figs. 2D, 3C, Figure S10D). Novel light microscopies that beat the diffraction limit296

(Igarashi et al., 2018) could work in principle, but in practice have not so far yielded comparably rich information297

about neural circuits.298

We identified modO as containing the velocity-to-position neural integrator (VPNI) of the oculomotor system.299

Previous physiological studies of VPNI cells mainly focused on R7/8 (Miri et al., 2011b; Lee et al., 2015; Daie300

et al., 2015; Vishwanathan et al., 2017). Our map of modO (Figure 2C) suggests that the VPNI should also include301

R4-6. The extension is consistent with a previous observation that VPNI function was only partially abolished by302

sizable inactivation of R7/8 (Miri et al., 2011b), and with previous reports of eye position signals in R4-6 neurons303

that are not abducens neurons (Ramirez and Aksay, 2018; Brysch et al., 2019).304

The VPNI has served as a model system for understanding persistent neural firing (Major and Tank, 2004;305

Joshua and Lisberger, 2015). The VPNI also exhibits low-dimensional brain dynamics, which has been found306

to underlie a wide array of motor (Cannon and Robinson, 1987; Seung, 1996; Aksay et al., 2001), navigational307
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(Blair and Sharp, 1995; Samsonovich and McNaughton, 1997; Burak and Fiete, 2006, 2009; Yoon et al., 2013;308

Kim et al., 2017; Turner-Evans et al., 2020) and cognitive functions (Romo et al., 1999; Miller et al., 2005; Daie309

et al., 2015; Inagaki et al., 2019). Twenty-five years ago, “line attractor” and “ring attractor” network models were310

proposed for low-dimensional neural dynamics in the oculomotor (Seung, 1996) and head direction systems311

(Skaggs et al., 1995; Zhang, 1996), respectively. Connectomic information from the Drosophila head direction312

system (Turner-Evans et al., 2020) is currently being used to inform ring attractor network models (Skaggs et al.,313

1995; Zhang, 1996). Our work similarly constrains attractor network models of the oculomotor system (Seung,314

1996; Fisher et al., 2013). This is the beginning of a trend in which connectomics will aid network modeling of315

low-dimensional neural dynamics, a general phenomenon that has been recognized in many brain regions and316

species (Yoon et al., 2013; Daie et al., 2015; Kim et al., 2017; Green et al., 2017; Vyas et al., 2020).317

In most neural network models of brain function, the synaptic weight matrix has been regarded as the solution318

to an “inverse problem.” Given the observed effects (neural activity and behavior), the modeler attempts to identify319

the unobserved cause (weight matrix). Connectomics offers the possibility of treating network modeling as more320

of a “forward problem.” The forward approach has been feasible for small nervous systems, in which the weight321

matrix can be directly observed and completely mapped by synaptic physiology (Hartline, 1979).322

A similar “forward” approach has been applied in dedicated sensory circuits. Wanner and Friedrich (Wanner323

and Friedrich, 2020) demonstrated how a connectome could be used to model whitening of odor representations324

in a vertebrate olfactory bulb (Wanner and Friedrich, 2020). An EM wiring diagram was used to constrain a model325

of orientation and direction selectivity in the Drosophila visual motion detection circuit (Tschopp et al., 2018),326

though fine-tuning by backpropagation learning was necessary. At a lower, “mesoscopic” level of resolution,327

inter-area projection maps in primates have been used to explain the temporal dynamics of cortical responses328

(Wang et al., 2020).329

Our forward approach started from a synaptic weight matrix estimated from EM reconstruction, and suc-330

ceeded in predicting the statistical distribution of relative eye position sensitivities for several neural populations331

measured by calcium imaging of animals during ocular fixations (Figure 4C). Some “inverse” aspects to our332

modeling remained, because we constrained ourselves to modeling eye movements in the absence of body333

movements and used known signs of connections (Lee et al., 2015; Pastor et al., 2019), physiological observa-334

tions about the approximate linearity of oculomotor responses (Aksay et al., 2000, 2001) and independence of335

the bilateral halves of the circuit (Aksay et al., 2007b; Debowy and Baker, 2011).336

Our success in modeling eye position sensitivities through a forward approach with minimal physiological337

constraints is perhaps surprising. This is especially so given our naive estimates of synaptic weights from the338

simple measure of number of synapses, simplified linear rate model neuron treatment of cell morphology, synaptic339

and intrinsic cellular biophysics, and our neglect of neuromodulation (Bargmann and Marder, 2013). Comparisons340

between model predictions and physiological data at the level of single cells, rather than populations, might require341

more sophisticated modeling of cell- and synapse-specific biophysics.342

As more connectomes become available in other settings, it will be important to consider which physiological343

constraints need to be incorporated to make appropriate use of these powerful datasets. Answers to this question344

depend on many factors including the breadth of behaviors to be produced in a single model, the range of345

dynamics of the constituent components, and the degree to which the model is to produce quantitative versus346

qualitative matches to data. Nevertheless, we hope our work suggests how, when guided by knowledge of the347

various behaviors a circuit participates in, and appropriate physiological constraints gleaned from recordings and348

perturbations of activity, it may be possible in even more complex circuits to identify physiological modules whose349

function can be well understood using the connectome-based analysis and modeling approach taken here.350
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Methods613

Image acquisition and alignment614

We acquired a dataset of the larval zebrafish hindbrain that extended 250 µm rostrocaudally and includes rhom-615

bomeres 4 through 7/8 (R4 to R7/8). The volume extends 120 µm laterally from the midline and 80 µm ventrally616

from the plane of the Mauthner cell axon. The ssEM dataset was an extension of the original dataset in ref617

Vishwanathan et al. (2017) and was extended by additional imaging of the same serial sections. Only a few tens618

of neurons had been manually reconstructed in our original publication on the ssEM dataset Vishwanathan et al.619

(2017) . The dataset was stitched and aligned using a custom package, Alembic (see Code availability). The620

tiles from each section were first montaged in 2D, and then registered and aligned in 3D as whole sections. Point621

correspondences were generated by block matching via normalized cross-correlations both between tiles and622

across sections. The final set of parameters that were used are listed in table .623

Table1: Parameters used for image alignment624

Step Images BlockMatches Transformation Typical block
radius (pixels) Typical search

radius (pixels)
Scale Bandpass (after

downsampling)

Premontage Tiles (8k x 8k) 1 between each pair of adjacent tiles Translation Entire overlap Entire overlap 0.5 (0,10)

Elastic Montage Tiles (8k x 8k)
Regular triangular mesh, 100 px, in the
overlapping regions between adjacent

tiles
Elastic 120 150 0.5 (0,20)

Pre-Prealignment sections 1 between each adjacent section Translation 35% of images entire images 0.03

Prealignment sections
Regular triangular mesh, 2000 px,

between sections
Regularized affine 800 3500 0.25 (2.5,12.5)

Rough alignment sections
Regular triangular mesh, 375 px,

between sections
Elastic 500 300 0.25 (2.5,10)

Fine alignment sections
Regular triangular mesh, 100 px,

between section
Elastic 300 70 1 (2.5,15)

625

626

Errors in each step were found by a combination of programmed flags (such as lower than expected corre-627

spondences, small search radius, large distribution of norms, or high residuals after mesh relaxation) and visual628

inspection. They were corrected by either changing the parameters or by manual filtering of points. In most629

cases, the template and the source were both passed through a band-pass filter. Stitching of tiles (montaging)630

within a single section was split into a linear translation step (premontage) and a non-linear elastic step (elastic631

montage). In the premontage step individual tiles were assembled to have 10% overlap between neighboring632

tiles, as specified during imaging, and by fixing a single tile (anchoring) in place. They were then translated633

row by row and column by column according to the single correspondence found between the overlaps. In the634

elastic montage step, the locations of the tiles were initialized from the translated locations found previously, and635

blockmatches were computed every 100 pixels on a regular triangular mesh (see Table for parameters used).636

Once the correspondences were found, outliers were filtered by checking the spatial distribution of the cross-637

correlogram (sigma filter), height of the peak of the correlogram (r value), dynamic range of the source patch638

contrast, kurtosis of the source patch, local consensus (average of immediate neighbors), and global consen-639

sus (inside the section). After the errors had been corrected, by filtering bad matches, the linear system was640

solved using conjugate gradient descent. The mean residual errors were in the range of 0.5 - 1.0 pixels after641

relaxation. The inter-section alignment was split into a translation step (pre-prealignment), a regularized affine642

step (prealignment), a fast coarse elastic step (rough alignment), and a slow fine elastic step (fine alignment). In643

the pre-prealignment step, a central patch of the given montaged section was matched to the previous montaged644

section to obtain the rough translation between two montaged sections. In the prealignment step, the montaged645

images were offset by that translation, and then a small number of correspondences were found between the two646

montaged sections, which were solved for a least-squared-residual affine transform, regularized with 10% (empir-647

ically derived) of identity transformation to reduce shear from propagating across multiple sections. Proceeding648

sequentially allowed the entire stack to get roughly in place. The mean residual errors were in the range of 3.5649

pixels after relaxation.650
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Convolutional Net Training651

Dataset652

Four expert brain image analysts (Daan Visser, Kyle Willie, Merlin Moore, and Selden Koolman) manually seg-653

mented neuronal cell boundaries from six subvolumes of EM images with VAST (Berger et al., 2018), labeling654

194.4 million voxels in total. These labeled subvolumes were used as the ground truth for training convolutional655

networks to detect neuronal boundaries. We used 187.7 million voxels for training and reserved 6.7 million voxels656

for validation.657

Network architecture658

To detect neuronal boundaries, we used a multiscale 3D convolutional network architecture similar to the bound-659

ary detector in (Zung et al., 2017). This architecture was similar to U-Net (Ronneberger et al., 2015), but with660

more pathways between scales. We augmented the original architecture of (Zung et al., 2017) with two modifi-661

cations. First, we added a “lateral” convolution between every pair of horizontally adjacent layers (i.e. between662

feature maps at the same scale). Second, we used batch normalization (Ioffe and Szegedy, 2015) at every layer663

(except for the output layer). These two architectural modifications were found to improve boundary detection ac-664

curacy and stabilize/speed-up training, respectively. For more details, we refer the reader to the Supplementary665

Section A.1 and Figure S10 in (Zung et al., 2017).666

Training procedures667

We implemented the training and inference of our boundary detectors with the Caffe deep learning framework668

(Jia et al., 2014). We trained the networks on a single Titan X Pascal GPU. We optimized the binary cross-entropy669

loss with the Adam optimizer (Kingma and Ba, 2014), initialized with α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 0.01.670

The step size α was halved when the validation loss plateaued, three times during training at 135K, 145K, and671

175K iterations. We used a single training example (minibatch of size 1) to compute gradients for each training672

iteration. The gradient for target affinities (the degree to which image pixels are grouped together) in each training673

example was reweighted dynamically to compensate for the high imbalance between target classes (i.e. low and674

high affinities). Specifically, we weighted each affinity inversely proportional to the class frequency, which was675

computed independently within each of the three affinity maps (x, y, and z) and dynamically in each training676

example. We augmented training data using (1) random flips and rotations by 90°, (2) brightness and contrast677

augmentation, (3) random warping by combining five types of linear transformation (continuous rotation, shear,678

twist, scale and perspective stretch), and (4) misalignment augmentation (K. Lee et al. 2017) with the maximum679

displacement of 20 pixels in x- and y-dimension. The training was terminated after 1 million iterations, which took680

about two weeks. We chose the model with the lowest validation loss at 550K iterations.681

Convolutional Net Inference682

The above trained network was used to produce an affinity map of the whole dataset using the ChunkFlow.jl683

package (git link, (Wu et al., 2019)). Briefly, the computational tasks were defined in a JSON formatted string684

and submitted to a queue in Amazon Web Services Simple Queue Service (AWS SQS). We launched 13 com-685

putational workers locally with NVIDIA TitanX GPU. The workers fetched tasks from the AWS SQS queue and686

performed the computation. The workers first cut out a chunk of the image volume using BigArrays.jl (git link) and687

decompose it into overlapping patches. The patches were fed into the convolutional network model to perform688

inference in PyTorch (Paszke et al., 2017). The output affinity map patches were blended in a buffer chunk. The689

output chunk was cropped around the margin to reduce boundary effects. The final affinity map chunk, which is690
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aligned with block size in cloud storage, was uploaded using BigArrays.jl. Both image and affinity map volumes691

were stored in Neuroglancer precomputed format (https://neurodata.io/help/precomputed/). The inference took692

about 17 days in total and produced about 26 terabytes of affinity map.693

Chunk-wise Segmentation694

In order to perform segmentation of the entire volume, we divided the volume into ‘chunks’. Overlapping affinity695

map chunks were cut out using BigArrays.jl, and a size-dependent watershed algorithm (Zlateski and Sebas-696

tian Seung, 2015) was applied to agglomerate neighboring voxels to make supervoxels. The agglomerated su-697

pervoxels are represented as a graph where the supervoxels are nodes, and the mean affinity values between698

contacting supervoxels are the edge weights. A minimum spanning tree was constructed from the graph by re-699

cursively merging the highest weight edges. This over-segmented volume containing all supervoxels and the700

minimum spanning tree was ingested into Eyewire (https://eyewire.org) for crowdsourced proofreading.701

Semi-automated reconstructions on Eyewire702

Neurons were chosen for proofreading in Eyewire based on an initial set of ‘seed’ neurons that were identified703

as carrying eye position signals, by co-registering the EM volume to calcium imaging performed on the same704

animal (Vishwanathan et al., 2017). All pre- and postsynaptic partners of the initial seed of 22 neurons were705

reconstructed. Following this we reconstructed partners of the neurons that were reconstructed in the initial706

round in a random manner. Eyewirers were provided the option of agglomerating (merging) supervoxels using a707

slider to change the threshold of agglomeration. To ensure accurate reconstructions, we did two things: (1) only708

players who met a certain threshold, determined by their accuracy on a previously published retinal dataset (Kim709

et al., 2014; Bae et al., 2018) were allowed to reconstruct zebrafish neurons and (2) the reconstructions were710

performed by two players in two rounds, in which the second player could modify the first player’s reconstruction711

(Supplementary Information). Finally, after two rounds of reconstruction, neurons were validated by expert in-712

house image analysts, who each have more than 5000 hrs of experience. The resulting accuracy of the players in713

the crowd as compared to experts (assuming experts are 100%) was >80% in the first round and ~95% after the714

second round of tracing. The validated reconstructions were subsequently skeletonized for analysis purposes.715

Player accuracy was calculated as an F1 score, where F1 = 2TP / (2TP+FP+FN), where TP represents true716

positives, FP represents false positives, and FN represents false negatives. All scores were calculated as a sum717

over voxels. TP was assigned when both the player and the expert agreed the segmentation was correct. FN718

was assigned when the player missed segments that were added in by the expert. FP was assigned when the719

player erroneously added segments that did not belong. Two F1 scores were calculated for each player, once for720

round 1 and once for round 2. No player played the same neuron in both rounds. Typically at an agglomeration721

threshold of 0.3 the segmentation had an F1 score of 62%.722

Skeletonization723

The neuron segmentation IDs were ingested to an AWS SQS queue and multiple distributed workers were724

launched in Google Cloud using kubernetes. Each worker fetched the segmentation chunks associated with725

a neuron ID. The segmentation voxels were extracted as a point cloud and the Distance to Boundary Field (DBF)726

was computed inside each chunk. Finally a modified version of the skeletonization algorithm TEASAR was ap-727

plied (Sato et al., 2000). Briefly, we constructed a weighted undirected graph from the point cloud, where the728

neighboring points are connected with an edge and the edge weight is computed from the DBF. Then, we took729

the point with the largest DBF as source, and found the furthest point as the target. The shortest path from source730

to target in the graph was computed as the skeleton nodes. The surrounding points were labeled as visited, and731

the closest remaining unvisited point was taken as the new source. We repeated this process until all the points732
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were visited. The skeleton node diameter was set as its DBF. The skeleton nodes were post-processed by remov-733

ing redundant nodes, removing ‘hairs’, based on diameter, removing branches inside soma, downsampling the734

nodes, merging single-child segments, and smoothening the skeleton path. All skeletonization was performed at735

MIP level 4736

Synapse detection737

Synapses were automatically segmented in this dataset using neural networks to detect clefts and assign the738

correct partner as previously described (Turner et al., 2020). Briefly, a subset of the imaged data (219µm3)739

was selected for annotation. The annotations were performed using the manual annotation tool VAST (Berger740

et al., 2018). Trained human annotators labeled the voxels that were part of the postsynaptic density (PSD) and741

presynaptic docked vesicle pools. A convolutional neural network was trained to match the PSD, using 107µm3
742

as a training set, and 36µm3 as a validation set, leaving the remaining 76µm3 as an initial test set. All of these743

sets were compared to the predictions of the model tuned to an F-Score of 1.5 on the validation set in order to744

bias towards recall, where recall = TP / (TP + FN). Biasing the predictor towards recall reduces false negatives at745

the cost of more false positives, which are easier to correct. Apparent human errors were corrected, and training746

was restarted with a new model. We also later expanded the test set by proofreading similar automated results747

applied to new sections of the datasets (to increase representation of rare structures in the full image volume).748

The final model used a RS-UNet architecture (Lee et al., 2017) implemented using PyTorch (Paszke et al., 2017),749

and was trained using a manual learning rate schedule, decreasing the rate by a factor of 10 when the smoothed750

validation error converged. The final network reached 86% precision and 83% recall on the test set after 230k751

training iterations.752

A convolutional network was also trained to assign synaptic partners to each predicted cleft as previously753

described (Turner et al., 2020). All 361 synapses in the ground truth were labeled with their synaptic partners,754

and the partner network used 204 synapses as a training set, 73 as a validation set, and the remaining 84 as a755

test set. The final network was 95% accurate in assigning the correct partners of the test set after 380k training756

iterations.757

The final cleft network was applied across the entire image volume, and formed discrete predictions of synaptic758

clefts by running a distributed version of connected components. Each cleft was assigned synaptic partners by759

applying the partner network to each predicted cleft within non-overlapping regions of the dataset (1024 x 1024760

x 1792 voxels each). In the case where a cleft spanned multiple regions, the assignment within the region that761

contained the most of that cleft was accepted, and the others were discarded. Cleft regions whose centroid762

coordinates were within 1μm and were assigned the same synaptic partners were merged together in order to763

merge artificially split components.764

Finally, spurious synapse assignments (i.e postsynapses on axons and presynapses on dendrites) were765

cleaned by querying the identity of the 10 nearest synapses to every synapse, where each synapse was as-766

sociated with its closest skeleton node on both the pre- and post-synaptic sides. If the majority of the 10 nearest767

neighbors were of the same identity (pre or post), then the synapse was assigned correctly. If the majority were768

of an opposing identity, these synapses were assigned wrongly and were deleted. This process eliminated 1975769

falsely assigned synapses (~2% of the total).770

Registration to reference atlas771

Registration of the EM dataset to the Z-Brain reference atlas (Randlett et al., 2015) was carried out in two stages.772

We created an intermediate EM stack from the low resolution (270 nm/pixel) EM images of the entire larval brain773

tissue. This intermediate stack had the advantage of a similar field of view as compared to the LM reference774

volume, while also being of the same imaging modality as the high-resolution EM stack. The low-resolution EM775

stack was registered to the reference brain by fitting an affine transform that maps the entire EM volume onto the776
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LM volume. To do this, we selected corresponding points such as neuronal clusters and fiber tracts using the tool777

BigWarp (Bogovic et al., 2016). These corresponding points were used to determine an affine transform using778

the MATLAB least squares solver (mldivide). Subsequently, the intermediate EM stack, in the same reference779

frame as the Z-Brain atlas, was used as the template to register the high-resolution EM stack onto it. This was780

performed in a similar manner by selecting corresponding points and fitting an affine transform. The resulting781

transform would transform points from the high-resolution EM space to the reference atlas space. This transform782

was used to map the reconstructed skeletons from high-resolution EM space to the reference atlas space.783

Identification of ABD neurons784

We identified abducens motor neurons (ABDM, Figure 1C, Figure S3) by their overlap with the mnx transgenic785

line (S3A). ABDM axons exited R5 and R6 through the abducens (VIth) nerve (Figure 1C, black box) as reported786

previously (Vishwanathan et al., 2017). Contraversive horizontal movements of the eye are driven by the medial787

rectus muscle, which are innervated by motor neurons in the oculomotor nucleus, which in turn are driven by inter-788

nuclear neurons (ABDI) in the contralateral abducens complex (Figure 1C). ABDI neurons were identified (Figure789

S3A) by their overlap with two nuclei in the evx2 transgenic line that labels glutamatergic interneurons. The ABDI790

neurons were just dorsal and caudal to the ABDM neurons, and their axons crossed the midline (Cabrera et al.,791

1992).792

Identification of DO neurons793

We identified a class of secondary vestibular neurons known as Descending Octavolateral (DO) neurons (Figure794

11D, brown). We observed that DO cells received synapses from primary vestibular afferents. The latter were795

orphan axons in R4 identified as the vestibular branch of the vestibulocochlear nerve (VIIIth nerve) by comparison796

with the isl-2 line, which labels the major cranial nerves (Figure S3B, blue axons).797

Identification of Reticulospinal neurons798

The RS neurons were divided into large and small groups (Figure1H). Large RS neurons were the M, Mid2, MiM1,799

Mid3i and CaD neurons. Small RS neurons were RoV3, MiV1, MiV2. These were identified by their stereotypic800

locations (Metcalfe et al., 1986) and by comparison within the Z-Brain atlas (Figure S4).801

Centrality-based division into center and periphery802

The division of the reconstructed wiring diagram into center and periphery is based on standard measures of803

“centrality” which have been devised in network science (Newman, 2018). We define the simplest measure,804

known as degree centrality, as the geometric mean of the in-degree and out-degree of a node. (It is more common805

to choose one or the other.) Another popular measure, known as eigenvector centrality or eigencentrality, is a806

node’s element in the eigenvector of the connection matrix Nij (number of synapses onto node i from node j)807

corresponding to the eigenvalue with maximal real part--this measure extends the simpler concept of degree808

centrality by weighing a node’s connections by their centrality, i.e. a node is more central to the network if it809

receives inputs from other high centrality neurons. Mathematically, this defines the eigenvector problem νi =810

ΣNijνj where νi is the (input) centrality of neuron i. An analogous formula, but instead replacing Nij by its811

transpose (thus, defining left rather than right eigenvectors) can be used to weight output connections by the812

(output) centrality of the node to which output is projected. The eigenvector elements can be chosen non-negative813

by the Perron-Frobenius theorem. It is standard to use either the left or right eigenvector, but we use both for814

our definition by computing the geometric mean of the left and right eigenvector elements. Degree centrality815
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and eigencentrality are correlated, but not perfectly (Figure S1C). For a visualization of the network based on816

eigencentrality, see Figure S1E.817

Our definition of the periphery relies mainly on degree centrality; the vast majority of the periphery consists818

of 2282 nodes with vanishing degree centrality. We also define the periphery to include an additional 62 nodes819

with vanishing (<10−8) eigencentrality but nonzero degree centrality. The remaining 540 recurrently connected820

neurons are defined as the “center” of the graph. (See below for effects of varying the eigencentrality threshold821

for center-periphery division.)822

Graph Clustering823

We applied three graph-clustering algorithms to divide the center into modules, and obtained similar results from824

all three. The clustering from the Louvain algorithm is presented in the main text, and those of the spectral825

algorithm and stochastic block model in the supplementary information .826

Louvain Clustering827

Graph clustering was performed using the Louvain clustering algorithm for identifying different ‘communities’ or828

‘modules’ in an interconnected network by optimizing the ‘modularity’ of the network, where modularity measures829

the (weighted) density of connections within a module compared to between modules. Formally, the modularity830

measure maximized is Qgen =
∑
Bijδ(ci, cj), where δ(ci,cj) equals 1 if neurons a and b are in the same module831

and 0 otherwise, where Bij = 1
ω (Wij−γ sisjω )+ transpose(B). Here si =

∑
cWic is the sum of weights into node i,832

sj =
∑

cWjb is the sum of weights out of node j, ω =
∑

cdWcd is the total sum of weights in the network, and the833

resolution parameter γ determines how much the naively expected weight of connections γ sisjω is subtracted from834

the connectivity matrix. Potential degeneracy in graph clustering was addressed by computing the consensus of835

the clustering similar to (Sporns and Betzel, 2016). Briefly, an association matrix, counting the number of times a836

node (neuron) is assigned to a given module, was constructed by running the Louvain algorithm 200 times. Next, a837

randomized association matrix was constructed by permuting the module assignment for each node. Reclustering838

the thresholded association matrix, where threshold was the maximum element of the randomized association839

matrix, provided consensus modules. We used the commuinity_louvain.m function from the Brain Connectivity840

Toolbox package (BCT, https://sites.google.com/site/bctnet/Home). In addition to the Louvain graph-clustering841

algorithm, we also clustered the ‘center’ with two alternate graph-clustering algorithms; spectral clustering and842

stochastic block matching, described below.843

Spectral Clustering844

We employed a generalized spectral clustering algorithm for weighted directed graphs to bisect the zebrafish845

‘center’ subgraph as proposed by (Chung, 2005). Given a graph G(V,E) and its weighted adjacency matrix846

A ∈ Rn×n≥0 , where Aij indicates the number of synapses from neuron i to neuron j , one can construct a Markov847

chain on the graph with a transition matrix Pα , such that [Pα]ij := (1 − α) · Aij/
∑

k Aik + α/n . The coefficient848

α > 0 ensures that the constructed Markov chain is irreducible, and the Perron-Frobenius theorem guarantees849

Pα has a unique positive left eigenvector π with eigenvalue 1, where π is also called the stationary distribution.850

The normalized symmetric Laplacian of the Markov chain is L = I − 1
2

(
Π1/2PαΠ−1/2 + Π−1/2P ᵀ

αΠ1/2
)
.851

To approximately search for the optimal cut, we utilize the Cheeger inequality for a directed graph Chung852

(2005) that bridges the spectral gap of L and the Cheeger constant φ∗. As shown in (Gleich, 2006), the eigen-853

vector v corresponding to the second smallest eigenvalue of L, λ2 , results in optimal clusters. We obtained two854

clusters by a binary rounding scheme, i.e., S = {i ∈ V |vi ≥ 0} and S = {i ∈ V |vi < 0}.855

We modified the directed_laplacian_matrix function in the NetworkX package (https://networkx.github.io) to856

calculate the symmetric Laplacian for sparse connectivity matrices, with a default α = 0.05. The spectral gaps857
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for the eigenvector-centrality subgraph is λeigen2 = 0.137 and for the partitioned oculomotor (modO) module is858

λeigenOM
2 = 0.256.859

Degree-corrected Stochastic Block Matching (SBM)860

Unlike the Louvain and spectral clustering algorithms that assume fewer intra-cluster connections than inter-861

cluster connections, the stochastic block models (SBMs) do not make this assumption. We applied an efficient862

statistical inference algorithm (Peixoto, 2014) to obtain the SBMs that best describes the ‘center’ subgraph.863

The traditional SBM (Holland et al., 1983) is composed of n vertices, divided into B blocks with {nr} vertices864

in each block, and with the probability, prs, that an edge exists from block r to block s. Here we use another865

equivalent definition, to use average edge counts from the observation ers = nrnsprs to replace the probability866

parameters. The degree-corrected stochastic block model (Karrer and Newman, 2011) further specifies the in-867

and out-degree sequences {k+
i , k

−
i } of the graph as additional parameters.868

To infer the best block membership {bi} of the vertices in the observed graph G, we maximize likelihood869

P(G|{bi}) = 1/Ω({ers}, {nr}), where Ω({ers}, {nr}) is the total number of different graph realizations with the870

same degree distribution {k+
i , k

−
i }, and {ers} edges among and within blocks of sizes {nr}, corresponding to871

the block membership {bi}. Therefore, maximizing likelihood is equivalent to minimizing the microcanonical872

entropy (Bianconi, 2009) S({ers}, {nr}) = ln Ω({ers}, {nr}), which can be calculated as S ' −M −
∑

i ln(k+
i !)−873 ∑

i ln(k−i !) −
∑

rs ers ln
(

ers∑
s ers

∑
r ers

)
, ' −M −

∑
i ln(k+

i !) −
∑

i ln(k−i !) −
∑

rs ers ln
(

ers∑
s ers

∑
r ers

)
, S, where874

M =
∑

rs ers is the total number of edges.875

We used the minimize_blockmodel_dl function in the graph-tool package (https://graph-tool.skewed.de) to876

bisect the central subgraphs by setting Bmin = Bmax = 2 and degcorr = true.877

Potential Synapse Formalism878

We define a potential synapse as a presynapse-postsynapse pair within a certain threshold distance (Figure879

2D). This definition is somewhat different from the light microscopic approach, which defines a potential synapse880

(Stepanyants et al., 2002; Stepanyants and Chklovskii, 2005) as an approach of an axon and dendrite within881

some threshold distance. Also we use neurons reconstructed from a single animal, while the light microscopic882

approach aggregates neurons from multiple animals, or “clones” a single neuron many times Markram et al.883

(2015).884

Calcium imaging and eye position signals885

The complete methods for recording calcium activity used to create the functional maps are reported in (Ramirez886

and Aksay, 2018). Briefly, we used two-photon, raster-scanning microscopy to image calcium activity from sin-887

gle neurons throughout the hindbrain of 7-8 day old transgenic larvae expressing nuclear-localized GCaMP6f,888

Tg(HuC:GCaMP6f-H2B) strain cy73-431 from Misha Ahrens’ lab. Horizontal eye movements were recorded si-889

multaneously with calcium signals using a substage CMOS camera. We used the CalmAn-Matlab software to890

extract the neuronal locations from fluorescence movies (Giovannucci et al., 2019).891

We analyzed saccade-triggered average (STA) activity to determine which neurons were related to eye move-892

ments (see (Ramirez and Aksay, 2018) for complete details). For each cell, we interpolated fluorescence activity893

that occurred within five seconds before or after saccades to a grid of equally spaced, 1⁄3 second timepoints and894

then averaged the interpolated activity across saccades to compute the STA. Separate STAs were taken for sac-895

cades towards the left and right. We performed a one-way ANOVA on each STA to determine which neurons had896

significant saccade-triggered changes in average activity (p<0.01 using the Holm-Bonferroni method to correct897

for multiple comparisons). To determine which of these neurons had activity related to eye movement and eye898

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2022. ; https://doi.org/10.1101/2020.10.28.359620doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.359620
http://creativecommons.org/licenses/by-nd/4.0/


velocity, we first performed a Principal Components Analysis (PCA) on the STAs from neurons with significant899

saccade-triggered changes. We found that the first and second principal components had post-saccadic activity900

largely related to eye movement and eye velocity sensitivity respectively (see Figure 3A in (Ramirez and Aksay,901

2018)). We characterized each STA using a scalar index called φ in (Ramirez and Aksay, 2018), created from902

that STA’s projections onto the first two principal components and found that this index does a good job of char-903

acterizing the average eye movement and eye velocity-related activity seen across the population (see Figure 3C904

in (Ramirez and Aksay, 2018) for a map of values and population average STAs). Eye position and eye velocity905

neurons were defined as neurons with an STA whose value of φ was within a specific range (-83 to 37 and 38-906

68 respectively). We removed any neurons with pre-saccadic activity that was significantly correlated with time907

until the upcoming saccade. The locations of each neuron were then registered to the Z-Brain atlas (Randlett908

et al., 2015) using similar methods as listed in the previous section (see (Ramirez and Aksay, 2018) for complete909

details).910

Relationship between firing rate and eye position911

To assess the functional characteristics of various oculomotor neurons (Figure 4) we fit a traditional model of912

eye position sensitivity to neuronal firing rates extracted from our fluorescence measurements. We approximated913

the relative firing rate, r, of a cell using the deconvolution algorithm with non-negativity constraint described in914

Pnevmatikakis et al. (2016). Comparison of relative firing rate across neurons in different populations was justified915

as we observed similar sensor expression levels and baseline noise levels in these populations.916

We modeled the dependence of firing rate on eye position using the equation, r = [k̃(E − Eth)]+ , where917

k̃ is the relative eye position sensitivity, Eth is the threshold eye position at which r becomes positive, and the918

function [x]+ = x if x > 0 and 0 otherwise (Aksay et al., 2007a). In order to best compare results across animals,919

we normalized the units of eye position before fitting the model by subtracting the median eye position about the920

Null position (measured as the average raw eye position) and then dividing by the 95th percentile of the resulting921

positions. Since our focus was on a cell’s position-dependence, we also eliminated the eye velocity dependent922

burst of spiking activity at the saccade time that ABD and VPNI neurons are known to display by removing923

samples that occur within 1.5 seconds before or 2 seconds after each saccade. Saccade times were found in924

an automated fashion by determining when eye velocity crossed a threshold value (Ramirez and Aksay, 2018).925

Finally, since the eye position and fluorescence were recorded at different sampling rates, we linearly interpolated926

the values of neuronal activity at the eye position sample times.927

To fit the value of k̃, for each cell, we defined the eye movements toward the cell’s responsive direction as928

positive so that k̃ is positive by construction. We then determined the threshold, Eth, using an iterative estimation929

technique based on a Taylor series approximation of [x]+ described in Ref. (Muggeo, 2003). Using the resulting930

estimate of Eth, we determined k̃ as the slope resulting from a linear regression (with offset) to r using E as931

a regressor. Since we do not know the cell’s responsive direction a priori, we ran the model twice -- once with932

movements to the left as positive and once with movements to the right as positive -- and used the value of k̃ that933

resulted in the highest R2 value.934

As a goodness-of-fit measure we required all neurons, except DO neurons, to have an R2 value greater than935

0.4. Additionally, non-DO neurons were required to have a saccade-triggered average with at least one significant936

time point (p<0.01 by an ANOVA test using Holm-Bonferroni correction) as defined in (Ramirez and Aksay, 2018)937

and to have a dF/F response that was loosely related to eye position (R2 greater than 0.2 when we run the above938

model replacing r with dF/F ). The relative eye position sensitivity, k̃, for fluorescence data was then scaled to939

average physiological VPNI responses from goldfish (Aksay et al., 2007a; Debowy and Baker, 2011).940
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Identification of excitatory versus inhibitory neurons941

VPNI neurons in the dorsomedial stripe running from R4 to R7/8 overlap in the Z-Brain atlas with a region of942

alx expression (Figure. S9C, ZBB-alx-gal4) where most neurons are glutamatergic (Kimura et al., 2006). More943

lateral and caudal neurons overlap with markers for glycine and glutamate. Finally, VPNI neurons (which have944

ipsilateral axonal projections) in the oculomotor module do not overlap with the GABA expression (Figure S9C,945

ZBB-gad1b). For these reasons we assigned neurons in the oculomotor module to be excitatory. DO neurons946

with ipsilateral projections (used in our unilateral model) have been identified as being inhibitory (Pastor et al.,947

2019).948

Network model based on synaptic wiring diagram949

A unilateral model of the oculomotor integrator was built using the reconstructed synapses for the ABD, DO, and950

VPNI populations. Although the VPNI is a bilateral circuit, previous experiments (Aksay et al., 2007a; Debowy951

and Baker, 2011) have shown that one half of the VPNI is nevertheless capable of maintaining the ipsilateral952

range of eye positions after the contralateral half of the VPNI is silenced. This may reflect that most neurons in953

the contralateral half are below a threshold for transmitting synaptic currents to the opposite side when the eyes954

are at ipsilateral positions (Fisher et al., 2013). Therefore, we built a recurrent network model of one half of the955

VPNI circuit based on the modO neurons that we had reconstructed from one side of the zebrafish brainstem.956

We did not include the modA neurons, assuming that input from modA cells fell below a threshold needed to957

drive modO neurons, similar to the manner in which bilateral interactions have been shown to be negligible for the958

maintenance of persistent activity. We added the ABD neurons and the feedforward connections from modO to959

ABD to the model because the ABD neurons are the “read-out” of the oculomotor signals in the VPNI. Projections960

from the DO population were taken to be inhibitory while all other connections were taken to be excitatory, as961

explained above. Remaining neurons in the oculomotor module were included as part of the VPNI--we did not962

consider other vestibular populations since only DO neurons in modO received vestibular afferents from the VIIIth963

nerve; saccadic burst neurons and recently discovered pre-saccadic ramp neurons are likely located in R2/3964

(Ramirez and Aksay, 2018), outside of our reconstructed volume.965

Directed connection weights between each pair of neurons were set in proportion to the number of synapses966

from the presynaptic neuron onto the postsynaptic neuron divided by the total number synapses onto the postsy-967

naptic neuron Wij = ±β Nij

ΣkNik
. Thus, we assume that each element Wij corresponds to the fraction of total inputs968

to neuron i that are provided by neuron j. The scale factor β was set to achieve perfect integration in a linear969

rate model governed by τ dridt = −ri + Wijrj , where ri is the firing rate of the ith neuron, Wij are the connection970

weights, and τ , the intrinsic time constant, is 100 ms. Fine tuning of this scale factor to achieve perfectly stable971

fixations is not critical to the results obtained here as the time courses of the persistent neural activity does not972

affect the relative firing rates of neurons that determine their relative eye position sensitivities. Position sensi-973

tivities could be determined numerically by simulating the response of the network to a pulse of input along the974

integrating direction. However, for a linear network, this is not necessary because the resulting relative persistent975

firing rates are equal to the leading eigenvector of the matrix Wij and thus can be determined analytically. Finally,976

the position sensitivity was multiplied by a single global scale factor that was determined by matching the average977

VPNI population responses from the model to the average physiological VPNI responses from goldfish (Aksay978

et al., 2007a; Debowy and Baker, 2011).979

As a test of the robustness of our results to possible errors in connectome reconstruction, we generated a980

connectome that accounted for the estimated false positive and negative rate of synapse detection by our connec-981

tome reconstruction procedure. We generated 1000 models by randomly varying the identified synapses accord-982

ing to the estimated false positive and false negative rates and calculated the connection weights as described983

above. The eye position sensitivities with this synaptic detection jitter were reported as the average of these 1000984

models (Figure S10C). We also tested how robust our results were to the cutoff criterion for including neurons985
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in the recurrently connected center by progressively increasing the minimum eigenvector centrality criterion for986

counting a neuron as belonging to the center as opposed to periphery. We then plotted how the simulation model987

results changed as a function of the number of center neurons was decreased and simultaneously reported the988

resulting number of VPNI (i.e. non-DO neurons in modO) neurons (Figure S10A). To characterize the degradation989

in model performance when the actual connectome was replaced by connectomes generated by spatial proximity990

(potential connections), we re-ran all of the analyses described above using potential connectomes defined for991

connections within 2, 5, or 10μm.992

Code availability993

• Alembic - https://github.com/seung-lab/Alembic.git994

• BigArrays.jl - https://github.com/seung-lab/BigArrays.jl with Apache License Version 2.0.995

• ChunkFlow.jl - https://github.com/seung-lab/ChunkFlow.jl with Apache License Version 2.0.996

• Watershed - https://github.com/seung-lab/Watershed.jl with GNU General Public License v3.0.997

• Agglomeration - https://github.com/seung-lab/Agglomeration with MIT License.998

• Skeletonization, morphology and functions could be found at https://github.com/seung-lab/RealNeuralNetworks.jl999

with Apache License 2.0.1000
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