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Bayesian approach to inverse statistical mechanics
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Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article
looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In
addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior
probability distribution. The posterior probability involves an intractable partition function that is estimated
along with the interactions. The method is illustrated for inverse problems of varying complexity, including
the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of
molecular interaction potentials.
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I. INTRODUCTION

Standard applications of statistical mechanics predict
ensemble properties from microscopic interactions. Inverse
problems of statistical mechanics involve “the determination
of the interactions between the particles from the properties
of the system” [1]. Problems of inverse statistical mechanics
are important in diverse application areas. Inverse Ising and
Potts methods abound in neuroscience and biology [2–5]. In
materials science inverse statistical mechanics is used to design
self-assembling materials with a predefined ground state [6,7].
Another instance is the estimation of coarse-grained models
for biological macromolecules [8–10].

The simplest inverse problem in statistical mechanics
involves the estimation of a single parameter, the system’s
temperature in the canonical ensemble. Mandelbrot and others
have discussed the temperature-estimation problem from
the point of view of statistical inference [11–13]. Specific
instances of inverse statistical mechanics problems have been
given particular attention. The inverse Ising problem, for
example, has been addressed by a diverse array of techniques
including naive mean-field theory (nMF) [14], pseudolikeli-
hood maximization (PLM) [15], message passing [16], and
minimum probability flow learning [17].

This article generalizes previous statistical analyses of
inverse problems in statistical mechanics and adds a Bayesian
perspective. A physical interpretation of the statistical esti-
mators is discussed. A sequential Monte Carlo sampler is
developed to apply the formalism in practice and demonstrated
on various challenging inverse problems including the estima-
tion of the temperature of a canonical ensemble, the inverse
Ising problem, and the estimation of an interaction potential.
Moreover the relation to the maximum entropy method [18] is
highlighted and demonstrated.

II. ESTIMATION OF INTERACTION PARAMETERS

In the following the Hamiltonian of the system is assumed
to be

E(x) = λ · f (x) =
∑
k=1

K
λkfk(x) (1)
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where x is the system’s configuration, fk(x) are K features
or collective variables that encode the configuration, and λk

are the associated interaction parameters. The Hamiltonian is
assumed to be linear in the interaction parameters. This family
of Hamiltonians covers a broad range of physical systems
and interactions. However, also nonlinear extensions could be
treated with the Bayesian formalism outlined below but are
beyond the scope of this article.

Examples of physical systems that follow a linear Hamil-
tonian include the Ising model. This system has only a single
feature f1(x) = −∑

〈ij〉 xixj with associated parameter λ1 =
J , where x is a vector of spin orientations and J is the coupling
between neighboring spins on the two-dimensional lattice. If
an external field of strength h is applied, the parameters are
λ = (J,h), and the magnetization f2(x) = −∑

i xi becomes
a second collective variable. In case of a fluid governed by
Lennard-Jones (LJ) interactions

ELJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
,

the features and interaction parameters are fk(x) = (−)k
∑

i<j

‖xi − xj‖−6k and λk = 4βεσ 6k , k = 1,2, where β is the in-
verse temperature and ε and σ are the standard LJ parameters.

Configurations follow the Gibbs ensemble

p(x|λ) = ρ(x)

Z(λ)
e−λ·f (x), (2)

where ρ(x) is a reference distribution, for example, a uniform
distribution over a finite box. The reference distribution also
allows us to incorporate knowledge about an unperturbed
Hamiltonian E0 in which case ρ(x) = exp{−E0(x)} and to
estimate a perturbation E(x). Z(λ) is the partition function

Z(λ) =
∫

ρ(x) e−λ·f (x) dx (3)

and generates the moments of the features: −∇λ ln Z(λ) =
〈f 〉λ, where 〈·〉λ indicates an average over the Gibbs ensemble
(2). For complex systems the partition function is typically
unknown and cannot be evaluated by simple numerical means
such as quadrature.
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A. Statistical estimators and physical analogs

The inverse problem that we aim to solve is to recover the
interaction parameters from observations of the system. The
first step is to determine the likelihood of observing features
f given the interaction parameters λ:

p(f |λ) =
∫

p(f |x)p(x|λ)dx = g(f )

Z(λ)
e−λ·f , (4)

where we introduce the distribution

g(f ) =
∫ [ ∏

k

δ(fk − fk(x))
]

ρ(x) dx, (5)

with δ denoting the Dirac δ function. g(f ) is the projection of
the reference distribution ρ(x) into feature space. It measures
the degeneracy of the collective variables and can be viewed
as a multidimensional density of states. With the help of the
feature distribution we can write the partition function (3) as
an integral over the collective variables:

Z(λ) =
∫

g(f ) e−λ·f df. (6)

Probability density (4) is the sampling distribution of the
features and a natural member of the exponential family [11].
Given the interaction parameters λ, the most likely features
are determined by maximizing p(f |λ) as a function of f . The
resulting equation

∇f ln g(f ) = λ (7)

relates the interaction parameters directly to the collective
variables. An alternative is to search for the Hamiltonian
under which the observed features are highly probable. This
is obtained by maximizing p(f |λ) as a function of the
interactions leading to

−∇λ ln Z(λ) = f. (8)

Equations (7) and (8) have the same structure, only the role of
the conjugate variables f and λ is interchanged.

If λ = β is the inverse temperature and f (x) = E(x) is
the Hamiltonian itself, the above equations correspond to the
microcanonical and canonical definition of the temperature.
Equation (7) defines the microcanonical temperature β as
a function of the energy E, whereas Eq. (8) defines the
temperature implicitly in terms of the internal energy 〈E〉β =
−∂β ln Z(β). Interestingly expression (7) is an unbiased
estimator of the interactions [13]:

〈∇f ln g(f )〉λ =
∫

[∇f g(f )]
e−λ·f

Z(λ)
df

= − 1

Z(λ)

∫
g(f ) [∇f e−λ·f ] df = λ, (9)

where partial integration gives the second last equality.
We now assume that N realizations of the features fn

have been measured, for example, by observing the system’s
configuration N times in which case fn = f (xn). [Note that
fn is a vector with elements fnk = fk(xn) and is different
from fk , which is a scalar function.] One way to determine
the interaction parameters is to evaluate the microcanon-
ical estimator (7) at the sample average of the features

f = 1
N

∑N
n=1 fn:

λ̂micro = ∇f ln g(f )
∣∣
f =f . (10)

Unfortunately we can only rarely use this estimator in practice
because g(f ) is unknown for most systems. In case of systems
with a continuous configuration space it is possible to approx-
imate the microcanonical temperature by the configurational
temperature [19,20]. Using the configurational temperature
formalism one can then derive a system of linear equations for
the interaction parameters [10].

The maximum likelihood (ML) approach [11] maximizes
the probability of observing all N feature vectors as a function
of the interaction parameters λ:

p(f1, . . . ,fN |λ) =
N∏

n=1

p(fn|λ) ∝
(

e−λ·f

Z(λ)

)N

=: L(λ). (11)

The likelihood function L(λ) depends on the observed features
only through the sufficient statistic f . Maximization of the
likelihood function gives an implicit equation for the ML
estimator λ̂ML:

f = −∇λ ln Z(λ)|λ=λ̂ML
= 〈f 〉λ=λ̂ML

, (12)

which corresponds to the canonical definition of the temper-
ature [Eq. (8)]. Because f is a sufficient statistic, it is not
necessary to observe individual configurations to apply the
formalism but also possible to work with ensemble data.

For infinitely many data (N → ∞), the likelihood function
becomes a δ peak and ML estimation is identical to the
maximum entropy method [18], which also arrives at Eq. (12).
The maximum entropy method derives the Gibbs ensemble
[Eq. (2)] by searching for the distribution p(x) that minimizes
the relative entropy with respect to the reference distribution

H (p) =
∫

p(x) ln[p(x)/ρ(x)] dx

and satisfies the constraints (12). The interactions λ become
Lagrange parameters that have to be chosen such that the
constraints (12) are satisfied. The maximum attainable entropy
is [18]

Hmax = − ln Z(λ) − λf = 1
N

ln L(λ) (13)

and proportional to the logarithm of the likelihood function.
Therefore, the maximum likelihood and maximum entropy
approaches are formally equivalent for the linear Hamiltonians
[Eq. (1)] considered in this article. Conceptually, however,
both approaches are different because maximum entropy infers
the functional form of the Gibbs ensemble [Eq. (2)] and
then estimates its parameters, whereas maximum likelihood
assumes that the Hamiltonian [Eq. (1)] is correct.

B. Bayesian approach

A Bayesian approach extends maximum likelihood estima-
tion by assigning a prior probability p(λ) over the interaction
parameters and considering their posterior probability:

p(λ|f1, . . . ,fN ) ∝
(

e−λ·f

Z(λ)

)N

p(λ). (14)
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Maximization of p(λ|{f }) results in the maximum a posteriori
(MAP) estimate. A more adequate representation of λ, espe-
cially its uncertainty, is achieved by drawing samples from the
posterior distribution p(λ|{f }). Because

− ∂2

∂λk∂λl

ln L(λ) = N〈δfkδfl〉λ

with δfk = fk − 〈fk〉λ is positive semidefinite, the likelihood
function is log concave but not necessarily in a strict sense.
However, if we assign a strictly log-concave prior p(λ), the
posterior will exhibit a unique maximum. By considering an
entire distribution of interaction parameters [Eq. (14)] we are
estimating not only a single ensemble from the given data but
a hyperensemble [21], i.e., an “ensemble of ensembles” that
peaks at the maximum entropy ensemble. As the number of
data or the system size grows, the ensembles will collapse into
a single ensemble.

C. Sequential Monte Carlo algorithm

Although the posterior distribution of the interaction
parameters [Eq. (14)] is unimodal, sampling from it is not
straightforward due to the intractability of the partition func-
tion Z(λ). Numerical integration or brute force enumeration
of all configurations is only possible for small and finite
systems. We outline a sequential Monte Carlo algorithm
that estimates λ and g(f ) successively by constructing a
sequence of approximations p(t)(λ|{f }) and g(t)(f ) where t

is the iteration index. For given λ(t), M configurations x(t)
m are

generated according to

x(t)
m ∼ p(x|λ = λ(t)), m = 1, . . . ,M, (15)

where “∼” means “sampled from.” Using all the configurations
sampled up to iteration t we estimate g(f ) by means of
reweighting techniques [22,23]. In iteration t , the estimated
feature distribution is

g(t)(f ) =
t∑

s=1

M∑
m=1

g(t)
sm

∏
k

δ
(
fk − fk

(
x(s)

m

))
, (16)

where x(s)
m is the mth configuration generated in iterations s � t

with feature vectors f (s)
m = f (x(s)

m ) and weights g(t)
sm, which are

updated in every iteration. We generate new parameters λ(t+1)

by drawing from

p(t)(λ|{f }) ∝ p(λ) exp

{
− N

[
λf + ln

∑
s,m

g(t)
sme−λ·f (s)

m

]}

(17)

and start with λ(0) = 0. In contrast to existing Monte Carlo
approaches [9,24,25] the use of reweighting techniques allows
us to incorporate all configurations generated during the Monte
Carlo iterations and thereby improve the accuracy of the
ensemble averages that are required to estimate λ [Eqs. (3)
and (8)].

The approximate posterior p(t)(λ|{f }) is also log-concave.
One could determine its maximum by convex optimization
or iterative scaling [26], a widespread method for learning
maximum entropy models in natural language processing.
Here we are interested in sampling the parameters to also

Input data f1, . . . , fN

Compute sufficient statistics
f = 1

N

∑
n fn

Set the initial parameters,
e.g. λk = 0, k = 1, . . . ,K

Generate configurational samples
x ∼ ρ(x) e−λ·f(x)

Update g(f) and Z(λ) us-
ing histogram reweighting

Sample parameters
λ ∼ p(λ)

Z(λ) exp{−N λ · f}

FIG. 1. Flow chart of the sequential Monte Carlo algorithm.
Superscripts and indices have been omitted for clarity. Details of
the individual steps are given in Eqs. (15), (16), and (17).

explore their uncertainty. We use Hamiltonian Monte Carlo
(HMC) [27] to draw λ from p(t) by starting from the
previous sample λ(t) and using momenta generated from
a standard normal distribution. During HMC we need to
evaluate the forces stemming from the likelihood function L(λ)
[Eq. (11)]. These are proportional to N (〈f 〉λ − f ) and drive
the parameters so as to match the ensemble average and the
observed average data.

The flow chart (Fig. 1) gives an overview over the sequential
Monte Carlo algorithm.

III. APPLICATIONS

A. Temperature estimation

To illustrate the algorithm we first estimate the temperature
of a 16 × 16 Ising model from N = 10 energies generated at
β = 0.5 with E = −446. As outlined before we have a single
descriptor E(x) = −∑

〈ij〉 xixj , and the unknown parameter
is the inverse temperature β (the coupling is assumed known
and fixed J = 1) to which we assign the exponential prior
probability p(β) = e−β . In every iteration ten configurations
are generated (M = 10).

Figure 2(a) shows the final estimate of the feature distribu-
tion g(E). The microcanonical estimator (10) demands that we
accurately compute the feature distribution in the energy range
that contains the observed average E. Indeed the estimated
feature distribution corresponds closely to the exact density of
states [28] in the relevant energy range. Figure 2(b) shows
the convergence of the approximate posterior distributions
p(t) constructed during sequential Monte Carlo sampling. The
color encodes the stage of the algorithm. In the initial phase
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FIG. 2. (Color online) Estimating the temperature of the Ising model: (a) The estimated feature distribution is shown as orange (thin gray)
line. The black (thick) curve is the true density of states. Shown are the natural logarithms of the feature distributions. The red (gray) dashed
line indicates the mean of the 10 energies from which the temperature was estimated. (b) Estimated posterior distributions p(t). (c) Sampled
inverse temperatures β (t). The dashed red (gray) line is the true inverse temperature. (d) Final posterior distribution of the temperature after
convergence. Black (thick) line: true posterior distribution; orange (thin gray) curve: estimated posterior distribution based on the final estimate
of the DOS. The gray histogram shows the sampled β (t).

(red to yellow to green distributions online) the posterior is
biased towards too large β. Because the stepsize of the HMC
sampler is set to a small value initially and then adjusted
automatically, the algorithm has enough time to correct for
the bias in p(λ|{E}). The approximate distributions converge
to the correct posterior probability (blue [gray] distribution)
in less than 50 iterations. Figures 2(c) and 2(d) show the first
250 temperature estimates and the final β posterior. Due to
the small number of observed energies the posterior exhibits
some degree of uncertainty with a mean and standard deviation
of β = 0.500 ± 0.011. The canonical and microcanonical
temperature based on the same data are β̂ML = 0.499 and
β̂micro = 0.493 (obtained by linear interpolation of the discrete
density of states).

B. Inverse Ising problem

Let us now look at the inverse Ising problem, in which
we aim to reconstruct the interaction parameters of the
Sherrington-Kirkpatrick (SK) spin glass [29]:

E(x) = −
∑
i<j

Jij xixj =
∑

k

λkfk(x), (18)

where x is a D dimensional spin configuration, xi = ±1,
and Jij are drawn from a Gaussian distribution with mean
zero and variance D−1. The dimension of the feature and
parameter vectors, fk(x) = −xixj and λk = Jij , is D(D −
1)/2 and exceeds the size of the configuration vector (the
two configuration indices i,j are mapped to a single feature
index k). But there are only 2D−1 unique feature vectors that
are distributed uniformly. We compare the performance of
the sequential Monte Carlo sampler with naive mean-field
(nMF) theory [14] and pseudolikelihood maximization (PLM)
[15], which was shown to provide highly accurate solutions of
the inverse Ising problem. The quality of the reconstructed
couplings is assessed in terms of the mean-squared error
(MSE).

We reconstructed the interactions of a 20-dimensional SK
model from 1000 configurations. For this system size the
partition function and feature distribution can be evaluated
by exhaustive enumeration. This allows us to compute the ML

estimate based on the correct likelihood function [Eq. (11)] and
compare it with the approximation found by the sequential
Monte Carlo sampler. Figure 3(a) shows the evolution of
the reconstruction error, which achieves a similar accuracy
as exact ML based on the correct partition function. In the
initial phase, the approximate log likelihood differs largely
from the correct one. But as the sequential sampler proceeds,
the approximation improves and converges to the correct log
likelihood. The mean of the sampled interactions is more
accurate than any of the individual λ(t) and performs similarly
to nMF and PLM. Figure 3(b) shows the performance of
the algorithms at different temperatures. The nMF approach
has difficulties to obtain accurate reconstructions at low
temperatures. PLM and sequential Monte Carlo both work
for temperatures down to 0.5. But at lower temperatures
PLM runs into problems whereas the Bayesian approach still
works. An interesting property of the sequential Monte Carlo
sampler is that at lower temperatures fewer configurations
are needed to represent the feature distribution. The number
of configurations at which g(f ) is estimated drops with
increasing β and therefore the algorithm converges faster at
lower temperatures.

C. Maximum entropy inference

As outlined in Sec. II A the maximum entropy method is
formally equivalent to the Bayesian approach if the number of
observations N approaches infinity. A simple modification of
our algorithm can deal with this situation. Instead of sampling
λ from p(t) [Eq. (17)], we set

λ(t+1) = arg max
λ

ln p(t)(λ|{f }). (19)

Because this is a convex optimization problem it can be solved
efficiently using optimizers such as the Powell algorithm.

To illustrate the application of our algorithm to maximum
entropy inference, we apply our algorithm to the toy system
studied by Roux and Weare [30]. This system has a single
conformational degree of freedom x that follows the reference
distribution

ρ(x) ∝ exp

{
− 25 (x − 0.25)4 + x cos x − 2 sin(20x)

1 + 2x2

}
.
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FIG. 3. (Color online) Inverse Ising problem. (a) Evolution of the reconstruction error (root mean-squared error, MSE) (black line). The
dashed line indicates the MSE of the mean interaction parameters. The inset shows the performance of the Bayesian estimators (posterior mean
and maximum) in comparison to exact ML, PLM, and nMF. (b) Inverse Ising problem at different temperatures.

Observed is the average position x = −0.127, i.e., the only
feature is f (x) = x. We are looking for the Lagrange pa-
rameter λ that reproduces the observed average position; the
correct value is λ = 10. For given λ(t) new configurations are
generated from p(x|λ(t)) ∝ ρ(x)e−λ(t)x using the metropolis
algorithm. Note that in contrast to recent applications of the
maximum entropy method to biomolecular systems [30,31]
our approach only requires simulations involving a single
configuration and not an entire ensemble of configurations,
which are coupled through an ensemble restraint.

Figure 4(a) shows the evolution of the mean position during
the Monte Carlo iterations. The initial value is 〈x〉 = 0.258
(λ = 0) and decreases towards the target value within 100
iterations. As the Monte Carlo procedure progresses the
effective potential − ln ρ(x) + λ(t) x approaches the target

energy [Fig. 4(b)]. Figure 4(c) shows a histogram of the
sampled configurations x(t)

m . Although its main purpose is to
generate samples of the maximum entropy parameters, the
Monte Carlo sampler generates configurational samples that
follow the correct distribution as a by-product.

D. Estimation of interaction potentials

Finally we apply the algorithm to recover the LJ parameters
ε and σ from simulated configurations of a monatomic
fluid. Several approaches including direct Boltzmann inversion
[32], reverse and inverse Monte Carlo [9,24,25], potential
and force matching [33,34], generalized Yvon-Born-Green
approximation [8], as well as the configurational temperature
formalism [10] have been used to estimate molecular inter-

FIG. 4. (Color online) Application of the Monte Carlo algorithm to a maximum entropy fitting problem. The one-dimensional toy system
[30] is analyzed using our sequential Monte Carlo sampler. (a) Evolution of the mean position 〈x〉λ(t) (black line); the dashed red (gray) line
indicates the observed average value −0.127. (b) Effective potential energy functions during Monte Carlo sampling. The light gray potential
E0(x) = − ln ρ(x) is gradually deformed by the addition of λ x. With increasing number of iterations the effective potential energy curves are
shown by increasingly darker lines. Furthermore, the reference potential E0(x) and the target potential E(x) = E0(x) + 10 x are highlighted
by the dashed blue and red (gray) lines, respectively. (c) Histogram of the generated configurational samples; the inset shows the individual
configurations generated after convergence. The correct maximum entropy distribution is shown as a red (gray) dashed line.
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FIG. 5. (Color online) Estimation of a Lennard-Jones potential. (a) Sampled interaction parameters in the initial phase of the Monte
Carlo algorithm. The inset shows the final estimated posterior distribution of the interaction parameters (λ1 black, λ2 light red [gray]). (b)
Reconstructed and correct energy function shown as orange (thin gray) and black (thick) curve, respectively. (c) Radial distribution function
(RDF) obtained with the proposed Monte Carlo sampler (thin orange [gray] line) compared to the correct RDF obtained with a replica-exchange
simulation of the fluid using the true LJ parameters (thick black line).

action potentials. As outlined in the introduction there are
two features corresponding to the repulsive and attractive part
of the LJ potential. A system comprising 108 particles was
simulated at β = 1 using HMC [27] and confined to a box of
edge length 5.04 Å during the simulation. The parameters were
set to ε = σ = 1; therefore the true interaction parameters are
λ = (4,4). The interaction potential is recovered from the en-
semble average f = (−320,170) calculated over 20 simulated
configurations. Again the exponential distribution p(λ1,λ2) =
e−λ1−λ2 was used as prior probability. Within 100 iterations
the sampler produces stable interaction parameters that scatter
about the correct values: λ1 = 4.22 ± 0.24, λ2 = 4.13 ± 0.13
[Fig. 5(a)]. The microcanonical estimator (10) based on
the estimated feature distribution gives λ̂micro = (3.8,3.9).
The estimated interaction potential accurately reproduces the
correct potential used in the simulation [Fig. 5(b)]. The radial
distribution function is often used to assess the quality of
an estimated interaction potential. After convergence of the
algorithm, the sampled configurations exhibit the correct radial
distribution function [Fig. 5(c)].

IV. CONCLUSION

In summary, we formulate a Bayesian approach to solve
inverse problems in statistical mechanics and propose a

sequential Monte Carlo sampler that enables the application
of the formalism to complex systems. On the inverse Ising
problem the algorithm achieves accuracy similar to that of
PLM but it is more flexible. First, we do not need to have
access to the individual configurations but can work with
average data directly. Second, our approach is also applicable
to continuous systems for which it is not possible to compute
the pseudolikelihood. In addition to existing methods such
as nMF [14] and PLM [15] the Bayesian approach does not
give a single point estimate but explores the full posterior
distribution, thereby taking into account the uncertainty in the
interaction parameters. For continuous systems the conforma-
tional temperature formalism [10] also requires that we have
access to individual configurations of the system. Since the
liklihood function only depends on the data through ensemble
averages, the Monte Carlo algorithm is more broadly applica-
ble and could also be used to analyze average data computed
from different systems, as it is relevant for the derivation of
“knowledge-based potentials” in biomolecular modeling.
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