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Hierarchical Dirichlet Processes 
Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei 

We consider problems involving groups of data where each observation within a group is a draw from a mixture model and where it is 

desirable to share mixture components between groups. We assume that the number of mixture components is unknown a priori and is to 

be inferred from the data. In this setting it is natural to consider sets of Dirichlet processes, one for each group, where the well-known 

clustering property of the Dirichlet process provides a nonparametric prior for the number of mixture components within each group. Given 
our desire to tie the mixture models in the various groups, we consider a hierarchical model, specifically one in which the base measure for 

the child Dirichlet processes is itself distributed according to a Dirichlet process. Such a base measure being discrete, the child Dirichlet 

processes necessarily share atoms. Thus, as desired, the mixture models in the different groups necessarily share mixture components. 
We discuss representations of hierarchical Dirichlet processes in terms of a stick-breaking process, and a generalization of the Chinese 

restaurant process that we refer to as the "Chinese restaurant franchise." We present Markov chain Monte Carlo algorithms for posterior 
inference in hierarchical Dirichlet process mixtures and describe applications to problems in information retrieval and text modeling. 

KEY WORDS: Clustering: Hierarchical model; Markov chain Monte Carlo; Mixture model; Nonparametric Bayesian statistics. 

1. INTRODUCTION 

A recurring theme in statistics is the need to separate obser 

vations into groups, and yet allow the groups to remain linked, 

to "share statistical strength." In the Bayesian formalism such 

sharing is achieved naturally through hierarchical modeling; pa 
rameters are shared among groups, and the randomness of the 

parameters induces dependencies among the groups. Estimates 

based on the posterior distribution exhibit "shrinkage." 
In this article we explore a hierarchical approach to the prob 

lem of model-based clustering of grouped data. We assume that 

the data are subdivided into a set of groups and that within each 

group we wish to find clusters that capture latent structure in 
the data assigned to that group. The number of clusters within 
each group is unknown and is to be inferred. Moreover, in a 

sense that we make precise, we wish to allow sharing of clus 

ters among the groups. 

An example of the kind of problem that motivates us can 

be found in genetics. Consider a set of k binary markers [e.g., 

single nucleotide polymorphisms (SNPs)] in a localized region 
of the human genome. Although an individual human could ex 

hibit any of 2k different patterns of markers on a single chromo 

some, in real populations only a small subset of such patterns? 

haplotypes?is actually observed (Gabriel et al. 2002). Given a 

meiotic model for the combination of a pair of haplotypes into 
a genotype during mating, and given a set of observed geno 

types in a sample from a human population, it is of great inter 

est to identify the underlying haplotypes (Stephens, Smith, and 

Donnelly 2001). Now consider an extension of this problem in 
which the population is divided into a set of groups, such as, 
African, Asian, and European subpopulations. We not only may 

want to discover the sets of haplotypes within each subpopula 

tion, but also may wish to discover which haplotypes are shared 
between subpopulations. The identification of such haplotypes 
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would have significant implications for the understanding of the 

migration patterns of ancestral populations of humans. 

As a second example, consider the problem from the field of 
information retrieval (IR) of modeling of relationships among 
sets of documents. In IR documents are generally modeled un 

der an exchangeability assumption, the "bag of words" assump 

tion, in which the order of words in a document is ignored 
(Salt?n and McGill 1983). It is also common to view the words 
in a document as arising from a number of latent clusters or 

"topics," where a topic is generally modeled as a multinomial 

probability distribution on words from some basic vocabulary 
(Blei, Jordan, and Ng 2003). Thus, in a document concerned 
with university funding, the words in the document might be 
drawn from the topics "education" and "finance." Considering 
a collection of such documents, we may wish to allow topics to 

be shared among the documents in the corpus. For example, if 

the corpus also contains a document concerned with university 

football, then the topics may be "education" and "sports," and 

we would want the former topic to be related to that discovered 
in the analysis of the document on university funding. 

Moreover, we may want to extend the model to allow for 

multiple corpora. For example, documents in scientific journals 
are often grouped into themes (e.g., "empirical process theory," 

"multivariate statistics," "survival analysis"), and it would be 

of interest to discover to what extent the latent topics shared 

among documents are also shared across these groupings. Thus 

in general we wish to consider the sharing of clusters across 

multiple, nested groupings of data. 

Our approach to the problem of sharing clusters among mul 

tiple related groups is a nonparametric Bayesian approach, 

reposing on the Dirichletprocess (Ferguson 1973). The Dirich 
let process, DP(?o, Go), is a measure on measures. It has two 

parameters, a scaling parameter, ao > 0, and a base probabil 

ity measure, Go- An explicit representation of a draw from a 

Dirichlet process (DP) was given by Sethuraman (1994), who 
showed that if G ^ DP(??o, Go), then, with probability 1, 

oo 

G = I>*5**' 0) 
k=\ 
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where the 0? are independent random variables distributed ac 

cording to Go, where 8 fa is an atom at 0? and the "stick 

breaking weights," ?k, are also random and depend on the 

parameter q. (The definition of the ?k is provided in Sec. 3.1.) 
The representation in (1) shows that draws from a DP are dis 

crete (with probability 1). The discrete nature of the DP makes 
it unsuitable for general applications in Bayesian nonparamet 

rics, but it is well suited for the problem of placing priors on 

mixture components in mixture modeling. The idea is basically 
to associate a mixture component with each atom in G. Intro 

ducing indicator variables to associate data points with mixture 

components, the posterior distribution yields a probability dis 

tribution on partitions of the data. A number of authors have 

studied such DP mixture models (Antoniak 1974; Escobar and 

West 1995; MacEachern and M?ller 1998). These models pro 
vide an alternative to methods that attempt to select a particular 

number of mixture components, or methods that place an ex 

plicit parametric prior on the number of components. 

Let us now consider the setting in which the data are sub 

divided into a number of groups. Given our goal of solving a 

clustering problem within each group, we consider a set of ran 

dom measures Gy, one for each group j, where Gj is distributed 

according to a group-specific DP, DP(aq/, Gqj). To link these 

clustering problems, we link the group-specific DPs. Many au 

thors have considered ways to induce dependencies among mul 

tiple DPs through links among the parameters Gq/ and/or aq/ 
(Cifarelli and Regazzini 1978; MacEachern 1999; Tomlinson 

1998; M?ller, Quintana, and Rosner 2004; De lorio, M?ller, 
and Rosner 2004; Kleinman and Ibrahim 1998; Mallick and 

Walker 1997; Ishwaran and James 2004). Focusing on the Go7, 
one natural proposal is a hierarchy in which the measures Gj 
are conditionally independent draws from a single underlying 
DP, DP(o!o, Go(t)), where Gq(t) is a parametric distribution 

with random parameter r (Carota and Parmigiani 2002; Fong, 
Pammer, Arnold, and Bolton 2002; Muliere and P?trone 1993). 

Integrating over r induces dependencies among the DPs. 

That this simple hierarchical approach will not solve our 

problem can be observed by considering the case in which 

Gq(t) is absolutely continuous with respect to Lebesgue mea 

sure for almost all r (e.g., Go is Gaussian with mean r). In this 

case, given that the draws Gj arise as conditionally independent 
draws from Go(t), they necessarily have no atoms in common 

(with probability 1). Thus, although clusters arise within each 

group through the discreteness of draws from a DP, the atoms 

associated with the different groups are different and there is no 

sharing of clusters between groups. This problem can be skirted 

by assuming that Go lies in a discrete parametric family, but 

such an assumption would be overly restrictive. 

Our proposed solution to the problem is straightforward: To 

force Go to be discrete and yet have broad support, we consider 
a nonparametric hierarchical model in which Go is itself a draw 

from a DP, DP(y, H). This restores flexibility in that the mod 

eler can choose H to be continuous or discrete. In either case, 

with probability 1, Go is discrete and has a stick-breaking repre 
sentation as in (1). The atoms (?>k are shared among the multiple 

DPs, yielding the desired sharing of atoms among groups. In 

summary, we consider the hierarchical specification 

G0\y,H-DP(y,H), 
(2) 

Gj\c?o, Go 
~ DP(ao, Go) for each7, 

which we refer to as a hierarchical DP. The immediate exten 

sion to hierarchical DP mixture models yields our proposed for 

malism for sharing clusters among related clustering problems. 

Related nonparametric approaches to linking multiple DPs 

have been discussed by a number of authors. Our approach is a 

special case of a general framework for "dependent DPs" due 

to MacEachern (1999) and MacEachern, Kottas, and Gelfand 

(2001). In this framework the random variables ?k and fa in (1) 
are general stochastic processes (i.e., indexed collections of ran 

dom variables); this allows very general forms of dependency 
among DPs. Our hierarchical approach fits into this framework; 
we endow the stick-breaking weights ?k in (1) with a second 

subscript indexing the groups j and view the weights ?? as de 

pendent for each fixed value of k. Indeed, as we show in Sec 

tion 4, the definition in (2) yields a specific, canonical form of 

dependence among the weights ??. 
Our approach is also a special case of a framework referred 

to as analysis of densities (AnDe) by Tomlinson (1998) and 
Tomlinson and Escobar (2003). The AnDe model is a hier 

archical model for multiple DPs in which the common base 
measure Go is random, but rather than treating Go as a draw 

from a DP, as in our case, we treat it as a draw from a 

mixture of DPs. The resulting Go is continuous in general 
(Antoniak 1974), which, as we have discussed, is ruinous for 
our problem of sharing clusters. But it is an appropriate choice 

for the problem addressed by Tomlinson (1998), that of sharing 
statistical strength among multiple sets of density estimation 

problems. Thus, whereas the AnDe framework and our hier 

archical DP framework are closely related formally, the infer 

ential goal is rather different. Moreover, as we show later, our 

restriction to discrete Go has important implications for the de 

sign of efficient Markov chain Monte Carlo (MCMC) inference 

algorithms. 
The terminology of "hierarchical DP" has also been used by 

M?ller et al. (2004) to describe a different notion of hierar 

chy than that discussed here. These authors considered a model 

in which a coupled set of random measures Gj are defined as 

Gj 
= eFo + (\? )Fj, where Fo and the Fj are draws from DPs. 

This model provides an alternative approach to sharing clusters, 

in which the shared clusters are given the same stick-breaking 

weights (those associated with Fo) in each of the groups. In 

contrast, in our hierarchical model, the draws Gj 
are based on 

the same underlying base measure Go, but each draw assigns 

different stick-breaking weights to the shared atoms associated 

with Go. Thus, atoms can be partially shared. 

Finally, the term "hierarchical DP" has been used in yet a 

third way by Beal, Ghahramani, and Rasmussen (2002) in the 
context of a model known as the infinite hidden Markov model, 
a hidden Markov model with a countably infinite state space. 
But the "hierarchical DP" of Beal et al. (2002) is not a hierar 

chy in the Bayesian sense; rather, it is an algorithmic descrip 
tion of a coupled set of urn models. We discuss this model in 
more detail in Section 7, where we show that the notion of hi 
erarchical DP presented here yields an elegant treatment of the 
infinite hidden Markov model. 

In summary, the notion of hierarchical DP that we explore 

is a specific example of a dependency model for multiple DPs, 
one specifically aimed at the problem of sharing clusters among 
related groups of data. It involves a simple Bayesian hierarchy 
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where the base measure for a set of DPs is itself distributed 

according to a DP. Although there are many ways to couple 

DPs, we view this simple, canonical Bayesian hierarchy as par 

ticularly worthy of study. Note in particular the appealing re 
cursiveness of the definition; a hierarchical DP can be readily 
extended to multiple hierarchical levels. This is natural in appli 
cations. For example, in our application to document modeling, 
one level of hierarchy is needed to share clusters among multi 

ple documents within a corpus, and second level of hierarchy is 
needed to share clusters among multiple corpora. Similarly, in 

the genetics example, it is of interest to consider nested subdivi 

sions of populations according to various criteria (geographic, 

cultural, economic) and consider the flow of haplotypes on the 

resulting tree. 

As is the case with other nonparametric Bayesian methods, 

a significant aspect of the challenge in working with the hier 
archical DP is computational. To provide a general framework 

for designing procedures for posterior inference in the hierar 
chical DP that parallel those available for the DP, it is neces 

sary to develop analogs for the hierarchical DP of some of the 

representations that have proved useful in the DP setting. We 

provide these analogs in Section 4, where we discuss a stick 

breaking representation of the hierarchical DP, an analog of the 

Polya urn model that we call the "Chinese restaurant franchise," 

and a representation of the hierarchical DP in terms of an infi 
nite limit of finite mixture models. With these representations 
as background, we present MCMC algorithms for posterior in 
ference under hierarchical DP mixtures in Section 5. We give 
experimental results in Section 6 and present our conclusions 
in Section 8. 

2. SETTING 

We are interested in problems in which the observations are 

organized into groups and assumed to be exchangeable both 
within each group and across groups. To be precise, letting 

j index the groups and i index the observations within each 

group, we assume that xp ,Xj2,... are exchangeable within each 

group j. We also assume that the observations are exchangeable 
at the group level; that is, if xy 

= 
(xj\ , Xji,...) denote all obser 

vations in group j, then xi, X2,... are exchangeable. 

Assuming that each observation is drawn independently from 
a mixture model, there is a mixture component associated with 

each observation. Let O? denote a parameter specifying the mix 

ture component associated with the observation X?. We refer to 

the variables O? 
as factors. Note that these variables are not gen 

erally distinct; we develop a different notation for the distinct 
values of factors. Let F(0ji) denote the distribution of Xji given 
the factor O?. Let Gj denote a prior distribution for the factors 

Oj 
= 

(0j\, 0j2,...) associated with group j. We assume that the 
factors are conditionally independent given Gj. Thus we have 
the following probability model: 

Oji\Gj 
~ 

Gj for each j and /, 
(3) 

x?\?ji 
" 

F(6ji) for each j and /, 

to augment the specification given in (2). 

3. DIRICHLET PROCESSES 

In this section we provide a brief overview of DPs. After a 
discussion of basic definitions, we present three different per 
spectives on the DP: one based on the stick-breaking construc 

tion, one based on a Polya urn model, and one based on a limit 

of finite mixture models. Each of these perspectives has an ana 

log in the hierarchical DP, as described in Section 4. 
Let (0, B) be a measurable space, with Go a probabil 

ity measure on the space. Let c*o be a positive real number. 

A Dirichlet process, DP(ao,Go), is defined as the distribu 
tion of a random probability measure G over (0, B) such that, 
for any finite measurable partition (AX,A2,... ,Ar) of 0, the 

random vector (G(AX ),..., G(Ar)) is distributed as a finite 
dimensional Dirichlet distribution with parameters (c?oGo(Ax), 
...,a0Go(Ar)), 

(G(AX),..., G(Ar)) 
~ 

Dir(a0Go(Ax),..., a0G0(Ar)). (4) 

We write G ~ DP(ao, Go) if G is a random probability measure 
with distribution given by the DP. The existence of the DP was 
established by Ferguson (1973). 

3.1 The Stick-Breaking Construction 

Measures drawn from a DP are discrete with probability 1 

(Ferguson 1973). This property is made explicit in the stick 

breaking construction due to Sethuraman (1994). The stick 

breaking construction is based on independent sequences of iid 
random variables 0^)^ and ((pk)^Lx, 

7i'k\a0, Go 
~ 

beta(l, a0), 0*1^0, G0 
~ 

Go. (5) 

Now define a random measure G as 

k?\ oo 

7tk = 
n,kY[(l-7tfi> G = ^tt^, (6) 

l=\ k=\ 

where 8$ is a probability measure concentrated at 0. 
Sethuraman (1994) showed that G as defined in this way 
is a random probability measure distributed according to 

DP(a0,G0). 
It is important to note that the sequence n = (7tjc)(j^Lx con 

structed by (5) and (6) satisfies Y^kL\ nk ? ^ with probability 1. 
Thus we may interpret n as a random probability measure on 

the positive integers. For convenience, we write tz ̂  
GEM(ao) 

if Jt is a random probability measure defined by (5) and (6). 
(Here GEM stands for Griffiths, Engen, and McCloskey; see, 
e.g., Pitman 2002b.) 

3.2 The Chinese Restaurant Process 

A second perspective on the DP is provided by the P?lya 
urn scheme (Blackwell and MacQueen 1973). The P?lya urn 
scheme shows that draws from the DP are both discrete and 
exhibit a clustering property. 

The P?lya urn scheme does not refer to G directly; rather, 
it refers to draws from G. Thus let 0X, 02,... be a sequence of 

iid random variables distributed according to G. That is, the 
variables 0X, 62,... are conditionally independent given G, and 

hence are exchangeable. Let us consider the successive condi 

tional distributions of 0? given 0X,..., 0;_i, where G has been 
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E 
? 
ff ? - H 

integrated out. Blackwell and MacQueen (1973) showed that 
these conditional distributions have the following form: 

0i|0i,...,0/-i,ao,Go 

i-\ 

_l. s*i + ?TT? Go. (7) 
=1 

. . + a0 ? - 1 + oto 

We can interpret the conditional distributions in terms of a sim 

ple urn model in which a ball of a distinct color is associated 
with each atom. The balls are drawn equiprobably; when a ball 
is drawn, it is placed back in the urn together with another ball 
of the same color. In addition, with probability proportional 
to ao, a new atom is created by drawing from Go, and a ball 
of a new color is added to the urn. 

Expression (7) shows that 0/ has positive probability of being 
equal to one of the previous draws. Moreover, there is a positive 
reinforcement effect; the more often a point is drawn, the more 

likely it is to be drawn in the future. To make the clustering 
property explicit, it is helpful to introduce a new set of variables 
that represent distinct values of the atoms. Define fa,..., (?>k to 
be the distinct values taken on by 9\,..., 0;_i, and let m? be the 
number of values 0// that are equal to fa for \ <i' < i. We can 

re-express (7) as 

0/101,..., 0/_i,ao, G0 

~EHV% + H^0. (8) 
^ i - 1 + a0 i - 1 + ?f0 

Using a somewhat different metaphor, the Polya urn scheme 
is closely related to a distribution on partitions known as the 
Chinese restaurant process (Aldous 1985). This metaphor has 
turned out to be useful in considering various generalizations of 
the DP (Pitman 2002a), and it is useful in this article as well. 
The metaphor is as follows. Consider a Chinese restaurant with 
an unbounded number of tables. Each 0/ corresponds to a cus 

tomer who enters the restaurant, whereas the distinct values fa 
correspond to the tables at which the customers sit. The ith cus 
tomer sits at the table indexed by fa, with probability propor 
tional to the number of customers m^ already seated there (in 
which case we set 0/ = fa), and sits at a new table with prob 
ability proportional to ?o (increment K\ draw (pK 

" 
Go and set 

0i = fa). 

3.3 Dirichlet Process Mixture Models 

One of the most important applications of the DP is as a non 

parametric prior on the parameters of a mixture model. In par 

ticular, suppose that observations x? arise as 

0/IG-G, 
(9) 

xi\0i-F(6i), 

where F(0?) denotes the distribution of the observation x? 

given 0/. The factors 0/ are conditionally independent given G, 
and the observation x? is conditionally independent of the other 
observations given the factor 0?. When G is distributed accord 

ing to a DP, this model is referred to as a DP mixture model. 
A graphical model representation of a DP mixture model is 
shown in Figure 1(a). 

:..?-,--:v. 
. . 

m 

'".. ' A; 

F/gft/re 7. Graphical Model Representation of a DP Mixture Model (a) 
and a Hierarchical DP Mixture Model (b). In the graphical model formal 

ism, each node in the graph is associated with a random variable, where 

shading denotes an observed variable. Rectangles denote replication of 

the model within the rectangle. Sometimes the number of replicates is 

given in the bottom right corner of the rectangle. 

Because G can be represented using a stick-breaking con 

struction (6), the factors 0; take on values fa with probabil 
ity 7Tjfc. We may denote this using an indicator variable, z?, that 
takes on positive integral values and is distributed according 
to n (interpreting n as a random probability measure on the 

positive integers). Hence an equivalent representation of a DP 
mixture is given by the following conditional distributions: 

n\ao ^GEM(ao), Zi\n ̂n, 
(10) 

fa\G0 
~ Go, Xi\zh (0*)?Li 

^ 
F(<t*zi) 

Moreover, G = J2tL\ nk^k and 0/ = (j)Zi. 

3.4 The Infinite Limit of Finite Mixture Models 

A DP mixture model can be derived as the limit of a sequence 
of finite mixture models, where the number of mixture compo 
nents is taken to infinity (Neal 1992; Rasmussen 2000; Green 
and Richardson 2001; Ishwaran and Zarepour 2002). This lim 

iting process provides a third perspective on the DP. 

Suppose that we have L mixture components. Let n = 

(n\,..., ni) denote the mixing proportions. Note that we previ 

ously used the symbol it to denote the weights associated with 
the atoms in G. We have deliberately overloaded the definition 
of n here; as we show later, they are closely related. In fact, in 
the limit L -> oo, these vectors are equivalent up to a random 

size-biased permutation of their entries (Pitman 1996). 
We place a Dirichlet prior on n with symmetric parameters 

(ao/L,..., ao/L). Let fa denote the parameter vector associ 

ated with mixture component k, and let fa have prior distrib 
ution Go- Drawing an observation x? from the mixture model 
involves picking a specific mixture component with probability 
given by the mixing proportions; let zi denote that component. 

We thus have the following model: 

jt\ao 
~ 

Dir(ao/L, .., ao/L), Zi\n 
~ 

n, 

i (11) 
fa\G0 

~ 
G0, Xi\zu (4>k)k=i 

~ 
F(fai). 
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Let GL = J2k=[ nka(pk. Ishwaran and Zarepour (2002) showed 
that for every measurable function / integrable with respect 
to Go, we have, as L -> oo, 

ff(0)dGL(0)^ff(0)dG(0). 
(12) 

A consequence of this is that the marginal distribution induced 
on the observations x\, ..., xn approaches that of a DP mixture 

model. 

4. HIERARCHICAL DIRICHLET PROCESSES 

We propose a nonparametric Bayesian approach to the mod 

eling of grouped data, in which each group is associated with 
a mixture model and we wish to link these mixture models. By 
analogy with DP mixture models, we first define the appropri 
ate nonparametric prior, which we call the hierarchical DP. We 

then show how this prior can be used in the grouped mixture 
model setting. We present analogs of the three perspectives pre 
sented earlier for the DP: a stick-breaking construction, a Chi 

nese restaurant process representation, and a representation in 

terms of a limit of finite mixture models. 
A hierarchical DP is a distribution over a set of random prob 

ability measures over (0, B). The process defines a set of ran 

dom probability measures 
Gj, 

one for each group, and a global 
random probability measure Go- The global measure Go is dis 
tributed as a DP with concentration parameter y and base prob 

ability measure H, 

Go\y,H~D?(y,H), (13) 

and the random measures 
Gj 

are conditionally independent 

given Go, with distributions given by a DP with base proba 
bility measure Go, 

Gy|ao,Go~DP(ao,G0). (14) 

The hyperparameters of the hierarchical DP consist of the 
baseline probability measure H, and the concentration parame 
ters y and cto. The baseline H provides the prior distribution for 
the factors 0??. The distribution Go varies around the prior H, 
with the amount of variability governed by y. The actual dis 
tribution Gj over the factors in theyth group deviates from Go, 
with the amount of variability governed by ao. If we expect the 

variability in different groups to be different, then we can use a 

separate concentration parameter otj for each group j. In this ar 

ticle, following Escobar and West (1995), we put vague gamma 
priors on y and ay. 

A hierarchical DP can be used as the prior distribution over 
the factors for grouped data. For each j, let 0j\, 0/2, ... be iid 
random variables distributed as Gj. Each 0? is a factor corre 

sponding to a single observation X?. The likelihood is given by 

(15) 
0ji\Gj ~G/, 

x?\0?-F(0?). 

This completes the definition of a hierarchical DP mixture 
model. The corresponding graphical model is shown in Fig 
ure 1(b). 

The hierarchical DP can readily be extended to more than 
two levels. That is, the base measure H can itself be a draw from 
a DP, and the hierarchy can be extended for as many levels as 

are deemed useful. In general, we obtain a tree in which a DP 

is associated with each node, in which the children of a given 
node are conditionally independent given their parent, and in 
which the draw from the DP at a given node serves as a base 

measure for its children. The atoms in the stick-breaking repre 
sentation at a given node are thus shared among all descendant 

nodes, providing a notion of shared clusters at multiple levels 
of resolution. 

4.1 The Stick-Breaking Construction 

Given that the global measure Go is distributed as a DP, it can 
be expressed using a stick-breaking representation, 

oo 

Go = 2^a<$0?, (!6) 
k=l 

where fa 
? H independently and ? = (?k)^Lx 

^ 
GEM(y) are 

mutually independent. Because Go has support at the points 
0 = (fa)(j*Ll, each Gj necessarily has support at these points 
as well, and thus can be written as 

oo 

k=\ 

Let Ttj 
? 

(iijk)(^Lx. Note that the weights jtj are independent 
given ?, because the G/'s are independent given Go- We now 
describe how the weights jtj are related to the global weights ?. 

Let (A\,..., Ar) be a measurable partition of 0 and let K\ 
= 

{k:fa eAi] for I = I, ...,r. Note that (Kx,..., Kr) is a finite 

partition of the positive integers. Further, assuming that H is 

nonatomic, the fa's are distinct with probability 1, and so any 
partition of the positive integers corresponds to some partition 
of 0. Thus, for each j, we have 

(Gj(Ax),...,Gj(Ar)) 

^Div(aoGo(Ax),... ,a0Go(Ar)) 

\eKi keKr J 

^Dir^o^?,...,?o^A), 
(18) 

^ keK\ keKr ' 

for every finite partition of the positive integers. Hence each 

Kj is independently distributed according to DP(ao, ?), where 
we interpret ? and itj as probability measures on the positive 
integers. If H is nonatomic, then a weaker result still holds; if 

jtj 
~ 

DP(a0, ?), then Gj as given in (17) is still DP(a0, G0) 
distributed. 

As in the DP mixture model, because each factor 6j? is dis 
tributed according to Gj, it takes on the value fa with probabil 
ity Ttjk. Again, let Zji be an indicator variable such that 6j? 

= 
0Z7. 

Given Zji, we have Xj? 
~ 

F(fa?). Thus we obtain an equivalent 
representation of the hierarchical DP mixture through the fol 

lowing conditional distributions: 

?\y -GEM(y), 

7tj\ao, ? 
- 

DP(ao, ?), zj?\kj 
- 

itj, (19) 

fa\H^H, XjilzjiAtk^-Fifaj.). 
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We now derive an explicit relationship between the elements 

of ? and jtj. Recall that the stick-breaking construction for DPs 
defines the variables ?k in (16) as 

k-\ 

beta(l.y), ?k = ?'k\\(\ 
- 

?[) (20) 
i=i 

Using (18), we show that the following stick-breaking construc 
tion produces a random probability measure jtj 

^ 
DP(ao, ?)'. 

7tjk 
- beta! ao?k, a0 ? 1 

- 
J^ ?i I 

J, 

k-\ 

To derive (21), first note that for a partition ({1,..., 
k - 1}, {k}, {k+\,k + 2,...}), (18) gives 

(k-\ oo \ / k-\ oo \ 

^TtjUT?jk, ̂ 7T// 1 ~ Dirl Qfo 5^ ?, ?foA, ?fo ^ ?l 
j 

(22) 

Removing the first element, and using standard properties of the 
Dirichlet distribution, we have 

i 2^/=i nji \ i=k+\ / \ i=k+\ 
^k-\ 71 ji \ i=k+\ ! 

(23) 

Finally, define n'-k 
= 

rcjk/(l 
? 

J2i=\ nji) and observe that 1 ? 

Eti ?l = E?^+i ?l t0 obtain (21). Together with (20), (16), 
and (17), this completes the description of the stick-breaking 
construction for hierarchical DPs. 

4.2 The Chinese Restaurant Franchise 

In this section we describe an analog of the Chinese restau 

rant process for hierarchical Dirichlet processes that we call the 
Chinese restaurant franchise. Here the metaphor of the Chinese 

restaurant process is extended to allow multiple restaurants that 

share a set of dishes. 

The metaphor is as follows (see Fig. 2). We have a restaurant 
franchise with a shared menu across the restaurants. At each ta 

ble of each restaurant, one dish is ordered from the menu by the 
first customer who sits there, and this dish is shared among all 
of the customers who sit at that table. Multiple tables in multi 

ple restaurants can serve the same dish. 

In this setup, the restaurants correspond to groups and the 

customers correspond to the factors 0?. We also let fa,..., (pK 

denote K iid random variables distributed according to H; this 
is the global menu of dishes. We also introduce variables, \f/jt, 
that represent the table-specific choice of dishes; in particular, 

x/fjt is the dish served at table t in restaurant;*. 

Note that each 0? is associated with one 
\j/jt, whereas each 

xj/jt is associated with one fa. We introduce indicators to de 
note these associations. In particular, let t? be the index of the 

[?/jt associated with 0?, and let kjt be the index of fa associ 
ated with \l/jt. 

In the Chinese restaurant franchise metaphor, 
customer / in restaurant j sits at table t? whereas table t in 

restaurant j serves dish k?. 

Figure 2. A Depiction of a Chinese Restaurant Franchise. Each 

restaurant is represented by a rectangle. Customers (Op's) are seated 

at tables (circles) in the restaurants. At each table a dish is served. The 

dish is served from a global menu (4>k), whereas the parameter \?/jt is 

a table-specific indicator that serves to index items on the global menu. 

The customer 6?? sits at the table to which it has been assigned in (24). 

We also need a notation for counts. In particular, we need to 

maintain counts of customers and counts of tables. We use the 

notation rijtk to denote the number of customers in restaurant 7 at 

table t eating dish k. Marginal counts are represented with dots. 
Thus rijt. represents the number of customers in restaurant j at 

table t, and rij.k represents the number of customers in restaurant 

j eating dish k. The notation mjk denotes the number of tables 
in restaurant j serving dish k. Thus my. represents the number 

of tables in restaurant j, m.? represents the number of tables 

serving dish k, and m.. represents the total number of tables 

occupied. 
Let us now compute marginals under a hierarchical DP when 

Go and Gj 
are integrated out. First, consider the conditional dis 

tribution for Oji given 6jX,..., Ojj-\ and Go, where Gj is inte 

grated out. From (8), 

0ji\0jX, ...,6jj-X,o?o,Go 

ny. 

_*Vi 
i-l 

t=[ -aro 
Hjt + 

a0 

/ - 1 + c?o 
G0. (24) 

This is a mixture, a draw from which can be obtained by draw 

ing from the terms on the right side with probabilities given 
by the corresponding mixing proportions. If a term in the first 
summation is chosen, then we increment njt, set Oji 

= 
V>> and 

let tu = t for the chosen t. If the second term is chosen, then we 

Go, and set 
Oji 

= 
V^'m/. 

and 
l? 

increment my. by one, draw 
i/^'m-. 

tji 
= 

mj.. 
Now we proceed to integrate out Go. Note that Go appears 

only in its role as the distribution of the variables \?/jt. Because 

Go is distributed according to a DP, we can integrate it out by 
using (8) again and write the conditional distribution of \//jt as 

V^IVOl, V02, ..., ^21, ...,\lfjt-\,Y,H 

k=\ 

m.k , 
-( 

m.. + y 

_y_ 
m.. + y 

-H. (25) 
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If we draw xj/jt by choosing a term in the summation on the right 
side of this equation, then we set \j/jt 

= fa and let kjt 
? k for the 

chosen k. If we choose the second term, then we increment K 

by one, draw <Pk 
^ 

H, and set 
xj/? 

= 
cpK and kjt 

= K. 

This completes the description of the conditional distribu 
tions of the 

Oji 
variables. To use these equations to obtain sam 

ples of Oji, we proceed as follows. For each j and /, we first 

sample 6? using (24). If a new sample from Go is needed, then 
we use (25) to obtain a new sample xj/jt and set 

O? 
= 

xj/?. 
Note that in the hierarchical DP, the values of the factors are 

shared between the groups as well as within the groups. This is 
a key property of hierarchical DP. 

4.3 The Infinite Limit of Finite Mixture Models 

As in the case of a DP mixture model, the hierarchical DP 
mixture model can be derived as the infinite limit of finite mix 
tures. In this section we present two apparently different finite 

models that yield the hierarchical DP mixture in the infinite 

limit, with each emphasizing a different aspect of the model. 
Consider the following collection of finite mixture models, 

where ? is a global vector of mixing proportions and jzj is a 

group-specific vector of mixing proportions: 

?\y^Div(y/L,...,y/L), 

Jtj\ao, ? 
~ 

Dir(a0j8), Zj?\kj 
~ 

Jtj, (26) 

fa\H^H, XjilzjiAWLi-Hfoji)' 

The parametric hierarchical prior for ? and n in (26) has been 
discussed by MacKay and Peto (1994) as a model for natural 

languages. We show that the limit of this model as L -> oo 

is the hierarchical DP. Let us consider the random probability 
measures G\ 

= 
J2k=\ ?k^k and 

Gf 
= 

ELi ^jkhk- As in Sec_ 
tion 3.4, for every measurable function/ integrable with respect 
to H, we have 

jf(0)dG^(0)^ Jf(0)dG0(0), 
(27) 

as L -> oo. Further, using standard properties of the Dirichlet 

distribution, we see that (18) still holds for the finite case for 

partitions of {1,..., L] ; hence we have 

Gf ~DP(a0,G?). (28) 

It is now clear that as L -? oo, the marginal distribution that 
this finite model induces on x approaches the hierarchical DP 

mixture model. 

There is an alternative finite model whose limit is also the 
hierarchical DP mixture model. Instead of introducing depen 
dencies between the groups by placing a prior on ? (as in the 
first finite model), each group can instead choose a subset of T 
mixture components from a model-wide set of L mixture com 

ponents. In particular, consider the following model: 

?\y^Dir(y/L,...,y/L), kjt\?~?, 

7tj\ao 
~ 

Dir(a0/7\ , ao/T), t?\nj 
- 

tzj, (29) 

fa\H 
~ H, x?\t?, (kjt)Tt=x, (fa)Lk^ 

~ 
F(fajtj?). 

As T -> oo and L ?> oo, the limit of this model is the Chi 
nese restaurant franchise process; hence the infinite limit of this 
model is also the hierarchical DP mixture model. 

5. INFERENCE 

In this section we describe three related MCMC sampling 
schemes for the hierarchical DP mixture model. The first 
scheme is a straightforward Gibbs sampler based on the Chi 
nese restaurant franchise; the second is based on an augmented 

representation involving both the Chinese restaurant franchise 
and the posterior for Go; and the third is a variation on the sec 

ond sampling scheme with streamlined bookkeeping. To sim 

plify the discussion, we assume that the base distribution H 
is conjugate to the data distribution F; this allows us to focus 
on the issues specific to the hierarchical DP. The nonconjugate 
case can be approached by adapting to the hierarchical DP tech 

niques developed for nonconjugate DP mixtures (Neal 2000). 
Moreover, in this section we assume fixed values for the con 

centration parameters q and y ; we present a sampler for these 

parameters in the Appendix. 
We recall the random variables of interest. The variables Xji 

are the observed data. Each Xj? is assumed to arise as a draw 

from a distribution F (Oji). Let the factor 0yz- be associated with 
the table tji in the restaurant representation, that is, let Oji 

= 
\?fjtji. 

The random variable V> is an instance of mixture compo 
nent kjt, that is, V> 

= 
fa?- The prior over the parameters fa 

is H. Let zj? 
? 

kjtji 
denote the mixture component associated 

with the observation xy?. We use the notation rijtk to denote the 

number of customers in restaurant y at table t eating dish k, mjk 
to denote the number of tables in restaurant y serving dish k, and 
K to denote the number of dishes being served throughout the 
franchise. Marginal counts are represented with dots. 

Let x ? (xji : ally, i), xyr 
? 

(*y; 
' all i with tji 

= t), t = (tji : 

ally, /), k = (kjt : ally, t), z = (zj? : ally, i), m = 
(mjk : ally, k), 

and (?> 
= 

(0i,..., (?>?). When a superscript is attached to a set of 

variables or a count (e.g., x~Jl, k~7?, or 
njt3ml), 

this means that the 

variable corresponding to the superscripted index is removed 
from the set or from the calculation of the count. In the exam 

ples, x~7Z = x\xj?, k~jY = 
k\kjt, and njl is the number of obser 

vations in group y whose factor is associated with \?/jt, leaving 
out item Xji. 

Let F(0) have density f(-\0) and let H have density h(-). 
Because H is conjugate to F, we integrate out the mixture 

component parameters (?> in the sampling schemes. Denote the 

conditional density of jcy/ under mixture component k given all 
data items except jcy; as 

?f(xji\fa) Ylfi'rtUfi^kfixfi'\<l>k)h(fa) dfa 
fk (Xjl):= 

fUfi^j^fif=kf^fi^k)h(fa)dfa 
* (30) 

Similarly let fk 
Jt 
(Xjt) denote the conditional density of xyr 

given all data items associated with mixture component k leav 

ing OUt Xjt. 

Finally, we suppress references to all variables except those 

being sampled in the conditional distributions to follow. In par 
ticular, we omit references to x, ?q, and y. 

5.1 Posterior Sampling in the Chinese 
Restaurant Franchise 

The Chinese restaurant franchise presented in Section 4.2 can 
be used to produce samples from the prior distribution over 
the Oji, 

as well as intermediary information related to the ta 

bles and mixture components. This framework can be adapted 
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to yield a Gibbs sampling scheme for posterior sampling given 
observations x. 

Rather than dealing with the 0^'s and x//jt's directly, we in 
stead sample their index variables t? and k?. The 0^'s and t/^/s 
can be reconstructed from these index variables and the fa's. 

This representation makes the MCMC sampling scheme more 
efficient (cf. Neal 2000). Note that the t? and the k? inherit the 

exchangeability properties of the 0? and the xj/jt; the conditional 
distributions in (24) and (25) can be adapted to be expressed in 
terms of t? and k?. The state space consists of values of t and k. 

Note that the number of k? variables represented explicitly by 
the algorithm is not fixed. We can think of the actual state space 
as consisting of an infinite number of kjt's, only a finitely num 

ber of which are actually associated with the data and repre 
sented explicitly. 

Sampling t. To compute the conditional distribution of t? 
given the rest of the variables, we make use of exchangeability 
and treat t? as the last variable being sampled in the last group 
in (24) and (25). We obtain the conditional posterior for t? by 
combining the conditional prior distribution for t? with the like 
lihood of generating X?. 

Using (24), the prior probability that t? takes on a particu 
lar previously used value t is proportional to 

n-tJml, 
whereas the 

probability that it takes on a new value (say, rnew = 
m?. + 1) is 

proportional to ufo- The likelihood due to X? given t? 
= t for 

some previously used t isfk 
jl 
(xj?) 

. The likelihood for t? 
= fnew 

can be calculated by integrating out the possible values of ̂new 
using (25), 

p(x?\t-J\t? 
= tn ,k) 

E ^r-fkXJi(.xji) 
+ ?^?fK2(xji), (3D 

where/j.nei'ixy,) 
= 

ff(xji\4>)h((p)dtp is simply the prior density 
of X?. The conditional distribution of t? is then 

pity 
= t\t~J', k) 

a ( "*%** {xJi} if * Previouslyused (32) 
( aop(.Xji\t-Ji, t? 

= fnew, k) if t = inew. 

If the sampled value of t? is rnew, then we obtain a sample 
of k?ncw by sampling from (31), 

;,new 

p(kjtneW =k\t,k~Jt ) 

I m.kfk 
Xji 

(xj?) if k previously used 
(X \ _?.. (33) 

[yfj?ix?) if k = k . 

If as a result of updating t?, some table t becomes unoccupied 
(i.e., rijt. 

= 
0), then the probability that this table will be reoccu 

pied in the future will be 0, because this is always proportional 
to ri?.. Consequently, we may delete the corresponding k? from 

the data structure. If as a result of deleting k? 
some mixture 

component k becomes unallocated, then we delete this mixture 

component as well. 

Sampling k. Because changing kjt actually changes the 

component membership of all data items in table t, the likeli 

hood obtained by setting kjt 
= k is given by fk ?(xjt), so that 

the conditional probability of kjt is 

p(kjt 
= k\t,k-Jt) 

Im~k% 
X? 

(*./') if k is previously used 

Yf-^iXjt) if k = k . 

5.2 Posterior Sampling With 
an Augmented Representation 

In the Chinese restaurant franchise sampling scheme, the 

sampling for all groups is coupled because Go is integrated 
out. This complicates matters in more elaborate models (e.g., in 

the case of the hidden Markov model considered in Sec. 7). In 
this section we describe an alternative sampling scheme where 

in addition to the Chinese restaurant franchise representation, 

Go is instantiated and sampled from, so that the posterior con 

ditioned on Go factorizes across groups. 
Given a posterior sample (t, k) from the Chinese restaurant 

franchise representation, we can obtain a draw from the poste 
rior of Go by noting that Go 

~ 
DP(y, H) and that \j/jt for each 

table t is a draw from Go- Conditioning on the "0)/s, Go is now 

distributed as DP(y +m.., (yH + J2k=\ m-k^(j)k)/(y + m..)). An 

explicit construction for Go is now given as 

? 
= 

(?x,...,?K, ?u) 
- 

Dir(m.i,..., m.K, y), 

Gu-DP(y,H), 

p(fa\t,k)cxh(fa) Y\ fOcjilfa), (35) 
Ji:kjtji=k 

K 

Go = 2^ ?rffa + ?uGu. 
k=\ 

Given a sample of Go, the posterior for each group is factorized, 
and sampling in each group can be performed separately. The 
variables of interest in this scheme are t and k as in the Chinese 
restaurant franchise sampling scheme and ? earlier, whereas 

both 0 and Gu are integrated out (which introduces couplings 
into the sampling for each group but is easily handled). 

Sampling t and k. This is almost identical to the Chinese 
restaurant franchise sampling scheme, with the only novelty be 

ing that we replace m.? by ?k and y by ?u in (31), (32), (33), 
and (34), and when a new component /cnew is instantiated, we 

draw b - beta(l, y) and set ?k = b?u and #Jew 
= (l-b)?u. 

We can understand b as follows: When a new component is in 

stantiated, it is instantiated from Gu by choosing an atom in Gu 
with probability given by its weight b. Using the fact that the 

sequence of stick-breaking weights is a size-biased permutation 
of the weights in a draw from a DP (Pitman 1996), the weight b 

corresponding to the chosen atom in Gu will have the same dis 
tribution as the first stick-breaking weight, that is, beta(l, y). 

Sampling ?. This has already been described in (35): 

(?x,...,?K, ?u)\t, k ~ Dir(m.i,..., m.K, y). (36) 
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5.3 Posterior Sampling by Direct Assignment 

In both the Chinese restaurant franchise and augmented rep 

resentation sampling schemes, data items are first assigned to 

some table t?, and the tables are then assigned to some mixture 

component k?. 
This indirect association with mixture compo 

nents can make the bookkeeping somewhat involved. In this 

section we describe a variation on the augmented representa 

tion sampling scheme that directly assigns data items to mixture 

components through a variable, Z?, which is equivalent to 
kjti 

in the earlier sampling schemes. The tables are represented only 

in terms of the numbers of tables mjk. 

Sampling z. This can be realized by grouping together 
terms associated with each k in (31) and (32), 

p(z?^k\z-^m,?) 

- 1 (n7'k + a??k^k 
X" 

(-*/<) if k previously used 

~\(*0?ufk2(Xji) 
if k = kn , 

where we have replaced m.k with ?k and y with ?u. 

Sampling m. In the augmented representation sampling 

scheme, conditioned on the assignment of data items to mix 

ture components z, the only effect of t and k on other variables 

is through m in the conditional distribution of ? in (36). As a 

result, it is sufficient to sample m in place of t and k. To obtain 
the distribution of mjk conditioned on other variables, consider 
the distribution of t? assuming that kjtji 

? 
i?. The probability 

that data item X? is assigned to some table t such that k? 
= k 

is 

p(t? 
= 

t\k? 
= k, t-Jl, k, ?) ex 

nj, (38) 

whereas the probability that it is assigned a new table under 

component k is 

p(t? 
= 

rnew|^new 
= k, t~ji, k, ?) ex ao?k. (39) 

These equations form the conditional distributions of a Gibbs 

sampler whose equilibrium distribution is the prior distribu 
tion over the assignment of rij.k observations to components in 

an ordinary DP with concentration parameter ao?k- The corre 

sponding distribution over the number of components is then 
the desired conditional distribution of mjk. Antoniak (1974) has 
shown that this is 

p(mjk 
? 

m\z, m~Jk, ?) 

= 
w?^--s(nj.k,m)(ao?k) , (40) 
r(ao?k + rij.k) 

where s(n, m) are unsigned Stirling numbers of the first kind. 
We have by definition that s(0, 0) = s(\, 1) = 1, s(n, 0) = 0 for 
n > 0 and s(n, m) 

= 0 for m > n. Other entries can be computed 
as s(?2 + 1, m) 

? 
s(n, m ? 

1) + ns(n, ni). 

Sampling ?. This is the same as in the augmented sampling 
scheme and is given by (36). 

5.4 Comparison of Sampling Schemes 

Let us now consider the relative merits of these three sam 

pling schemes. In terms of ease of implementation, the direct 

assignment scheme is preferred, because its bookkeeping is 

straightforward. The two schemes based on the Chinese restau 

rant franchise involve more substantial effort. In addition, both 

the augmented and direct assignment schemes sample rather 

than integrate out Go, and thus the sampling of the groups is 

decoupled given Go. This simplifies the sampling schemes and 
makes them applicable in elaborate models, such as the hidden 
Markov model in Section 7. 

In terms of convergence speed, the direct assignment scheme 

changes the component membership of data items one at a time, 

whereas in both schemes using the Chinese restaurant fran 

chise, changing the component membership of one table will 

change the membership of multiple data items at the same time, 

leading to potentially improved performance. This is akin to 

split-and-merge techniques in DP mixture modeling (Jain and 
Neal 2000). This analogy is, however, somewhat misleading 
in that unlike split-and-merge methods, the assignment of data 

items to tables is a consequence of the prior clustering effect of 

a DP with rij.k samples. As a result, we expect that the probabil 

ity of obtaining a successful reassignment of a table to another 

previously used component will often be small, and we do not 

necessarily expect the Chinese restaurant franchise schemes to 

dominate the direct assignment scheme. 

The inference methods presented here should be viewed as 
first steps in the development of inference procedures for hi 
erarchical DP mixtures. More sophisticated methods?such as 

split-and-merge methods (Jain and Neal 2000) and variational 
methods (Blei and Jordan 2005)?have shown promise for DPs, 
and we expect that they will prove useful for hierarchical DPs 
as well. 

6. EXPERIMENTS 

In this section we describe two experiments to highlight the 
two aspects of the hierarchical DP: its nonparametric nature and 

its hierarchical nature. In the next section we present a third 

experiment highlighting the ease with which we can extend 
the framework to more complex models, specifically a hidden 

Markov model with a countably infinite state space. 
The software that we used for these experiments is avail 

able at http://www.cs.berkeley.edu/-jordan/hdp. The software 

implements a hierarchy of DPs of arbitrary depth. 

6.1 Document Modeling 

Recall the problem of document modeling discussed in Sec 
tion 1. Following standard methodology in the information re 
trieval literature (Salt?n and McGill 1983), we view a document 
as a "bag of words"; that is, we make an exchangeability as 

sumption for the words in the document. Moreover, we model 

the words in a document as arising from a mixture model, in 

which a mixture component?a "topic"?is a multinomial dis 

tribution over words from some finite and known vocabulary. 
The goal is to model a corpus of documents in such a way as to 

allow the topics to be shared among the documents in a corpus. 
A parametric approach to this problem is provided by the 

latent Dirichlet allocation (LDA) model of Blei et al. (2003). 
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This model involves a finite mixture model in which the mix 

ing proportions are drawn on a document-specific basis from 
a Dirichlet distribution. Moreover, given these mixing propor 
tions, each word in the document is an independent draw from 
the mixture model. That is, to generate a word, a mixture com 

ponent (i.e., a topic) is selected, and then a word is generated 
from that topic. 

Note that the assumption that each word is associated with a 

possibly different topic differs from a model in which a mixture 

component is selected once per document, and then words are 

generated iid from the selected topic. Moreover, it is interesting 
to note that the same distinction arises in population genetics, 

where multiple words in a document are analogous to multi 

ple markers along a chromosome. Indeed, Pritchard, Stephens, 
and Donnelly (2000) developed a model in which marker prob 
abilities are selected once per marker; their model is essentially 
identical to LDA. 
As in simpler finite mixture models, it is natural to try to 

extend LDA and related models by using DPs to capture un 

certainty regarding the number of mixture components. This is 
somewhat more difficult than in the case of a simple mixture 

model, however, because in the LDA model the documents have 

document-specific mixing proportions. We thus require multi 

ple DPs, one for each document. This then poses the problem 
of sharing mixture components across multiple DPs, precisely 
the problem that the hierarchical DP is designed to solve. 

The hierarchical DP extension of LDA thus takes the fol 

lowing form. Given an underlying measure H on multinomial 

probability vectors, we select a random measure, Go, which 

provides a countably infinite collection of multinomial prob 
ability vectors; these can be viewed as the set of all topics 
that can be used in a given corpus. For the yth document in 
the corpus, we sample Gj using Go as a base measure; this 
selects specific subsets of topics to be used in document y. 
From Gj, we then generate a document by repeatedly sampling 
specific multinomial probability vectors 0y/ from G? and sam 

pling words Xji with probabilities 0y/. The overlap among the 
random measures Gy implements the sharing of topics among 
documents. 

We fit both the standard parametric LDA model and its 
hierarchical DP extension to a corpus of nematode biology 

abstracts (see http://elegans.swmed.edu/wli/cgcbib). There are 

5,838 abstracts in total. After removing standard stop words 
and words appearing fewer than 10 times, we are left with a to 
tal of 476,441 words. Following standard information retrieval 

methodology, the vocabulary is defined as the set of distinct 
words left in all abstracts; this has size 5,699. 

Both models were as similar as possible beyond the dis 
tinction that LDA assumes a fixed finite number of topics, 
whereas the hierarchical DP does not. Both models used a 

symmetric Dirichlet distribution with parameters of .5 for the 

prior H over topic distributions. The concentration parame 
ters were given vague gamma priors, y 

? 
gamma(l, .1) and 

?o ~ gamma(l, 1). The distribution over topics in LDA was as 
sumed to be symmetric Dirichlet with parameters cto/L, with 
L being the number of topics; y was not used in LDA. Poste 
rior samples were obtained using the Chinese restaurant fran 

chise sampling scheme, whereas the concentration parameters 
were sampled using the auxiliary variable sampling scheme 

presented in the Appendix. 
We evaluated the models through 10-fold cross-validation. 

The evaluation metric was the perplexity, a standard metric in 

the information retrieval literature. The perplexity of a held-out 
abstract consisting of words w\,..., w? is defined as 

expl 
? 

-\ogp(w\,..., w/|training corpus) I, (41) 

where /?( ) is the probability mass function for a given model. 
The results are shown in Figure 3. For LDA, we evaluated the 

perplexity for mixture component cardinalities ranging from 10 
to 120. As shown in Figure 3(a), the hierarchical DP mix 
ture approach?which integrates over the mixture component 

cardinalities?performs as well as the best LDA model, doing 
so without any form of model selection procedure. Moreover, 
as shown in Figure 3(b), the posterior over the number of topics 
obtained under the hierarchical DP mixture model is consistent 
with this range of the best-fitting LDA models. 

6.2 Multiple Corpora 

We now consider the problem of sharing clusters among the 
documents in multiple corpora. We approach this problem by 
extending the hierarchical DP to a third level. A draw from a 

(a) 
Perplexity on test abstracts of LDA and HDP mixture 

20 30 40 50 60 70 80 90 100 110 120 
Number of LDA topics 

(b) 
Posterior over number of topics in HDP mixture 

61 62 63 64 65 66 67 68 69 70 71 72 73 
Number of topics 

Figure 3. Results for Document Topic Modeling, (a) Comparison of LDA (?-) and the HDP (?) Mixtures, With Results Averaged Over 10 Runs 

(error bars are one standard error); and (b) Histogram of the Number of Topics for the Hierarchical Dirichlet Process Mixture Over 100 Posterior 

Samples. 
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top-level DP yields the base measure for each of a set of corpus 
level DPs. Draws from each of these corpus-level DPs yield the 
base measures for DPs associated with the documents within 
a corpus. Finally, draws from the document-level DPs provide 
a representation of each document as a probability distribution 
across topics (which are distributions across words). The model 
allows sharing of topics both within each corpus and between 

corpora. 

The documents that we used for these experiments con 
sist of articles from the proceedings of the Neural Informa 
tion Processing Systems (NIPS) conference for the years 1988 
1999. The original articles are available at http://books.nips.cc; 

we use a preprocessed version available at http://www.es. 

utoronto.ca/yoweis/nips. The NIPS conference deals with a 

range of topics covering both human and machine intelligence. 
Articles are separated into nine sections: algorithms and ar 
chitectures (AA), applications (AP), cognitive science (CS), 
control and navigation (CN), implementations (IM), learning 
theory (LT), neuroscience (NS), signal processing (SP), and vi 
sion sciences (VS). (These are the sections used in the years 
1995-1999. The sectioning in earlier years differed slightly; 

we manually relabeled sections from the earlier years to match 
those used in 1995-1999.) We treat these sections as corpora 
and are interested in the pattern of sharing of topics among 
these corpora. 

There were 1,447 articles in total. Each article was modeled 
as a bag of words. We culled standard stop words as well as 
words occurring more than 4,000 times or fewer than 50 times 
in the whole corpus. This left us with an average of slightly 

more than 1,000 words per article. 
We considered the following experimental setup. Given a set 

of articles from a single NIPS section that we wish to model (the 
VS section in the experiments that we report later), we wish to 
know whether it is of value (in terms of prediction performance) 
to include articles from other NIPS sections. This can be done 
in one of two ways: We can lump all of the articles together 
without regard for the division into sections, or we can use the 

hierarchical DP approach to link the sections. Thus we consider 
three models (see Fig. 4 for graphical representations of these 

models): 

Ml. This model ignores articles from the other sections and 

simply uses a hierarchical DP mixture of the kind pre 
sented in Section 6.1 to model the VS articles. This 

model serves as a baseline. We used y ~ gamma(5, .1) 
and ?o ~ gamma(.l, .1) as prior distributions for the 
concentration parameters. 

M2. This model incorporates articles from other sections but 

ignores the distinction into sections, using a single hi 
erarchical DP mixture model to model all of the arti 
cles. We used priors of y ~ gamma(5, .1) and o?o ̂ 

gamma(.l, .1). 

M3. This model takes a full hierarchical approach and 
models the NIPS sections as multiple corpora, linked 

through the hierarchical DP mixture formalism. The 
model is a tree, in which the root is a draw from a single 
DP for all articles, the first level is a set of draws from 
DPs for the NIPS sections, and the second level is set 
of draws from DPs for the articles within sections. We 
used priors of y 

^ 
gamma(5, .1), ?o 

~ 
gamma(5, .1), 

andai ~gamma(.l, .1). 

In all models a finite and known vocabulary is assumed, and the 
base measure H used is a symmetric Dirichlet distribution with 

parameters of .5. 

We conducted experiments in which a set of 80 articles was 
chosen uniformly at random from one of the sections other than 
VS. (This was done to balance the impact of different sections, 
which are of different sizes.) A training set of 80 articles was 
also chosen uniformly at random from the VS section, as was 
an additional set of 47 test articles distinct from the training ar 
ticles. Our results report predictive performance on VS test ar 
ticles based on a training set consisting of the 80 articles in the 
additional section and N VS training articles with N varying 
between 0 and 80. The direct assignment sampling scheme is 

<a) 

VS Training 

Ml M2 M3 

Figure 4. Three Models for the NIPS Data: (a) M1, (b) M2, and (c) M3. 
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Average perplexity over HIPS sections of 3 Jiiodels ?j,AA,APtoVS 

10*^? 30 ?40 50 60 
, :$uga]bet:Gf VS^afoing documents 

80 

Figure 5. Results for Multi-Corpora Document Topic Modeling, (a) Perplexity of single words in test VS articles given training articles from VS 

and another section for three different models. Curves shown are averaged over the other sections and five runs (-<->M1: additional section ignored; 
- - - M2: flat, additional section; ? M3: hierarchical, additional section), (b) Perplexity of test VS articles given LT, AA, and AP articles, using M3, 

averaged over five runs (? LT; 
- - - 

AA; -<- 
AP). In both plots, the error bars represent one standard error. 

used, and concentration parameters are sampled using the aux 

iliary variable sampling scheme given in the Appendix. 
Figure 5(a) presents the average predictive performance for 

all three models over five runs as the number TV of VS train 

ing articles ranged from 0 to 80. The performance is measured 
in terms of the perplexity of single words in the test articles 

given the training articles, averaged over the choice of which 
additional section was used. As the figure shows, the fully hi 
erarchical model M3 performs best, with perplexity decreasing 
rapidly with modest values of N. For small values of N, the per 
formance of Ml is quite poor, but the performance approaches 
that of M3 when more than 20 articles are included in the VS 

training set. The performance of the partially hierarchical M2 
was poorer than that of the fully hierarchical M3 throughout the 

range of N. M2 dominated Ml for small N, but yielded poorer 

performance than Ml for N > 14. Our interpretation is that the 

sharing of strength based on other articles is useful when lit 
tle other information is available (small AT), but that eventually 
(medium to large N) there is crosstalk between the sections, 
and it is preferable to model them separately and share strength 
through the hierarchy. 

Although the results in Figure 5(a) are an average over the 

sections, it is also of interest to see which sections are the most 

beneficial in terms of enhancing the prediction of the articles 
in VS. Figure 5(b) plots the predictive performance for model 

M3 when given data from each of three particular sections: LT, 
AA, and AP. Whereas articles in the LT section are concerned 

mostly with theoretical properties of learning algorithms, those 
in A A are concerned mostly with models and methodology, and 
those in AP are concerned mostly with applications of learning 
algorithms to various problems. As the figure shows, predictive 
performance is enhanced the most by previous exposure to arti 
cles from AP, less by articles from AA, and still less by articles 
from LT. Given that articles in VS tend to be concerned with 
the practical application of learning algorithms to problems in 

computer vision, this pattern of transfer seems reasonable. 

Finally, it is of interest to investigate the subject matter con 

tent of the topics discovered by the hierarchical DP model. We 
did so in the following experimental setup. For a given section 
other than VS (e.g., AA), we fit a model based on articles from 

that section. We then introduced articles from the VS section 
and continued to fit the model, while holding the topics found 
from the earlier fit fixed and recording which topics from the 
earlier section were allocated to words in the VS section. Ta 
ble 1 displays representations of the two most frequently oc 

curring topics in this setup. (A topic is represented by the set 
of words that have highest probability under that topic.) These 

topics provide qualitative confirmation of our expectations re 

garding the overlap between VS and other sections. 

7. HIDDEN MARKOV MODELS 

The simplicity of the hierarchical DP specification?the base 
measure for a DP is distributed as a DP?makes it straightfor 
ward to exploit the hierarchical DP as a building block in more 

complex models. In this section we demonstrate this in the case 
of the hidden Markov model (HMM). 

Recall that an HMM is a doubly stochastic Markov chain in 
which a sequence of multinomial "state" variables (vi, V2,..., 

vt) are linked through a state transition matrix and each el 
ement yt in a sequence of "observations" (y 1,3^2, ?yr) is 

drawn independently of the other observations conditional on vt 

(Rabiner 1989). This is essentially a dynamic variant of a finite 
mixture model, in which one mixture component corresponds 
to each value of the multinomial state. As with classical finite 

mixtures, it is interesting to consider replacing the finite mix 
ture underlying the HMM with a DP. 

Note that the HMM involves not a single mixture model, but 
rather a set of mixture models?one for each value of the cur 
rent state. That is, the "current state" vt indexes a specific row of 
the transition matrix, with the probabilities in this row serving 
as the mixing proportions for the choice of the "next state" vt+\. 
Given the next state v/+i, the observation yt+\ is drawn from the 
mixture component indexed by vi+i. Thus, to consider a non 

parametric variant of the HMM that allows an unbounded set 
of states, we must consider a set of DPs, one for each value of 

the current state. Moreover, these DPs must be linked, because 
we want the same set of "next states" to be reachable from each 
of the "current states." This amounts to the requirement that 
the atoms associated with the state-conditional DPs should be 

shared?exactly the framework of the hierarchical DP. 

This content downloaded from 134.102.186.160 on Wed, 19 Feb 2014 10:49:32 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1578 Journal of the American Statistical Association, December 2006 

Table 1. Topics Shared Between VS and the Other NIPS Sections 

CS task representation pattern processing trained representations three process unit 

patterns 
examples concept similarity Bayesian hypotheses generalization numbers positive 
classes hypothesis 

NS cells cell activity response neuron visual patterns pattern single fig 
visual cells cortical orientation receptive contrast spatial cortex stimulus tuning 

LT signal layer Gaussian cells fig nonlinearity nonlinear rate eq cell 

large examples form point see parameter consider random small optimal 

AA algorithms test approach methods based point problems form large paper 
distance tangent ?mage ?mages transformation transformations pattern vectors convolu 
tion simard 

IM processing pattern approach architecture single shows simple based large control 
motion visual velocity flow target chip eye smooth direction optical 

SP visual images video language image pixel acoustic delta lowpass flow 

signals separation signal sources source matrix blind mixing gradient eq 

AP approach based trained test layer features table classification rate paper 
image images face similarity pixel visual database matching facial examples 

CN ii tree pomdp observable strategy class stochastic history strategies density 
policy optimal reinforcement control action states actions step problems goal 

NOTE: These topics are the most frequently occurring in the VS fit, under the constraint that they are associated with a 

significant number of words (>2,500) from the other section. 

Thus, we can define a nonparametric HMM by simply replac 
ing the set of conditional finite mixture models underlying the 
classical HMM with a hierarchical DP mixture model. We refer 
to the resulting model as a hierarchical Dirichlet process hid 
den Markov model (HDP-HMM). The HDP-HMM provides an 

alternative to methods that place an explicit parametric prior on 

the number of states or use model selection methods to select a 

fixed number of states (Stolcke and Omohundro 1993). 
In work that served as an inspiration for the HDP-HMM, 

Beal et al. (2002) discussed a model known as the infinite 
HMM, in which the number of hidden states of a hidden Markov 
model is allowed to be countably infinite. Indeed, Beal et al. 

(2002) defined a notion of "hierarchical DP" for this model, 
but their "hierarchical DP" was not hierarchical in the Bayesian 
sense?involving a distribution on the parameters of a DP? 
but was instead a description of a coupled set of urn models. 

We briefly review this construction and relate it to our formula 
tion. 

Beal et al. (2002) considered the following two-level proce 
dure for determining the transition probabilities of a Markov 
chain with an unbounded number of states. At the first level, 
the probability of transitioning from a state m to a state v is 

proportional to the number of times that the same transition 
is observed at other time steps, whereas with probability pro 
portional to ?o, an "oracle" process is invoked. At this second 

level, the probability of transitioning to state v is proportional 
to the number of times that state v has been chosen by the ora 
cle (regardless of the previous state), whereas the probability of 

transitioning to a novel state is proportional to y. The intended 
role of the oracle is to tie together the transition models so that 

they have destination states in common, in much the same way 
that the baseline distribution Go ties together the group-specific 

mixture components in the hierarchical DP. 
To relate this two-level urn model to the hierarchical DP 

framework, we describe a representation of the HDP-HMM us 

ing the stick-breaking formalism. In particular, consider the hi 
erarchical DP representation shown in Figure 6. The parameters 

in this representation have the following distributions: 

0|y~GEM(y), 

jr*|ao,j9--DP(a<),j9), (42) 

4>k\H~H, 

for each ?=1,2,..., whereas for time steps t = 1,..., 7\ the 

state and observation distributions are 

Vt\vt-\,(nk)T=\ ~*v,_i and 

yi|Vf,(0ik)?i-F(^f), (43) 

where we assume for simplicity that there is a distinguished 
initial state vrj. If we now consider the Chinese restaurant fran 
chise representation of this model as discussed in Section 5, 
then it turns out that the result is equivalent to the coupled urn 

model of Beal et al. (2002), and hence the infinite HMM is an 
HDP-HMM. 

Unfortunately, posterior inference using the Chinese restau 
rant franchise representation is awkward for this model, involv 

ing substantial bookkeeping. Indeed, Beal et al. (2002) did not 

present an MCMC inference algorithm for the infinite HMM, 

proposing instead a heuristic approximation to Gibbs sampling. 
On the other hand, both the augmented representation and di 
rect assignment representation lead directly to MCMC sam 

pling schemes that can be implemented straightforwardly. In 

Figure 6. A Graphical Representation of an HDP-HMM. 
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the experiments reported in the following section, we used the 
direct assignment representation. 

Practical applications of HMMs often consider sets of se 

quences and treat these sequences as exchangeable at the level 
of sequences. Thus, in applications to speech recognition, an 
HMM for a given word in the vocabulary is generally trained 

through replicates of that word being spoken. This setup is 

readily accommodated within the hierarchical DP framework 

by simply considering an additional level of the Bayesian hi 

erarchy, letting a master DP couple each of the HDP-HMMs, 
each of which is a set of DPs. 

7.1 Alice in Wonderland 

In this section we report experimental results for the prob 
lem of predicting strings of letters in sentences taken from 
Lewis Carroll's Alice's Adventures in Wonderland, comparing 
the HDP-HMM with other HMM-related approaches. 

Each sentence is treated as a sequence of letters and spaces 
(rather than as a sequence of words). There are 27 distinct sym 
bols (26 letters and space); cases and punctuation marks are 

ignored. There are 20 training sentences with average length of 
51 symbols, along with 40 test sentences with an average length 
of 100. The base distribution H is a symmetric Dirichlet distri 
bution over 27 symbols with parameters . 1. The concentration 

parameters y and ao are given gamma(l, 1) priors. 
Using the direct assignment sampling method for posterior 

predictive inference, we compared the HDD-HMM with vari 
ous other methods for prediction using HMMs: (1) a classical 
HMM using maximum likelihood (ML) parameters obtained 

through the Baum-Welch algorithm (Rabiner 1989), (2) a clas 
sical HMM using maximum a posteriori (MAP) parameters, 
taking the priors to be independent symmetric Dirichlet distri 
butions for both the transition and emission probabilities, and 

(3) a classical HMM trained using an approximation to a full 

Bayesian analysis?in particular, a variational Bayesian (VB) 
method due to MacKay (1997) and described in detail by Beal 

(2003). For each of these classical HMMs, we conducted ex 

periments for each value of the state cardinality ranging from 1 
to 60. 
We present the perplexity on test sentences in Figure 7(a). 

For VB, computing the predictive probability is intractable, so 

we used the modal setting of parameters. Both the MAP and 
VB models were given optimal settings of the hyperparameters 
found using the HDP-HMM. We see that the HDP-HMM has 
a lower perplexity than all of the models tested for ML, MAP, 
and VB. Figure 7(b) shows posterior samples of the number of 
states used by the HDP-HMM. 

8. DISCUSSION 

In this article we have described a nonparametric approach 
to modeling groups of data in which each group is charac 
terized by a mixture model and we allow sharing of mixture 

components between groups. We have proposed a hierarchical 

Bayesian solution to this problem, in which a set of DPs is cou 

pled through their base measure, which is itself distributed ac 

cording to a DP. 
We have described three different representations that capture 

aspects of the hierarchical DP: a stick-breaking representation 
that describes the random measures explicitly, a representation 
of marginals in terms of an urn model that we call the "Chi 
nese restaurant franchise," and a representation of the process 
in terms of an infinite limit of finite mixture models. These rep 
resentations led to the formulation of three MCMC sampling 
schemes for posterior inference under hierarchical DP mixtures. 
The first scheme is based directly on the Chinese restaurant 
franchise representation, the second scheme represents the pos 
terior using both a Chinese restaurant franchise and a sample 
from the global measure, and the third scheme uses a direct 

assignment of data items to mixture components. 
Clustering is an important activity in many large-scale data 

analysis problems in engineering and science, reflecting the het 

erogeneity often present when data are collected on a large 
scale. Clustering problems can be approached within a prob 
abilistic framework through finite mixture models (Fraley and 

Raftery 2002; Green and Richardson 2001), and recent years 
have seen numerous examples of applications of finite mixtures 
and their dynamical cousins the HMMs in such areas as bioin 
formatics (Durbin, Eddy, Krogh, and Mitchison 1998), speech 
recognition (Huang, Acero, and Hon 2001), information re 
trieval (Blei et al. 2003), and computational vision (Forsyth 
and Ponce 2002). These areas also provide numerous instances 
of data analyses that involve multiple linked sets of clustering 

(a) 
Perplexity on test sentences of Alice 

(b) 
Posterior over number of states in HDP-HMM 

20 30 40 
Number of hidden states 

35 40 
Number of states 

Figure 7. Results for HMMs. (a) Comparing the HDP-HMM (solid horizontal line) with ML (-?), MAP (- 
? 

*), and VB (?) trained hidden Markov 
models. The error bars represent one standard error (those for the HDP-HMM are too small to see), (b) Histogram for the number of states in the 
HDP-HMM over 1,000 posterior samples. 
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problems, for which classical clustering methods (model-based 
or non-model-based) provide little in the way of leverage. In 

bioinformatics, we have already alluded to the problem of find 

ing haplotype structure in subpopulations. Other examples in 
bioinformatics include the use of HMMs for amino acid se 

quences, where a hierarchical DP version of the HMM would 
allow the discovery of and sharing of motifs among different 
families of proteins. In speech recognition, multiple HMMs are 

already widely used, in the form of word-specific and speaker 

specific models, and ad hoc methods are generally used to share 

statistical strength among models. We have discussed exam 

ples of grouped data in information retrieval; other examples 
include problems in which groups are indexed by author or by 
language. Finally, computational vision and robotics problems 

often involve sets of descriptors or objects that are arranged in 

a taxonomy. Examples such as these, in which there is substan 

tial uncertainty regarding appropriate numbers of clusters, and 

in which the sharing of statistical strength among groups is nat 
ural and desirable, suggest that the hierarchical nonparametric 

Bayesian approach to clustering presented here may provide a 

generally useful extension of model-based clustering. 

APPENDIX: POSTERIOR SAMPLING FOR 
CONCENTRATION PARAMETERS 

MCMC samples from the posterior distributions for the concentra 

tion parameters y and ?q of the hierarchical DP can be obtained us 

ing straightforward extensions of analogous techniques for DP. Let the 

number of observed groups be equal to J, with rij.. observations in 

the yth group. Consider the Chinese restaurant franchise representa 
tion. The concentration parameter c?q governs the distribution of the 

number of i/^'s 
in each mixture. As noted in Section 5.3, this is given 

by 

P(m\.,mj.\otQ,n\..,...,nj..) 

1 
\ r(a0+ ?/..) 7=1 

Further, q?o does not govern other aspects of the joint distribution; 
hence (A. 1 ) along with the prior for c?q is sufficient to derive MCMC 

updates for ao given all other variables. 

In the case of a single mixture model (J 
= 

1), Escobar and West 

(1995) proposed a gamma prior and derived an auxiliary variable up 
date for ?o, and Rasmussen (2000) observed that (A.l) is log-concave 
in log(ofo) and proposed using adaptive rejection sampling instead. 

The adaptive rejection sampler of Rasmussen (2000) can be directly 

applied to the case where J > 1, because the conditional distribu 

tion of log(ao) is still log-concave. The auxiliary variable method of 

Escobar and West (1995) requires a slight modification for the case 

where J > 1. Assume that the prior for q is a gamma distribution 

with parameters a and b. For each j, we can write 

*><? 1 f1 ?0,1 ...Mlf..-lA , 1 
r( _, . 

r(?J w;?(l-w7)^-1fl 
+ 
^)jw/. 

(A.2) 
r(a0+ ?/..) r(iy..) Jo J \ a0J 

J 

We define auxiliary variables w = 
(wy) 

, and s = 
(sj)._<, 

where each 

wj is a variable taking on values in [0, 1] and each sj is a binary {0, 1} 

variable, and define the following distribution: 

4(?o,w,s)ac<;-|+'"--e^r]w;?(i-w/v--igj?;. 
(A.3) 

Now marginalizing q to q gives the desired conditional distribution 

for an. Hence q defines an auxiliary variable sampling scheme for an 

Given w and s, we have 

9(?0lw. s) ? ?o~1+"!""E^' V"0'6^' logH>), (A.4) 

which is a gamma distribution with parameters a + m.. ? 
X?/=i 5; anc^ 

?> ? 
X]/=i l?gvv7- Given an, the Wj and sy 

are conditionally indepen 

dent, with distributions 

q(wj\a0)ocwJ0(l-Wj)nJ"-1 (A.5) 

and 

9(Sj|ao)a^y, 
(A.6) 

which are beta and Bernoulli distributions. This completes the auxil 

iary variable sampling scheme for q. We used the auxiliary variable 

sampling scheme in our simulations, because it is easier to implement 
and typically mixes quickly (within 20 iterations). 

Given the total number, m.., of the 
i/^y's, 

the concentration parame 
ter y governs the distribution over the number of components K, 

p(K\y, m..) = s(m.., K)yK /(y) (A.7) 
F(y +m..) 

Again, other variables are independent of y given m.. and K, hence we 

may apply the techniques of Escobar and West (1995) or Rasmussen 

(2000) to sampling y. 
[Received October 2004. Revised December 2005.] 
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