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Summary. The basic building block of a gene regulatory network consists of a gene encoding a transcrip-
tion factor (TF) and the gene(s) it regulates. Considerable efforts have been directed recently at devising
experiments and algorithms to determine TFs and their corresponding target genes using gene expression
and other types of data. The underlying problem is that the expression of a gene coding for the TF provides
only limited information about the activity of the TF, which can also be controlled posttranscriptionally. In
the absence of a reliable technology to routinely measure the activity of regulators, it is of great importance
to understand whether this activity can be inferred from gene expression data. We here develop a statistical
framework to reconstruct the activity of a TF from gene expression data of the target genes in its regulatory
module. The novelty of our approach is that we embed the deterministic Michaelis–Menten model of gene
regulation in this statistical framework. The kinetic parameters of the gene regulation model are inferred
together with the profile of the TF regulator. We also obtain a goodness-of-fit test to verify the fit of the
model. The model is applied to a time series involving the Streptomyces coelicolor bacterium. We focus on
the transcriptional activator cdaR, which is partly responsible for the production of a particular type of
antibiotic. The aim is to reconstruct the activity profile of this regulator. Our approach can be extended
to include more complex regulatory relationships, such as multiple regulatory factors, competition, and
cooperativity.

Key words: Gene regulation; Maximum likelihood estimation; Michaelis–Menten kinetics; Streptomyces
coelicolor.

1. Introduction
Linking transcription factors (TFs) to their targets is a central
problem in postgenomic biology. While genes regulated by the
same TFs tend to be co-expressed, the relationship between
the gene expression profiles of the TFs and their regulated
genes can be quite complicated, often exhibiting time-shifted
or inverted behavior (Yu et al., 2003). This could be due to
the fact that changes in the expression of a TF are subtle and
its activity is often controlled at levels other than expression,
for example, via posttranscriptional modifications. Therefore,
the expression of a gene coding for a TF generally provides
only limited information on the true transcription factor ac-
tivity (TFA). The situation becomes even more complex in
the presence of cooperativity or competition between two or
more TFs that regulate a target gene.

New computational methods have been proposed to infer
TFAs from the gene expression data under the assumption
that the two are not necessarily the same. Zhou et al. (2005)
propose to validate TFA through cross-platform integration
of expression data. Kao et al. (2004) and Boulesteix and
Strimmer (2005) estimatethe TFAs by setting the problem
in a (partial) least-squares framework and by using algebraic

matrix decomposition to deal with the high-dimensionality is-
sue. Both assume a linear additive model of gene regulation.
Gao, Foat, and Bussemaker (2004) suggested a multivariate
regression analysis, using the ChIP occupancy log ratios for
the TFs as a response and the genes as predictors. The coeffi-
cients of the regression express the changes in TFA. Regulated
genes are those that are correlated with the TFA profile. In all
of the above models, the data on the connectivity comes from
outside sources, like ChIP-chip data or a priori knowledge.

In this article we develop a statistical framework to
model regulatory pairs of TFs and their target genes using
Michaelis–Menten (MM) kinetics for gene regulation. The
MM model has been successfully used in various biologi-
cal applications, including the regulation of a gene by a TF
(Bolouri and Davidson, 2002; Mangan and Alon, 2003). Nach-
man, Regev, and Friedman (2004) were the first to incorpo-
rate the quantitative MM regulation model into the genera-
tive Bayesian probabilistic model. These authors attempted
to estimate simultaneously the structure of regulatory mod-
ules as well as the kinetic parameters of the MM regulation
model and the levels of ideal regulators that control them.
They considered multiple TFs and multiple targets in their
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model, as well as a dynamic temporal behavior. They applied
their Bayesian learning algorithms to yeast cell cycle expres-
sion data sets. In contrast, we develop a frequentist approach
to find the parameters of the MM model of regulation by em-
bedding this model in the statistical framework.

In Section 2, we introduce a model for observed gene ex-
pressions within a general network motif. Then in Section 3,
we focus on the special case of a single input motif (SIM),
for which we can obtain an explicit expression of the MM or-
dinary differential equation. In Section 4, we show how con-
jugate gradient methods can be used to estimate the kinetic
MM parameters and the TFA of the regulator can be esti-
mated via maximum likelihood. Finally, in Section 5, our sta-
tistical framework is applied to a 10-point time-course data
set for a wild type and mutant type Streptomyces coelicolor.
We obtain some interesting biological results and show that
the model we propose has good fit to the data.

2. Model for TF-Initiated Gene Transcription
In this section, we present a general gene expression model
that takes into account (i) transcription rate, (ii) decay rate,
(iii) network structure, and (iv) stochastic effects.

2.1 Kinetic Model of Gene Transcription
The gene expression of a regulated gene, µ(t), defined as
the number of transcribed RNA molecules present at time
t, changes due to gene transcription and the decay of RNA
molecules. The average rate of change in expression of a tar-
get gene, µ̇(t), is therefore described by the number of RNA
molecules transcribed per unit of time and the number of de-
caying molecules per unit time:

µ̇(t) = p(t) − δµ(t), (1)

where p(t) is a production term, that is, the rate of gene tran-
scription, and δ is a linear degradation rate. Here µ(t) stands
for the underlying expression of the regulated gene at time t.
The general solution of the above linear differential equation
is given by

µ(t) = µ0e
−δt +

∫ t

0

e−δ(t−τ)p(τ) dτ. (2)

Gene regulation is usually controlled by one or more TFs.
The rate of gene transcription, p(t), depends on the type of
regulation, that is, activation or repression, and on the type of
regulation control, namely a single TF or multiple TFs. The
transcription rate depends also on the so-called gate type in
the case of multiple TF regulators. For example, the “AND”
gate means that all TFs are required for regulation, while
the “OR” gate implies that either of the TFs is sufficient to
regulate the transcription of the target gene(s). In addition,
the production term, p(t), depends on gene-specific kinetics of
regulation, θ. For example, the target genes can have different
values for the maximal production rate. Also, the transcrip-
tion of different targets could saturate at different levels of
the TF regulator.

Gene regulation has commonly been described using a lin-
ear model: either the transcription rate of a target gene or its
expression is assumed proportional to the level of the TFs that
regulate this gene (Kao et al., 2004; Boulesteix and Strim-
mer, 2005). In this article we model gene transcription with

the so-called MM kinetics. The MM kinetics have been used
in modeling enzyme-mediated reactions and have also been
applied to TF-initiated transcription (Bolouri and Davidson,
2002; Nachman et al., 2004). The MM kinetic model, unlike a
linear model, is able to describe saturation effects, which are
biologically plausible.

It is worth noting that the proposed statistical framework
is by no means limited to a specific microarray platform. The
model can equally be applied to both cDNA and oligonu-
cleotide microarrays, as well as gene expression profiles ob-
tained by other technologies, such as quantitative real-time
PCR.

2.2 Network Motif
The term network motif, coined by Milo et al. (2002), is de-
fined as patterns of interconnections that recur in different
parts of a network at frequencies much higher than those
found in random networks. Several basic network motifs have
been found in biological networks. Each network motif con-
sists of several target genes regulated by one (SIM) or several
(multiple input motif, feed forward loop) TFs.

Within a network motif, the gene expression of a gene k
at time t, µk(t), depends on the decay rate-constant δk and
on the transcription rate, pk (t), as defined by equation (2).
The transcription rate pk (t) depends on several gene-specific
kinetic parameters, θk, as well as on the activity of its TF reg-
ulator(s), whose activity levels are denoted by η1(t), . . . , ηM (t)
(M ≥ 1). The TFs are the common regulators to all the
target genes, µk, k = 1, . . . ,K in the network motif, while
the kinetic parameters of gene regulation are likely to be
target-dependent:

µk(t) ≡ µk(t; θk, η1, . . . , ηM ), k = 1, . . . ,K.

It is biologically compelling to assume that the gene-specific
parameters of the gene kinetic equation, θk, are the same be-
tween the different biological conditions, such as wild type
and mutant. The only exception is the initial amount of gene
expression, µk

0 , which can be different due to all sorts of ex-
ternal factors that affect gene transcription. In Section 3, we
consider a MM model implementation of the case of a SIM,
that is, one regulator and many targets.

2.3 Noise Model
As the MM kinetic model requires that we model the inten-
sities on the original rather than log-transformed scale, it is
important to find a suitable distribution for the noise process.
In particular, it is unlikely if not impossible to have merely
additive noise. As log-transformed intensity ratios have been
found to be approximately normal (Lee et al., 2000), we use
the log-normal distribution for the ratios of the intensities.
Moreover, as every microarray measures the gene expression
of a different biological sample due to destructive sampling,
it is reasonable to assume that all observations are indepen-
dent. Let us denote by gk

cr (t) the observed gene expression of
gene k at a time-point t for the replicate r under condition
c. The condition c stands, for example, for wild type or mu-
tant. We assume that the observed gene expressions of a tar-
get gene k are independent and log-normally distributed with
location parameter mk

c (t) and scale parameter σ2
k. This dis-

tribution takes into account the different variances associated
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with different amplitudes. The log-likelihoodcontribution of a
single observation gk

cr (t) is given by

l
(
mk

c (t), σ2
k

∣∣ gk
cr (t)

)
= −1

2

(
log

[
gk

cr (t)
]
−mk

c (t)

σk

)2

− log
(√

2πgk
cr (t)

)
− log(σk). (3)

Given the expectation of a log-normal distribution E[gk
cr (t)] =

emk
c (t)+ 1

2 σ2
k , the relationship between the true gene expression

under condition c, µk
c (t), and the location parameter of the

log-normal distribution, mk
c (t), is given by

mk
c (t) ≡ log

[
µk

c (t)
]
− 1

2
σ2

k. (4)

Therefore, the location parameter mk
c (t) ≡ mk

c (t; θk
c , σ2

k,
η1, . . . , ηM ) implicitly depends on the kinetic parameters θk

c of
the gene regulation model and on the TFs levels η1, . . . , ηM .
The likelihood contribution in equation (3) can then be writ-
ten as a function of the kinetic parameters of the gene reg-
ulation model as well as activities of TFs, namely l(θk

c , σ2
k,

η1, . . . , ηM | gk
cr (t)).

3. Michaelis–Menten Model of a Single Input Motif
3.1 Single Input Motif
We now apply our general methodology to a simple network
architecture, called the SIM. It consists of a set of genes that
are controlled by a single TF (Shen-Orr et al., 2002). All of
the genes are under the same type of regulation (either all
activated or all repressed), which presumably happen under a
specific set of circumstances. None of these genes have addi-
tional transcriptional regulation. SIMs are potentially useful
for coordinating a discrete unit of some biological function,
such as a set of genes that code for the subunits of a biosyn-
thesis apparatus or enzymes of a metabolic pathway (Lee et al.
2002). SIM is probably the simplest logical unit of a transcrip-
tional regulatory network architecture that could serve as a
starting point for the reconstruction of the TFA.

There is compelling experimental evidence that SIMs fre-
quently occur in biological systems (Lee et al. 2002; Shen-Orr
et al., 2002). It is partly an open question as how to iden-
tify new SIMs, verify the targets, and infer the activity of
the regulators. The first source of information for SIMs is in
databases such as RegulonDB, that were used by Shen-Orr
et al. (2002) in their original study of network motifs. There
is an increasing amount of ChIP-chip data, pioneered by Lee
et al. (2002), which identify TF-and-target pairs. The use of
such data together with statistical models such as (Bar-Joseph
et al., 2003; Yu et al., 2004) helps to identify and verify SIMs.

Another rich source of data for identifying SIMs is con-
tained in microarrays studies. For example, an experiment
comparing a wild type and a mutant, wherein the TF of in-
terest is knocked out, yields a list of differentially expressed
genes, which are potential targets of this TF. To identify
whether these targets are primary or secondary, further ex-
periments, such as data on binding sites, or a priori knowledge
is required. In this paper, we identify a SIM for Streptomyces
coelicolor by finding differentially expressed genes between a
wild type and a mutant type (where the TF has been knocked

out) combined with biological knowledge on specific location
of the TF and targets within the genome.

3.2 Michaelis–Menten Model
When a gene is regulated by a single TF that binds to the
promoter region of the regulated gene, the transcription rate
p(t) depends on the level of this TF, η and gene-specific kinetic
parameters. The MM model of gene transcription activated
by some TF states that production occurs in a saturating
manner:

p(t) = β
η(t)

γ + η(t)
+ α. (5)

Here β is the rate of production, γ is the half-saturation con-
stant, and α is the basal level of gene expression production.
The general solution of the transcription equation (2) takes
the form

µ(t) =
(
µ0 −

α

δ

)
e−δt +

α

δ
+ β

∫ t

0

e−δ(t−τ) η(τ)

γ + η(τ)
dτ. (6)

In a SIM, the same TF regulates more than one gene. The
gene expression profile of gene k, µk(t), depends on several
kinetic parameters that are gene specific, αk, βk, γk, δk, µk

0 ,
as well as the activity of the regulator, η, that is common for
all targets in the SIM regulated by it. We use the following
notation µk(t) ≡ µk(t; θk, η) and θk ≡ (αk, βk, γk, δk, µk

0 ).

4. Parameter Estimation
4.1 Likelihood
The kinetic parameters of the MM model, θk, and the variance
of the log-normal distribution, σ2

k, for a single gene, k, can be
estimated by an approximate maximum likelihood procedure.
The likelihood for a gene k, regulated by one TF, ηc, given
all observations, gk

cr (t), across all time-points, t, conditions, c,
and replicates, r, is given by

lk
(
gk(t); θk, σ

2
k, η

)
=

∑
ctr

l
(
θk

c , σ
2
k, ηc

∣∣ gk
cr (t)

)
. (7)

The likelihood of the whole SIM, wherein the TF with ac-
tivity level η(t) regulates several target-genes, can be written
as

lSIM(Θ,Σ2, η |G) =

K∑
k=1

lk
(
θk, σ2

k, η
∣∣ gk(t)

)
. (8)

Here G = {g1, . . . , gK } is the set of K target genes; Θ repre-
sents all the kinetic parameters of the MM model, θk, for all
genes in the SIM and Σ2 stands for all the scale parameters
of the log-normal distribution, σ2

k, that are also assumed to
be gene specific.

4.2 Transcription Factor Activity
A common approach (Bar-Joseph et al., 2003; Qian et al.,
2003; Segal et al., 2003) assumes that the transcription of
the gene coding for the TF represents its activity reasonably
well. Therefore, the observed gene expression values for the
TF (TFX) are used as a proxy for TFA. A biologically more
plausible model suggests that the TFA is not equal or not
necessarily even correlated with the TFX (Gao et al., 2004;
Nachman et al., 2004) due to the processes of translation and
posttranslational modifications. In this case, the TFA, η(t),
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can be thought of as an unknown parameter. The idea is that
η(t) can be reconstructed from the expression data of the
genes that are known to be regulated by it. In a SIM, where
a given TF regulates several gene-targets, the TFA profile,
ηc(t), is the same for all target genes in the regulatory mod-
ule as all target genes become activated (or repressed) by the
master TF regulator under a specific set of conditions, c ∈
C. The kinetic parameters of regulation are gene specific for
each of the K genes with profiles µ1(t), . . . ,µK(t). These ki-
netic parameters as well as the TFA profile can be found by
maximizing the likelihood (8) for a given set of genes.

4.3 MM Model Constraint
The true expression of a target gene k at time t depends
on a continuous integral of the TFA values (6). Without
any further constraints, it is clear that the function η(t) is
unidentifiable. We, therefore, assume that the TFA can be
approximated by a piecewise constant step function η̄ on the
intervals (tj , tj+1), where tj are the sampling points (j =
0, . . . ,N − 2). Given this constraint, the integral in (6) can
be approximated by a sum,∫ t

0

e−δ(t−τ) η(τ)

γ + η(τ)
≈ e−δt 1

δ

N−2∑
j=0

(eδtj+1 − eδtj )
η̄j

γ + η̄j

, (9)

yielding the full general solution of the gene transcription
equation (6)

µ(t) =
(
µ0 −

α

δ

)
e−δt +

α

δ
+ βe−δt 1

δ

N−2∑
j=0

(eδtj+1 − eδtj )
η̄j

γ + η̄j

.

(10)

This approximation is used for each of the target k = 1, . . . ,K
in the SIM. The parameter η̄ = (η̄0, . . . , η̄N−2) is N − 1 dimen-
sional, but due to its collinearity of β on the one hand and γ
on the other in equation (9), it can only be identified up to
a multiplicative constant. Therefore, without loss of general-
ity we can fix η̄0 = 1. Computational details on maximizing
likelihood by conjugate gradient are given in supplementary
materials.

5. Application
The model described above has been applied to two 10-point
time-series of two Streptomyces coelicolor strains grown on
solid medium, one wild type and one mutant type for which a
transcriptional regulator cdaR (SCO3217) has been knocked
out. Each time-point of the two time-courses is replicated
twice using independent biological samples, as the sampling
mechanism is destructive.

The importance of the genus Streptomyces results from the
bacterium’s production of over two-thirds of naturally derived
antibiotics in current use, as well as many antitumor agents
and immunosuppressants. Streptomyces coelicolor produces at
least four chemically distinct antibiotics (Bibb, 1996). The
genes responsible for the synthesis of each of the four antibi-
otics have been found to be clustered in distinct locations
(Bentley et al., 2002). Here we study genes in the cluster
responsible for the production of calcium-dependent antibi-
otics (CDA) (Hojati et al., 2002). This cluster of 40 genes
(SCO3210-SCO3249) contains at least two genes encoding the

transcriptional regulators, CdaR and AbsA2, whose specific
roles in the regulation of antibiotic biosynthesis have not been
characterized in detail. Only 34 genes from the 40-gene cdaR
cluster are present on the arrays, so only these genes have
been considered in the current study. The cdaR gene product
is known to positively regulate genes for CDA biosynthesis,
while AbsA2 acts as an inhibitor, repressing CDA promoters,
perhaps in competition with CdaR (Ryding, Anderson, and
Champness, 2002; Sheeler, MacMillan, and Nodwell, 2005).
At the same time, the cdaR gene appears to be expressed
independently of absA (Ryding et al., 2002). The current ex-
perimental and modeling study focuses on analyzing the role
of the cdaR gene product in regulating the expression of the
cdaR gene cluster. The details on data preprocessing can be
found in supplementary materials.

5.1 Identification of cdaR Regulatory Module
As there is not much a priori biological knowledge available,
we use the data to inform us about which of the 34 avail-
able gene targets might be directly regulated by cdaR. We
implement this by means of an ANOVA and checking the sig-
nificance of the knock-out effect κc, gctr = µ + κc + τ t +
εctr for each gene in the cdaR cluster separately (c = mutant,
wild-type; t = 1, . . . , 10 time; r = 1, 2 replicates) account-
ing for a possible time effect. Apart from cdaR gene itself,
another 17 genes within the cdaR cluster have been identi-
fied (with p-values < 0.01) as being differentially expressed
between the two strains. Although performing 34 tests simul-
taneously, a p-value of 0.01 guarantees that it is unlikely that
more than one of the 17 genes is falsely discovered. These 17
genes are therefore assumed to be activated directly by the
transcriptional activator CdaR. Ten of these genes, SCO3235-
39 (with SCO3238 absent from the array) and SCO3244-49,
form two stretches of coregulated genes probably belonging to
the same operons, the latter extending from the fab operon
(with known members SCO3245-49) that encodes the biosyn-
thesis of the fatty acid moiety of CDA (Hojati et al., 2002).
We further assume that this TF and its 17 target genes con-
stitute a SIM.

5.2 Reconstruction of CdaR Activity
To reconstruct the activity profile of the CdaR regulator, the
profiles of all 17 differentially expressed genes within this reg-
ulatory module are used. In other words, we consider a SIM
with CdaR as its master regulator and the 17 genes as its tar-
gets. The maximum likelihood estimate of the activity profile
η̄(t) for CdaR found by the conjugate gradient method using
gene expression data for all 17 targets for wild type organism
is shown in Figure 1.

The confidence bounds for the η̄-components were obtained
via a classical Wilks procedure. Let L∗ be the value of the max-
imum likelihood found with respect to all parameters, includ-
ing η̄j . By perturbing each η̄j + �j , we obtain a value of likeli-
hood L∗

j = L(η̄0, . . . , η̄j + �j , . . . , η̄N−2). The 95% confidence
bound for η̄j is found by finding �j such that (L∗ − L∗

j)/
2 = χ2

1,0.95. Figure 1a shows the reconstructed CdaR activity
profile as a piece-wise constant function (solid line). Dashed
lines show upper and lower 95% Wilks confidence bounds for
each η̄j . A CdaR profile smoothed over the reconstructed
piece-wise profile is shown on Figure 1b (solid line). The
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Figure 1. TFA of CdaR inferred from gene expression data. (a) the TFA is the piece-wise constant step function (solid line)
together with its 95% confidence bounds (dashed lines). The inferred profile is rescaled between zero and one. Corresponding
confidence bounds are rescaled accordingly. (b) TFA vs TFX of cdaR for wild-type time-course. The TFA profile is smoothed
using R spline function (solid line) from inferred piece-wise constant function. Points represent the observed data for two
biological replicates for TFX (wild type) (dashed lines). Smoothed profile has been rescaled between zero and one; data points
have also been rescaled independently to be between zero and one.

smoothed profile was obtained by the cubic spline function
(R-function pspline). Points (connected with dashed lines)
represent the observed data for cdaR gene expression for the
two independent biological replicates.

Because of the arbitrary scale of the expression data, the
shapes of the reconstructed η̄ and the expression data for
cdaR are of interest to us, rather than their absolute val-
ues. The Pearson correlation between inferred activity pro-
file and the average expression profile is 0.45, suggesting that
the regulator CdaR is modified posttranslationally. Indeed,
it is highly likely that the activity of the CdaR protein is
influenced by its phosphorylation state. The deduced CdaR
protein sequence has a putative ATP-binding site and it is
known that the activity of related streptomycete antibiotic
regulatory proteins, such as AfsR, is governed by protein
phosphorylation. The data presented here would be consis-
tent with such posttranscriptional modification. This indi-
cates that it is not safe to substitute the activity of the regu-
lator by the measured gene expression in the models of gene
regulation.

Expression profiles of all 17 differentially expressed genes
between wild type and mutant has been used in the recon-
struction of the transcription activity profile of their common
regulator. To evaluate how sensitive the result is to the false
positives among the targets, we performed the same analy-
sis by iteratively leaving one of the putative targets out. The
TFA profiles found for each of the 17 SIMs with 16 targets
were compared to the TFA profile found for the original SIM
with 17 targets. The results are shown in Figure 2.

The mean correlation between the original TFA and the
ones found for SIMs with 16 targets is 0.872. It is clear from
Figure 2 that some difference is noticeable on the first and last
time intervals. However, in each case the reconstructed profile
of the gene target that has been left out shows excellent fit
with the expression data for this gene (not shown). This is

2 4 6 8 10
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TFA from all (17) targets
95% confidence bounds
TFA from 16 targets

Sensitivity of cdaR inferred activity to number of targets

Figure 2. Sensitivity of the TFA to possible false positives
among the targets. The TFA reconstructed from an original
SIM with 17 targets (solid line); TFAs reconstructed for SIMs
with 16 targets (leave-one-out) (dotted lines); 95% confidence
bounds (dashed lines).

not surprising, as each of the inferred TFA profiles has a high
correlation with the original inferred profile.

5.3 Kinetic Profiles of Target Genes
For each of the 17 target differentially expressed (DE) genes,
the mean gene expression profiles µk(t) and kinetic param-
eters θk, k = 1, . . . , 17, of the MM model (6) were esti-
mated given the reconstructed profile of the TF, η̄(t). Two
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Figure 3. Two representative profiles of target genes within the SIM regulatory module. The points connected by dotted
lines stand for the observed data for the wild type (two replicates). The solid line is for a gene profile fitted with the inferred
TFA of CdaR regulator η̄. (a) Gene SCO3230. ML estimates of kinetic parameters are β = 168, γ = 569, δ = 48, α = 0.55,
σ = 0.14. (b) Gene SCO3235. ML estimates of kinetic parameters are β = 265, γ = 516, δ = 9.4, α = 0.000001, σ = 0.31.

representative gene profiles within the regulatory module for
wild type are shown in Figure 3.

It is difficult to evaluate the estimates of the kinetic pa-
rameters, θk, as quantitative biological knowledge on gene
transcription in general, and for Streptomyces coelicolor in
particular, is very limited. It is nevertheless worthwhile men-
tioning some details about the kinetic parameters (see Web
Appendix D).

5.4 Goodness-of-Fit
As the observed gene expression data, gk

cr (t), are assumed
to be log-normally distributed, log[gk

cr (t)] is normally dis-
tributed. Therefore,

log
[
gk

cr (t)
]
−mk

c (t)

σk

∼ N(0, 1),

where the location parameter mk
c is given by formula (4).

Whether the inferred data truly comes from a normal distri-
bution can be tested by a Kolmogorov–Smirnov test by using,
for example, the R-function ks.test.

Figure 4 shows a QQ-plot of the p-values from the
Kolmogorov–Smirnov test for all 17 differentially expressed
genes between wild type and cdaR mutant. This figure shows
that the MM model combined with log-normal deviations dis-
plays a very good fit to the observed time-course gene expres-
sion data. The dashed line stands for an ideal fit of the data to
the model. If the p-values fall below this line, the fit is poor.
P-values above the line indicate some overfit of the model.
However, the 95% confidence bounds of the uniform distri-
bution (dotted line) show how most of the p-values might be
higher than the line simply by chance, as they fall within the
upper confidence bound.

To address concerns of overfitting, we compare the current
model with gene-specific variances σ2

k, with a model, wherein
a common variance σ2 is used for all genes. The maximum
likelihood estimate for common σ2 has been found by a grid-
search between the smallest and largest values of σ2

k. The
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Figure 4. Fit of MM-kinetics with log-normal noise and
ML estimate of ηA for 17 genes identified as differentially
expressed between the wild type and the cdaR-mutant. The
p-values from Kolmogorov-Smirnov test are shown versus the
quantiles of the uniform distribution. Dashed line stands for
an ideal fit of the data to the model.

likelihoods of the two models are compared using a χ2-test
with 16 degrees of freedom, that is, the difference in the num-
ber of parameters. This yields a statistic of 153.17, which far
exceeds the 95% cut-off of χ2

16,0.95 = 26.3. This suggests that
the model with a gene-specific variance gives the best trade-
off between the goodness of fit and the number of parameters
in the model.
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6. Discussion
In this paper we developed a statistical framework that em-
beds the deterministic MM kinetics of gene regulation within
a stochastic model of microarray measurement noise. As an
alternative for direct experimental measurement of the activ-
ity profile of the TF, the model reconstructs this profile using
the gene expression profiles of its targets within a SIM regu-
latory module. In addition, estimates of gene-specific kinetic
parameters of the gene regulation are found. We have shown
that in the case of posttranscriptional modifications, such as
is the case of the cdaR gene in Streptomyces coelicolor, the
amount of mRNA of a regulator is not a good approximation
for its protein activity levels and one cannot be substituted
for the other in quantitative models of gene regulation.

Our statistical framework requires some knowledge of the
structure of the regulatory module, which can be determined
by experimental methods (ChIP technology), analytical (e.g.,
by finding differentially expressed genes) and available biolog-
ical knowledge. Currently, in the absence of a reliable technol-
ogy to routinely measure the TFA of regulators, it is of great
importance to understand whether TFA can be inferred from
the expression of its targets. A straightforward experimental
verification of the results is to measure the phosphorylation
profile of CdaR and compare it with the TFA, inferred by our
model.

The statistical framework developed in this paper can be
extended to include cooperativity and competitive regulation
by two or more TFs with both AND and OR gate types. It can
be used to reconstruct the activity of TFs in known regulatory
modules and to discriminate between the types of regulation
(activation/inhibition; gate types) by using likelihood ratio
and goodness-of-fit tests. The model can also be extended
to search for the TFA and gene-specific kinetic parameters of
regulation by combining different microarray data sets. Other
types of data as well as available knowledge can be incorpo-
rated in the model.

7. Supplementary Materials
R-code and other supplementary materials are available
under the Paper Information link at the Biometrics
website: http://www.tibs.org/biometrics. The microar-
ray data used in the paper is available publicly in
ArrayExpress (http://www.ebi.ac.uk/arrayexpress/; ac-
cession numbers: Experiment, E-MAXD-14; Arrays: A-
MAXD-6, UMIST S COELICOLOR SC8 7337; A-MAXD-7,
UMIST S COELICOLOR SC3 6077; A-MAXD-8, UMIST S
COELICOLOR SC4 6884).
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