2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

Free Lunch for Optimisation under
the Universal Distribution

Tom Everitt
Stockholm University,
Stockholm, Sweden
Email: everitt@math.su.se

Abstract—Function optimisation is a major challenge in com-
puter science. The No Free Lunch theorems state that if all
functions with the same histogram are assumed to be equally
probable then no algorithm outperforms any other in expectation.
We argue against the uniform assumption and suggest a universal
prior exists for which there is a free lunch, but where no
particular class of functions is favoured over another. We also
prove upper and lower bounds on the size of the free lunch.

I. INTRODUCTION

Finite black-box optimisation is the problem of finding
an optimal value (usually the maximum or minimum) of a
target function f: X — Y where X and Y are finite. A
wide range of tasks may be formulated in this setting. For
instance, drug-design may be viewed as the task of finding
a mix of chemicals that maximises recovery chances. Since
experimentation is expensive it is crucial that the best drug be
found as soon as possible.

It is desirable to find optimisation algorithms that perform
well on a wide variety of target functions, as this minimises
the need for fine-tuning the algorithm to the problem. Indeed,
several such algorithms exist and are regularly employed in
practice; examples include hill-climbing and simulated anneal-
ing, as well as genetic algorithms. However, the theoretical
understanding of the conditions permitting such “universal”
algorithms remains limited [COO01], [Str03], [WRO06], [JC11].
To approach this problem, we derive bounds for expected
optimisation-performance under assumptions justified in all (or
virtually all) optimisation settings.

The original No Free Lunch (NFL) theorems state that
when the global performance of an optimisation algorithm
is measured by taking a uniform average of its performance
over all functions from X to Y, then no algorithm is better
than random (assuming no point is sampled more than once)
[WMO7]. The uniform assumption is justified by assuming the
absence of prior knowledge and the results are often used to
claim that no optimisation algorithm can be universal.

There is, however, another viewpoint. If we assume that
the function f: X — Y to be optimised is generated by
some (unknown) computer program, then taking a uniform
prior over programs is arguably more natural. This is a
reasonable assumption based on the commonly held view that
the universe is likely to be (stochastically) computable [Fre92],
[Wol02], [Hutl2]. The distribution on functions induced by
this approach is the famous universal lower-semicomputable

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

Tor Lattimore
University of Alberta,
Edmonton, Canada
Email: tor.lattimore @gmail.com

Marcus Hutter
Australian National University,
Canberra, Australia
Email: marcus.hutter@anu.edu.au

semi-distribution! developed by Solomonoff and others [LVO0S8].
The universal distribution satisfies many nice properties, both
theoretical and philosophical. It is a natural choice when
formalising Occam’s razor in combination with Epicurus’
principle of multiple explanations since it favours simplicity
over complexity without disregarding the possibility that the
truth is complex [Hut05], [RH11]. The universal distribution
also exhibits a range of other desirable properties, discussed
further in Section III.

If performance is measured in expectation with respect to
the universal distribution, then the no free lunch theorems can
no longer be applied. Indeed, under some highly technical
conditions Streeter [Str03] showed that there is a free lunch for
optimisation under Solomonoff’s universal distribution. Tightly
related to the universal distribution is Kolmogorov complexity:
Borenstein and Poli [BP06] discuss Kolmogorov complexity
and optimisation, and also give a good account of previous
research in this area (see also [McGO06]). Several authors
report on Kolmogorov complexity not being perfectly related
to searchability [SVWO01], [DJW02], [BP06], but except for
[Str03], implications for search performance under the universal
distribution have not been investigated. The relation between
the universal distribution and the NFL theorems for supervised
learning has been studied by Lattimore and Hutter [LH11]. In
sequence prediction and reinforcement learning, the universal
distribution has been extensively researched [HutO5].

We first improve on [StrO3] by presenting the first easily
interpretable theorem that there is a free lunch if performance is
measured in expectation with respect to Solomonoff’s universal
distribution rather than the uniform distribution originally used
by Wolpert and Macready (Section VI). Unfortunately the size
of the free lunch turns out to be somewhat limited. Under only
weak assumptions we show that no computable algorithm can
perform much better than random, even when performance
is averaged with respect to the universal distribution (Sec-
tion VII). This result is then extended to arbitrary (possibly
non-computable) optimisation algorithms for a commonly used
performance measure.

II. PRELIMINARIES

A (finite binary) string is a finite sequence x = biby - - - by,
with b; € B = {0, 1} and length ¢(x) = n. The set of all finite

IThe use of lower semicomputable semi-distributions rather than regular
computable distributions is technical only and may be ignored by the reader
unfamiliar with algorithmic information theory.

167
Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on March 27,2024 at 07:57:22 UTC from IEEE Xplore. Restrictions apply.

binary strings is denoted by B*. Strings may be concatenated in
the obvious way. Power notation is used to represent multiple
concatenations: for example, 0140 = 011110.

A problem context is a pair X, Y of finite subsets of B*,
both containing at least 0 and 1 (to avoid degenerate cases). In
a problem context X, Y, the search space is X and the range
is Y. We let X and) be the sets of all search spaces and all
ranges respectively.

Definition 1: An optimisation problem is a collection P =
{ Pxy }, where Pxy is a measure over the finite set Y =
{f: X - Y} of functions from X to Y.

A search trace T, on X,Y 1is an ordered n-tuple
((z1,91), -y (Tn,yn)) € (X x Y)", representing a search
history. The empty search trace will be denoted (). Let
T.(X,Y) be the set of all search traces of length n, and let
T(X,Y) = Ulé(‘) T:(X,Y) be the set of traces of any length.
Further, let 7 == Ux ycxxy T(X,Y) be the set of search
traces on any context. If T, = ((z1,%1),-- -, (%n,¥n)), then
T? = (x1,...,2n) and TY = (y1, ..., Yn).

n

An optimiser is a function a: X x Y x T — X where
a(X,Y,T) € X —T* for all (X,Y,T). The optimiser selects
new, unvisited search points in the search space based on
previously seen data and the problem context. That the optimiser
is only permitted to sample unvisited points is standard in the
literature, and non-restrictive in the noise-free setting considered
in this paper.

The setup is this: A problem context X,Y is fixed, and
a target function f: X — Y is sampled from Y X according
to the problem distribution P xy. The optimiser is initialised
with the empty search trace and the problem context, and
outputs a search point ;7 € X by a(X,Y,()) = z;. The
search trace becomes (x1, f(x1)). The new search trace is
fed to the optimiser, which produces a new search point o
via a(X,Y, ((x1, f(21)))), and so on. Observe that the search
trace is a function of the optimiser, the problem context and
the sampled function f. We write Txy (a, f) for the “full”
trace of length |X| that a generates on f and X,Y’; when
X,Y is clear from the context, T'(a, f) will suffice. The Y-
components 7%, (a, f) will be called the result vector of a
on f and X,Y. We will also use R to denote result vectors.
Let R(X,Y) be the set of all result vectors on X,Y, and let

R = UX,YeXxy R(X,Y).

The performance of an optimiser a on a problem P is
measured in terms of the result vectors it produces. A function
M: X xY xR —[0,00) defines a performance measure by
the P-expected value of M for a on each problem context
X,)Y:

Mgy (a) = Y Pxy(f)Mxy(T%(a, f)) (1)
feyx

We use [s] for the Iverson bracket that is 1 when s is true,
and 0 otherwise. For any list R, R[i] extracts its ith element.

III. THE UNIVERSAL DISTRIBUTION

We now give a short introduction to Kolmogorov complexity
and the universal distribution. Detailed references are [LV08]
and [Cal02].

Prefix codes are central elements in algorithmic information
theory. A prefix code is a set of code words (formally, strings)
where no code word is a prefix of another. This makes prefix
codes uniquely decodable: in a sequence of appended code
words it is possible to tell where one code word ends another
begins. Kraft’s inequality gives a lower bound on the length of
the code words in a prefix code [LV08, p. 76]. Definition 2 gives
some commonly used prefix encodings of strings, numbers,
lists and functions.

Definition 2 (String encodings): Let x be a binary string,
n a natural number and Z = 21, ..., 2, a list of strings. Then
7 = 1*®0x, 7 := 170 and Z = fiz; - - Z, defines prefix
codes for x, n and Z. The code for lists may be applied
recursively to lists of lists. Target functions f: X — Y are
encoded by lists f(x1),..., f(x,) where x1,...,x, are the
elements of X in order.

For technical reasons, regular Turing machines are not
suitable for defining the universal distribution, so prefix
machines are often used instead.

Definition 3 (Prefix Machines): A prefix machine V is a
Turing machine with one unidirectional input tape, one unidi-
rectional output tape, and some bidirectional work tapes. Input
tapes are read only, output tapes are write only. All tapes are
binary and work tapes are initialised with zeros. We say V'
halts with output = on input p given s and write V (p|s) = z,
if sp is to the left of the input head and x is to the left of
the output head when V' halts. For any s € B*, the inputs on
which V(+|s) halts form a prefix code. Also, just as for regular
Turing machines, there are universal prefix machines that can
simulate any other prefix machine.

Definition 4 (Prefix Complexity): Let x,y € B* be finite
binary strings and U a universal prefix machine, then the
Kolmogorov complexity of x conditioned on vy is the length of
the shortest program that given y outputs x.

Ky (zly) = min{ £(p) : U(ply) = '})

A simple but fundamental theorem is that K depends on U
only up to constant factors, so from now on, as is usual in
algorithmic information theory, we fix an arbitrary universal
prefix machine as a reference machine and simply write K (x)
for Ky (x).

Definition 5 (Function complexity): Let f: X — Y, then
the complexity of [is K(f|X,Y), with f and X,Y encoded
by strings according to Definition 2.

The Martin-L6f—Chaitin Thesis states that randomness
may be defined as incompressibility [GTW*11, p. 705]. A
target function is incompressible or random if K(f|X,Y) >
| X|log |Y]. A classical result in algorithmic information theory
shows that almost all functions are (nearly) random. Thus,
the uniform distribution puts the majority of its weight on
random functions, which is one explanation for why it is
hard to optimise under the uniform distribution. In contrast,
the universal distribution puts more weight on “simple”, non-
random functions:

Definition 6 (Universal distribution): For each context

X,Y, the universal distribution is defined as

mxy (f) 1= Cmyy - 27 KUIEY), 3)

168
Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on March 27,2024 at 07:57:22 UTC from IEEE Xplore. Restrictions apply.

where Cmyy = 1/ Zf: Xy Q*K(ﬂx’y) is just a normalising

constant. In the literature, unnormalised versions of m are often
considered. Although ¢y, ., may fluctuate with X,Y, there
is a constant ¢, depending only on the reference machine
such that 1 < ¢y, < e for all X, Y. Note that m is an
optimisation problem, since myy is a distribution over Y%
for each X,Y.

Somewhat surprisingly, there is an equivalent definition of
m as the distribution obtained by feeding random coin-flips
into a universal prefix machine with access to X, Y.

myy (f) = Y 27 PV (pIX,Y) = f]. @)

pEB*

The approximation holds up to irrelevant multiplicative factors,
so (4) is often used in place of (3) as the definition of the
universal distribution.> Feeding a universal prefix-machine
random coin-flips is a natural formalisation of the uniform

prior over computer programs advocated in the introduction.

Thus m may be justified as a subjective prior for the assumption
that the target function has been computably generated.’

The bias away from randomness also aligns with our
intuition of how functions “ought to be optimised”. If the first
hundred observations are predicted by a simple polynomial,
then common sense (and Occam’s razor) suggests that the best
prediction of unseen points is that they follow the polynomial. In
general, the “simplest” structure perceivable in the data should
be the most likely extrapolation. The universal distribution
is consistent with this intuition. A detailed discussion of the
philosophical justification for the universal prior can be found
in [RH11].

To summarise, we have argued for the universal distribution
on the following grounds:

e (Weak assumptions): If the target function is generated
by a computer program, then a uniform prior over
computer programs is justified. Formalised as in (4),
this yields the universal distribution.

e (Downweighs randomness): A uniform prior over target
functions puts the (vast) majority of the weight on
(nearly) random functions. The universal distribution
concentrates on structured functions, without favouring
any particular class of functions.

e (Aligns with Occam): Intuition and Occam’s razor
suggests that the best extrapolation is the continuation
of the “simplest” pattern observable in data, which
corresponds well with the relative probabilities of the
universal distribution.

Next we will present some background on the NFL theorems
and introduce our performance measure M, before taking a
closer look at optimisation under m.

2Even the definition given in (3) depends on the choice of reference machine
up to multiplicative factors.

3There are also “objective” grounds to prefer m as a prior, including
regrouping invariance [Hut07] and dominance [LV0S8]. Neither hold for the
uniform distribution.

IV. No FREE LUNCH

The NFL theorems provide important insights into the
possibility of universal optimisation. They show that for certain
distributions Pxy all optimisers perform identically with
respect to some (or all) performance measure(s). This is often
phrased as “there is no free lunch available for P xy”. For
example, if NFL holds for a performance measure depending
on how many function evaluations are required to find the
maximum, then this implies that in expectation a hill-climbing
optimiser will find the maximum as slowly as a hill-descending
optimiser.

Definition 7 (Performance measure-NFL): NFL holds for
a distribution Pxy and a performance measure M if
MY (a) = MYy (b) for all optimisers a and b. If NFL holds
for all performance measures M, then NFL simply holds for
Pxy. If NFL does not hold for Pxy (and M), then we say
that there is free lunch for Pxy (and M).

The stronger statement that NFL holds for all performance
measures may equivalently be defined in terms of result vectors.
The proof of the equivalence is a straightforward application
of the definitions.

Lemma 8 (Result vector-NFL): Let Pxy,(R) be the prob-
ability > :cyx Pxy(f)[T¥(a, f) = R] that an optimiser a
generates the result vector R, then NFL holds for P xy if and
only if Pxy,(R) = Pxys(R) for every pair of optimisers a
and b and every result vector R € Y1/,

A. The NFL theorems

Igel and Toussaint [IT04] showed that the precise condition
for NFL is block uniformity of Pxy .

Definition 9 (Block uniformity): A histogram for a func-
tion f is a function hy: Y — N defined as hs(y) = | f~1(y)],
indicating how many z’s map to every y. The subset of all
functions X — Y with histogram h is called the base class of
h, and is denoted Bj,. The distribution P xy is block uniform if
for every h it holds that f,g € By, — Pxv(f) = Pxv(9).

Theorem 10 (Non-uniform NFL [IT0O4]): NFL holds for
Pxy if and only if Pxy is block uniform.

The original NFL theorem by Wolpert and Macready
[WM97] showed that NFL holds when P xy is uniform on Y.
As uniform distributions are a special case of block uniform
distributions, Wolpert and Macready’s result follows from Igel
and Toussaint’s.

Another special case is the NFL theorem for uniform
optimisation problems over function classes closed under permu-
tation (c.u.p.) by Schumacher et al. [SVWOI1]. A permutation
is a bijective function o: X — X that permutes functions
via (of)(z) = f(o7'(x)). A class F C YX is cup. if
f € F = of € F for all permutations . The uniform
distribution up over F' is defined by up(f) = 1/|F|if f € F
and 0 otherwise.

Theorem 11 (NFL for c.u.p. classes [SVWO1]): If Pxy is
the uniform distribution over a class F' C Y, then NFL holds
for Pxy if and only if F'is c.u.p.

169
Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on March 27,2024 at 07:57:22 UTC from IEEE Xplore. Restrictions apply.

A simple consequence of the NFL theorems is that all
optimisers produce the same result vectors. We state this as a
lemma for future reference.

Lemma 12 ([SVWO1]): The set of result vectors { R €
R(X,Y) : TY(a, f) = R for some f € YX} ever produced
by an optimiser @ on X, Y is the same for all optimisers.

The NFL theorems have also been investigated in infinite
and continuous domains. Depending on the generalisation, free
lunches may or may not emerge in those settings [ATO07],
[RVWO09].

V. PERFORMANCE MEASURES

So far we have only considered problems for which
either NFL holds for all performance measures, or for which
a free lunch is available for some performance measures.
Often, however, we are interested in performing well under
a fixed performance measure of interest. One natural choice
of performance measure is optimisation time, which in this
context means the number of function evaluations required to
find the maximum.*

Definition 13: The optimisation time performance measure
M is defined as

Moy, xy (R) = min (R[i] = maxY),

MY xy(a) = > Pxy(f)Moxv(T¥(a, f))
feyx

for result vectors and optimisers, respectively. Under My a
low score is better than a high score.

A variety of performance measures have been considered
in the literature. Some use properties of the k first function
evaluations, for example the number of values exceeding a
certain threshold [CO01], [WRO06], [JC11], or the probability
that some seen value exceed the threshold [WM97]. Griffiths
and Orponnen [GOO05] use a performance measure M, ax
depending on the size of the greatest value of the first k
observations. Others, such as [BP06], [Jan13], use M. The
main reason we prefer M, to the other alternatives is that it
is better suited for the asymptotic results we will aim for.

Results about particular performance measures often have
greater practical interest than their arbitrary-measure coun-
terparts. In addition, particular performance measures may
also have theoretical interest. Under particular performance
measures, NFL may hold for classes that are not c.u.p. [GOO05].
This does not contradict Theorem 11, which only claims that
for every non-c.u.p. class, there is some performance measure
permitting a free lunch. Indeed, it is unsurprising that NFL
will apply to wider ranges of function classes when a fixed
performance measure is used. The conditions for NFL under
Griffiths and Orponnen’s performance measure M, .5 turn out
to be significantly more intricate compared to the standard NFL
case [GOO05].

Another difference is found in the “cleverness” required
to exploit a free lunch. Optimisers that choose the next point

4In black-box optimisation in general, and evolutionary algorithms in
particular, the evaluation of the target function typically constitutes the
main expense of computation time. This is the motivation behind the name
optimisation time for the number of target function evaluations.

to probe irrespective of previous observations are called non-
adaptive; such optimisers can only exhibit a limited amount
of sophistication. Proposition 14 shows that when a free lunch
is available and arbitrary measures are allowed, then there
is free lunch for a non-adaptive optimiser. In contrast, under
particular measures such as M and M., adaptive optimisers
may differ in performance while all non-adaptive optimisers
perform the same. In this sense, “smarter” algorithms may be
required for exploiting a free lunch when using a particular
performance measure, compared to when arbitrary performance
measures are permitted.

Proposition 14: If NFL does not hold for a distribution
Pxy, then there is free lunch for a non-adaptive optimiser
under some performance measure.

Proof: Since NFL does not hold for Pxy we have by
Theorem 10 that P xy is not block uniform. Hence there are
two functions f and of in the same base class Bj, such that
Pxy(f) > Pxy(of), where o is a permutation on X. Let
e and e, be non-adaptive optimisers, with e searching X =

{z1,...,2, } in order, and e, searching X in the order of
oX ={o(x1),...,0(xy) }. Now e generates the result vector
Ry = (f(x1),..., f(zn)) exactly when f is the true function,

and e, generates IRy exactly when of is the true function.
An immediate consequence is that Pxy.(Rs) = Pxy(f) >
Pxy(cof) = Pxye, (Ry). That is, the non-adaptive algorithms
e and e, generate Ry with different probability, which means
that there is free lunch for some non-adaptive optimiser under
some performance measure by Lemma 8.]

In conclusion, specific performance measures can be con-
sidered for both practical and theoretical reasons. They are
more practically relevant in the sense that they measure aspects
we care about in practice (such as how long it takes to find
a maximum). But they also have theoretical interest, as they
expose aspects that are invisible from an arbitrary-measure
perspective.

VI. UNIVERSAL FREE LUNCH

We now turn to the question of whether or not a free lunch
is available under m, which we will answer in the affirmative
for both arbitrary performance measures and M.

The universal distribution solves the induction problem for
sequence prediction [Hut05], [RH11]. Black-box optimisation
also include an induction problem in the extrapolation of target-
function behaviour from the points already evaluated. Although
successful inference of the target-function behaviour may not
be strictly necessary, it will typically enable better choices of
future search points.

There are several important differences between sequence
prediction and optimisation. First, optimisation is an active
setting: the choices of the optimiser affect both the learning
outcome and the reward. This entails an exploration/exploitation
tradeoff in the choice between potentially informative points
and points likely to mean high performance (e.g. points likely
to be a maximum). Further, optimisation is a finite setting,
which yields less time to exploit a good model (compared to
sequence prediction where infinite sequences are considered).
There are also major differences in the hypothesis classes and
in how performance is measured.

170
Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on March 27,2024 at 07:57:22 UTC from IEEE Xplore. Restrictions apply.

-—a— g

\ \
0 1 k-1 k k+1

Fig. 1. The function f has complexity bounded by a constant c; independent
of X and Y. In contrast, the complexity of g grows logarithmically with |X|.
See the proof of Theorem 15 for details.

Section VII presents a number of results bounding the
amount of free lunch under m. Perhaps surprisingly, only a
small amount of free lunch is available under the universal
distribution.

A. Free lunch under arbitrary performance measures

Streeter [StrO3] showed that there is free lunch for m under
certain technical conditions. We prove a similar result, but with

more interpretable conditions (in terms of the size of X, only).

We also use a different proof than Streeter.

Theorem 15 (Universal free lunch): There is free lunch for
the problem m for all problem contexts with sufficiently large
search space (the required size depending on the reference
machine only).

Proof: Tt will be shown that m xy is not block uniform for
problem contexts with sufficiently large X, which by Theorem
10 implies that NFL does not hold.

Pick a problem context X,Y. Consider two functions f and
g in the base class By, C Y X of functions with one value 1 and
the rest of the values 0. Let f be 1 at x; and let g be 1 at some

point) chosen so that K(g|X,Y) > log,|X|—1 (see Fig. 1).

To see that such a g exists, note that there are | X| different
functions in Bj,. As the halting programs for the reference
machine constitute a prefix code, there can be at most | X|/2

halting programs of length < log,| X | — 1 by Kraft’s inequality.

Thus at least one of the Bj-functions must have a shortest
program longer than log,|X| — 1, and therefore complexity
K(g|X,Y) > logy|X| —1. Meanwhile, K(f|X,Y") < ¢ for
some constant ¢y independent of the problem context. So for
search spaces with log, (| X|) — 1 > ¢y, this means that f will
have lower complexity than g, and thus that mxy will assign
different probabilities to f and g. As f and g are elements of
the same base class, this shows that m is not block uniform for
search spaces greater than 2¢/ 1, By Theorem 10, this implies
a free lunch for m under some performance measure. |

Indeed, m is not even close to block uniform for large
search spaces in the sense that the functions of type f and
g will receive substantially different weights. However, this
does not necessarily imply a big free lunch, as we shall see in
Section VII.

B. Free lunch under M

As has been discussed, in practice we often care about a
particular performance measure such as M.

Theorem 16: There is free lunch for the problem m under
the performance measure M, for all problem contexts with
sufficiently large search space (the required size depending on
the reference machine only).

The proof is similar to Theorem 15, but more work
is required to ensure a complexity difference between two
potential maximums, rather than between two specific functions.
A full proof is included in the Appendix.

VII. UPPER BOUNDS

Theorems 15 and 16 show that there is free lunch under
the universal distribution. This section will bound the amount
of free lunch available, and show that it is only possible to
outperform random search by a constant factor. First we show
that the performance of computable optimisers deteriorates
linearly with the worst-case scenario and the size of the search
space. This result applies to decidable performance measures
in general, and has a concrete interpretation for M, where it
implies that as the size of the domain is increased, a non-zero
fraction of the domain must be probed before a maximum is
found in expectation. This does not contradict the free lunches
above, as the required fraction may differ between optimisers.

We also consider possible ways to circumvent the negative
result described above by means of incomputable search
procedures. A further negative result for M, is obtained: It
does not appear possible to find the maximum with only o(|X|)
target function evaluations. That is, the expected number of
probes required to find the maximum grows linearly with the
size of the search space, but again, the proportion may differ
substantially between optimisers.

A. Computable optimisers

To bound the amount of free lunch available for computable
optimisers, we will adapt a proof-technique for showing that
average-case complexity is equal to the worst-case complexity
under the universal distribution [LV08, Section 4.4]. Although
no formal theorem relies on it, we will think of greater M-
values as worse performance.

Lemma 17: A function fy.q: X — Y is maximally bad
for an optimiser a on the problem context X,Y with re-
spect to a performance measure M if Mxy (TY(a, foad)) =
maxXper(x,v) Mxy (R). There always exists a maximally bad
function fy.q: X — Y for a with respect to M, regardless of
the performance measure M, the optimiser a and the problem
context X,Y.

Proof: By Lemma 12, all optimisers produce the same
result vectors, so it suffices to show that some optimiser has
a maximally bad function. The non-adaptive optimiser e that
searches X in order has a maximally bad function. To see this,
let Rp.q be a maximally bad result vector on X,Y, and let
f be the function satisfying f(z;) = Rpaqli] for all z; € X.
Then e produces Rpaq on f. [|

A performance measure M for which there is an algorithm
deciding whether Mxy (R1) < Mxy (R2) for every X,Y and
every pair of result vectors Ry, Re € R(X,Y) is decidable. For
any decidable performance measure M, it is possible to create
a procedure FINDWORST(a, X,Y") that given a computable
optimiser a (specified by some binary string) and a context

171
Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on March 27,2024 at 07:57:22 UTC from IEEE Xplore. Restrictions apply.

X, Y, returns a maximally bad function f,,q: X — Y for a.
FINDWORST is a computable operation since a is computable
and M is decidable: FINDWORST need only simulate a on all
possible functions in YX, and output one that yields a worst
result vector. This shows that for all decidable performance
measures, all computable optimisers a and all contexts X, Y,
there is a maximally bad function f,,,q: X — Y for a with
complexity

K(fraa|X,Y) < L(FINDWORST) + £(a) +¢ , (5)

where the ¢ term depends only on the reference machine, and
absorbs the cost for initialising FINDWORST with a, X and
Y. Pivotally, the bound is independent of X,Y. This is the
central observation behind the following theorem, which shows
that expected performance always deteriorates linearly with
the worst-case scenario. The theorem’s prime relevance is for
performance measures whose worst-case value grows with X.

Theorem 18 (Almost NFL for m): For every decidable per-
formance measure)M and every computable optimiser a there
exists a constant ¢, > 0 such that for all X,Y

M > ¢, Mxy(R) .
Xyla) = ca max xv(R)
Proof: Let XY be a problem context and fi,.q be the
output of FINDWORST(a, X,Y), then

MPy(a) =) mxy(f)Mxy (TY(Y,a,)
fevx

Z Cmxy 27K(fbad|X’Y)MXY(Ty(av fbad)))

where we have first used the definition (1) of performance
measures, and then that the sum of non-negatives is greater than
all of its terms. But ¢y, ., 27K oaalXY) > ¢ for some ¢, > 0
independent of X,Y due to ¢y, > 1 and the complexity
bound (5). And TY(a, frad) Was a worst result vector by the
construction of FINDWORST. Combined, this gives the bound
MRy (a) > cq - maxger(x,y) Mxy (R). u

This theorem shows that for every performance measure M,
there is only a constant amount of free lunch available in an
asymptotic sense. It has no impact on performance measures
whose worst-case value does not grow unboundedly with either
X or Y. However, the “semi-assumption” of higher values
being worse is not necessary: If the converse is the case and
high values are better, then the proposition shows that all
optimisers will do well. Indeed, this is also an NFL result, as
it implies that random search (and even optimisers designed to
do poorly!) will perform well.

Applied to the performance measure M, Theorem 18 has
a fairly concrete interpretation: For any computable optimiser
a, the expected number of evaluations to find the maximum
grows linearly with |X|. Corollary 19 follows immediately
from Theorem 18 and the observation that for any context
X,Y, the worst-case scenario is to find a maximum only at
the very last probe; that is, maxper(x,v) Mot xv (a) = [X].

Corollary 19: For every computable optimiser a there
exists a constant ¢, > 0 such that M vy-(a) > ¢4 - |X]
for all optimisers a and all problem contexts X,Y".

The implications of this result should not be overstated. The
constant ¢, may be very small; for example, if the description

of the optimiser a is 100 bits long, then ¢, becomes of the
order 27190, The fact that the expected number of probes is
forced to grow linearly with such a constant is mainly of
theoretical importance. Nonetheless, the result does illustrate
a fundamental hardness of optimisation, and shows that the
universal distribution does not provide enough bias for efficient
(sublinear) maximum finding.

B. Needle-in-a-haystack functions

A problematic class of functions is the class of so-called
needle-in-a-haystack (NIAH) functions. We will use them to
generalise Corollary 19 to incomputable optimisers. A NIAH-
function is a target function that is 0 in all points except one
where it equals 1. The exception point is called the needle. It
should be intuitively clear that it is hard to find the maximum
of a NIAH-function. Probing a NIAH-function, the output will
generally just turn out to be 0 and provide no clues to where
the needle might be.

Formally, for any X,Y let NTAH xy be the class of NIAH
functions on X, Y and let unyag be the uniform NIAH problem
defined as uNIAH,XY(f) = 1/|NIAny‘ if f € NIAHxy
and 0 otherwise. The function class NIAHyy is c.u.p. for
any X,Y, so NFL holds for unian,xy by Theorem 11.
The expected performance (of any optimiser) on the uniform
NIAH-problem can be calculated from a general result of
Igel and Toussaint [ITO3]. They show that for any c.u.p.
problem ur where F' only contains functions with exactly
m maxima, the expected number of probes to find a maximum
is (JX|+1)/(m + 1). The NIAH-functions have exactly one
maximum, which gives the following lemma.

Lemma 20: Under unian,xy, the expected optimisation
time is M (a) = (| X[+ 1)/2 for any optimiser a.

One feature that makes the NIAH-class more problematic
than other c.u.p. function classes is that the NIAH-functions all
have fairly low complexity (as remarked by [SVWO01], [BP06]).
The NIAH-functions have low complexity, since to encode
a NIAH-function one only needs to encode that it is NIAH
(which takes a constant number of bits) and the position of the
needle (which requires at most log,|X | bits). A NIAH-function
thus has complexity of order O(log,|X|); in comparison, a
random function has exponentially greater complexity (above
X [log V).

The NIAH-measure is computable. This is intuitively
obvious, and easily verified against the formal definitions of
computable functions. Definitions of real-valued computable
functions can be found in [LVO08]. It is well-known that m
dominates any computable measure in the following sense.

Lemma 21 (m dominates uniam): There is a constant
eniam > 0 such that for all X, Y and all functions f: X — Y,
it holds that mxy (f) > en1an - unian, xv (f)-

C. Incomputable optimisers

Theorem 18 and Corollary 19 were proven for computable
optimisers. We now show that even incomputable optimisers
suffer a linearly growing loss in | X| when the performance
measure is M. Incomputable search procedures may seem like
remote objects of concern, but for example the (Bayes-)optimal
procedure for m is incomputable due to the incomputability

172
Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on March 27,2024 at 07:57:22 UTC from IEEE Xplore. Restrictions apply.

of m. Therefore, incomputable procedures do at least have
theoretical interest.

The following theorem generalises Corollary 19 to incom-
putable search procedures, showing that they also must search
a linearly growing portion of X to find the maximum. The
theorem does not generalise to arbitrary performance measures
however, so the analogous generalisation of Theorem 18 may
not be true.

Theorem 22 (Almost NFL for m and M,;): Under m, the
expected optimisation time grows linearly with |X|, regardless
of the optimisation strategy.

Proof: The dominance of m over uniay is used in (7),
between an expansion (6) and a contraction (8) according to
the definition (1) of performance measures:

M xy(a) = D mxy ()Mo xv (T (a, f)) 6)
feyx

> CNIAH Z untal, xy (f) Moy xv (T¥(a, f)) (7
Fevx

= CNIAH * &N;?{}(a) ®)

Lemma 20 established (8) to be eniam - (| X]| + 1)/2 for all
optimisers a. Thus the expected M,-performance is always
bounded below by entam - (| X| + 1)/2, which grows linearly
with | X]. |

Since optimisation time can never grow faster than linearly
with |X|, the bound is asymptotically tight. In this sense,
Theorem 22 may be viewed as an asymptotic almost-NFL
theorem for the universal distribution and M,;. The constant
cNiag in the proof may be very small however, so Theorem
22 does not rule out that expected optimisation time differ
substantially between optimisers.

VIII. CONCLUSION

In this paper we investigated the No Free Lunch theorems
when the performance of an algorithm is measured in expec-
tation with respect to Solomonoff’s universal distribution. We
showed in Theorem 15 that there is a free lunch with respect
to this distribution.

Somewhat surprisingly, despite the bias away from random-
ness exhibited by the universal distribution, the size of the
free lunch turns out to be quite small, at least asymptotically
(Theorems 18 and 22). The reason for this is that there are
many functions that are both simple and hard to optimise.
Most notably the needle-in-a-haystack functions, which have
complexity of at most O(log|X]), but for which a maximum
cannot be found without O(]X|) probes.

It should be emphasised that there is little need to be
too gloomy about the negative results. The upper bounds on
the size of the free lunch given in both negative theorems
depend on constants that in practise are likely to be very
small. Optimisation is a hard problem, so we should not be
too surprised if there are some reasonably frequently occurring
functions that cannot be efficiently optimised.

The fact that simplicity is not a sufficient characterisation of
the difficulty of optimising a function is unfortunate. This is not
true in other domains such as supervised learning and sequence

prediction where approaches based on Solomonoff’s universal
prior are theoretically optimal in a certain sense [Hut05]. One
difficulty of optimisation lies in the exploration/exploitation
problem, which occurs because at each time-step an optimisa-
tion algorithm must make a choice between trying to learn the
true function and probing the point that it believes to be the
maximum.

Since Kolmogorov complexity is (by itself) insufficient for
characterising the difficulty of optimising a function, a new
criterion is required. We are currently unsure what this should
look like and consider this interesting future research.

REFERENCES

[ATO07] Anne Auger and Olivier Teytaud. Continuous lunches are free!

In GECCO’07, 2007.

Yossi Borenstein and Riccardo Poli. Kolmogorov complexity,
optimization and hardness. In CEC’06, pages 112-119, 2006.
Cristian Calude. Information and randomness: an algorithmic
perspective. Springer, 2002.

[BPO6]
[Cal02]

[COO01] Steffen Christensen and Franz Oppacher. What can we learn
from no free lunch? a first attempt to characterize the concept of

a searchable function. In GECCO’01, pages 1219-1226, 2001.

Stefan Droste, Thomas Jansen, and Ingo Wegener. Optimization
with randomized search heuristics — the (A)NFL Theorem,
realistic scenarios, and difficult functions. Theoretical Computer
Science, 287(1):131-144, 2002.

Edward Fredkin. Finite nature. XXVIIth Rencotre de Moriond,
1992.

Evan J Griffiths and Pekka Orponen. Optimisation, block designs
and no free lunch theorems. Information Processing Letters,
94(2):55-61, 2005.

Dov M Gabbay, Paul Thagard, John Woods, Prasanta S Bandy-
opadhyay, and Malcolm R Forster. Philosophy of Statistics.
Elsevier, 2011.

Marcus Hutter. Universal Artificial Intelligence: Sequential
Decisions based on Algorithmic Probability. Lecture Notes
in Artificial Intelligence (LNAI 2167). Springer, 2005.

Marcus Hutter. On Universal Prediction and Bayesian Confirma-
tion. Theoretical Computer Science, 384(1):33-48, 2007.

Marcus Hutter. The subjective computable universe. In Hector
Zenil, editor, A Computable Universe: Understanding and
Exploring Nature as Computation, chapter 21, pages 399-416.
World Scientific, 2012.

Christian Igel and Marc Toussaint. Neutrality and self-adaptation.
Natural Computing, 2(2):117-132, 2003.

Christian Igel and Marc Toussaint. A no-free-lunch theorem
for non-uniform distributions of target functions. Journal of
Mathematical Modelling and Algorithms, 3:312-322, 2004.

Thomas Jansen. Analyzing Evolutionary Algorithms: The
Computer Science Perspective. Springer Berlin Heidelberg, 2013.

[DIW02]

[Fre92]

[GOO05]

[GTWH11]

[Hut05]

[Hut07]

[Hut12]

[ITO3]

[ITO4]

[Jan13]
[JC11] Pei Jiang and Ying-ping Chen. Free lunches on the discrete
Lipschitz class. Theoretical Computer Science, 412(17):1614—
1628, April 2011.

Tor Lattimore and Marcus Hutter. No free lunch versus Occam’s
razor in supervised learning. In Proceedings of the Solomonoff
85th Memorial Conference, Melbourne, Australia, November
2011. Springer.

[LH11]

[LVO8] Ming Li and Paul Vitanyi. Kolmogorov Complexity and its

Applications. Springer Verlag, third edition, 2008.

[McGO06] Simon McGregor. No free lunch and algorithmic randomness.

In GECCO’06, pages 2—4, 2006.

Samuel Rathmanner and Marcus Hutter. A philosophical treatise
of universal induction. Entropy, 13(6):1076-1136, 2011.
Jonathan E Rowe, Michael D Vose, and Alden H Wright. Reinter-
preting no free lunch. Evolutionary computation, 17(1):117-129,
January 2009.

[RH11]

[RVW09]

173
Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on March 27,2024 at 07:57:22 UTC from IEEE Xplore. Restrictions apply.

[Str03] Matthew J Streeter. Two broad classes of functions for which
a no free lunch result does not hold. In GECCO’03, pages

1418-1430, 2003.

Christopher W Schumacher, Michael D Vose, and L Darrell
Whitley. The no free lunch and problem description length. In
GECCO’01, pages 565-570, 2001.

David H Wolpert and William G Macready. No free lunch
theorems for optimization. IEEE Transactions on Evolutionary
Computation, 1(1):270-283, 1997.

Stephen Wolfram. A New Kind of Science. Wolfram Media,
2002.

L Darrell Whitley and Jonathan E Rowe. Subthreshold-seeking
local search. Theoretical Computer Science, 361(1):2-17, 2006.

[SVWO01]
[WMOI7]

[Wol02]

[WRO6]

APPENDIX

We here include a proof of Theorem 16. The proof builds
on the following definitions and lemmas.

Definition 23: A point x € X is incompressible with
respect to the context X, Y if K(z|X,Y) > log(|X|).

At least half of the points of any search space will
be incompressible. Functions that only have incompressible
maxima (except, possibly, for a maximum at x;) will play
an important role since they are guaranteed to have high
complexity. The reason for excluding z; will be apparent in
the proof of Theorem 16.

Lemma 24: Let X,Y be a problem context, and let D C X
be a non-empty set of incompressible points. Let g: X — Y
have at least one maximum in D, and no maximum outside
DU{x1}. Then K(g|X,Y") > log,(|X|) — ¢, where ¢ depends
only on the reference machine and not on g, X or Y.

Proof: Let g be as in the Lemma statement, and let z,,, €
X — {z1} be the first maximum of g not at x;. Then x,,
can be coded by means of g with constant length procedure
FIRSTMAX(g) that computes the first maximum not at zy
for a given function g. Hence K(z,,|X,Y) < K(g9|X,Y) +
¢(FIRSTMAX)+c. The constant ¢ depends only on the reference
machine, and absorbs the cost of initialising FIRSTMAX with
a provided description of g.

By assumption x,,, was incompressible, so K(z,,|X,Y)
log,|X|. Combined and rearranged, this gives K(g|X,Y")
logy|X| — ¢(FIRSTMAX) — c¢. The lemma now follows by
absorbing ¢(FIRSTMAX) into c.

>
>

We are now ready for the proof of Theorem 16 that shows
that there is free lunch for M, on the problem m. The key
idea is to show that there is a trace after which two unexplored
points have different probability of being the maximum.

Theorem 16: There is free lunch for the problem m under
the performance measure M, for all problem contexts with
sufficiently large search space (the required size depending on
the reference machine only).

Proof: Let k > 2 and let X,Y be a problem context
with |X| > 2k. Let Dy, C X be of size k and only include
incompressible points. Let Q = X — Dy —{z1}. Let G = {g €
YX: 2 €Q = g(x) =0} contain all functions that are 0
on Q. Let f be 0 everywhere, except at x1, where f is 1. The
complexity of f is upper bounded by a constant c; independent
of X. Since f € G, we get mxy (G) > mxy (f) >27¢.

Let z,,, € Dy be an incompressible point, and let G,,, =
{9 € G: g(x) = maxg}. As the functions in G are all 0 on
Q, the cardinality of G, is at most |Y|IX—@Ql = |Y'|F+1, Also,
the functions in G, all have complexity above log |X| — ¢ for
some c independent of X, Y, by Lemma 24.

We will now show that myy (G,,|G) tends to 0 with
growing | X|, while myy (f|G) remains bounded away from
0. This will establish that provided G, a maximum at z
is more likely than a maximum at z,,. Provided G, the
probability of a maximum at x; is always above 27¢/, since
myy (max at x1|G) > mxy (f|G) > mxy(f) > 27¢. A
maximum at z,,, on the other hand, is less likely since only
functions in G,,, can have a maximum there:

myy (max at ,,|G) = mxy (Gn,)/mxy (G)
mXY(Gm)/zicf

9cs . CmeZQ_K(ngvy) 9)
9€Gm

IN

Using the lower bound on the complexity from Lemma 24, (9)
is bounded by

c § : —log,| X |+¢
< 2¢rf “Cmxy 2 2
9€Gm

=2 - Cryy |Gl 97 logz X +e (1

and since the cardinality of G is less than |Y|*™, (10) is
bounded by
<29 ey - [Y)FFL 9—logy| X|+e
_ 2% ey, Y
X
the last equality by elementary simplification.

an

As ¢m,, 1s bounded above by a constant ¢y, for all X,Y,
(11) goes to 0 with growing search space (and fixed £ and Y).
This shows that for large enough search spaces, x; is more
likely to host a maximum than z,,.

Now all that remains is to use this to create two algorithms
that perform differently under M. Let a start by searching)
in order. If the perceived function points are consistent with f
(i.e., the event G is verified), then a proceeds at x; and then at
Zm, Whereafter a searches the remaining points X — Dy, — {x1}
in order. If the trace is not consistent with f, then a directly
proceeds to search all remaining points in order. Define b the
same way, with the only exception that after () it searches x,,
before x1 in case the trace is consistent with f.

This way, a and b will perform the same except when
encountering a function in G, in which case a will have a
strictly better chance of finding the maximum at step |Q| + 1.
If neither a nor b finds a maximum at step |Q| + 1, then
neither x; nor z,, is a maximum, so neither a nor b will find
a maximum at step |@)| + 2 either. Finally, on step |Q| + 3 and
onwards their behaviour will again be identical, and therefore
also their M performance. So a has a strictly better chance
at step |@| + 1 and a and b’s performance is identical on all
other steps and in all other situations. This shows that there
is a (possibly small) free lunch for M, on m for sufficiently
large search spaces. u

174
Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on March 27,2024 at 07:57:22 UTC from IEEE Xplore. Restrictions apply.

