Modularity of Complex Networks Models

Liudmila Ostroumova Prokhorenkova!2(®)

Pawel Pralat®#, and Andrei Raigorodskii' 256

! Moscow Institute of Physics and Technology, Moscow, Russia
ostroumova-la@yandex.ru
2 Yandex, Moscow, Russia
3 Ryerson University, Toronto, ON, Canada
4 The Fields Institute for Research in Mathematical Sciences, Toronto, ON, Canada
5 Moscow State University, Moscow, Russia
5 Buryat State University, Ulan-ude, Buryat Republic, Russia

Abstract. Modularity is designed to measure the strength of division
of a network into clusters (known also as communities). Networks with
high modularity have dense connections between the vertices within clus-
ters but sparse connections between vertices of different clusters. As a
result, modularity is often used in optimization methods for detecting
community structure in networks, and so it is an important graph para-
meter from practical point of view. Unfortunately, many existing non-
spatial models of complex networks do not generate graphs with high
modularity; on the other hand, spatial models naturally create clusters.
We investigate this phenomenon by considering a few examples from
both sub-classes. We prove precise theoretical results for the classical
model of random d-regular graphs as well as the preferential attachment
model, and contrast these results with the ones for the spatial preferen-
tial attachment (SPA) model that is a model for complex networks in
which vertices are embedded in a metric space, and each vertex has a
sphere of influence whose size increases if the vertex gains an in-link, and
otherwise decreases with time.

1 Introduction and Definitions

Many social, biological, and information systems can be represented by networks,
whose vertices are items and links are relations between these items [2,4,6,12].
That is why the evolution of complex networks attracted a lot of attention in
recent years and there has been a great deal of interest in modeling of these net-
works [9,17,30]. The hyperlinked structure of the Web, citation patterns, friend-
ship relationships, infectious disease spread, these are seemingly disparate linked
data sets which have fundamentally very similar natures. Indeed, it turns out
that many real-world networks have some typical properties: power-law degree
distribution, small diameter, high clustering coefficient, and others [27,29,33].
Such properties are well-studied both in real-world networks and in many theo-
retical models.
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Another important property of complex networks is their community struc-
ture, that is, the organization of vertices in clusters, with many edges joining
vertices of the same cluster and comparatively few edges joining vertices of dif-
ferent clusters [14,18]. In social networks communities may represent groups by
interest, in citation networks they correspond to related papers, in the Web
communities are formed by pages on related topics, etc. Being able to iden-
tify communities in a network could help us to exploit this network more
effectively. For example, clusters in citation graphs may help to find similar
scientific papers, discovering users with similar interests is important for tar-
geted advertisement, clustering can also be used for network compression and
visualization.

The key ingredient for many clustering algorithms is modularity, which is
at the same time a global criterion to define communities, a quality function of
community detection algorithms, and a way to measure the presence of commu-
nity structure in a network. Modularity was introduced by Newman and Girvan
[31] and it is based on the comparison between the actual density of edges inside
a community and the density one would expect to have if the vertices of the
graph were attached at random, regardless of community structure.

Unfortunately, modularity is not a well studied parameter for the exist-
ing random graph models, at least from a rigorous, theoretical point of view.
We are only aware about results for binomial random graphs G(n,p) and ran-
dom d-regular graphs (see Sect. 2.3 for more details). In this paper, we continue
investigating random d-regular graphs and obtain new upper bounds for their
modularity. Then we move to the preferential attachment model, introduced by
Barabdsi and Albert [5], which is probably the most well-studied model of com-
plex networks. For this model no results on modularity are known and we obtain
some preliminary results, both lower and upper bounds, and will investigate
this model more in the journal version of this paper. In fact, the lower bound
we present holds for all graphs with average degree d and sublinear maximum
degree.

As expected, the models discussed above, as well as many others, have a
common weakness of low modularity. One family of models which overcomes this
deficiency is the family of spatial (or geometric) models, wherein the vertices are
embedded in a metric space such that similar vertices are closer to each other
than dissimilar ones. The underlying geometry of spatial models naturally leads
to the emergence of clusters. We prove this statement rigorously for one example
of a geometric model, the Spatial Preferential Attachment model introduced
in [1].

The paper is structured as follows. In the next section, we formally define
modularity, discuss several random graph models and present known results on
modularity in these models. In Sects. 3, 4 and 5 we analyze modularity in random
d-regular graphs, preferential attachment and SPA models, respectively.

Due to the space limitations, proofs of our results are omitted in this short
proceeding version but will be included in the longer journal one.
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2 Preliminaries

2.1 Modularity

The definition of modularity was first introduced by Newman and Girvan in [31].
Since then, many popular and applied algorithms used to find clusters in large
data-sets are based on finding partitions with high modularity [16,22,28]. The
modularity function favors partitions in which a large proportion of the edges
falls entirely within the parts and biases against having too few or too unequally
sized parts. Formally, for a given partition A = {Ay,..., Ax} of the vertex set

V(G), let
L) (yeadego))?
‘“‘%(E(Gn o) W

where e(4) = |[{uv € E(G) : u,v € A}| is the number of edges in the graph
induced by the set A. The first term, ), 4 %, is called the edge contribution,

2
whereas the second one, ), 4 %, is called the degree tax. It is easy

to see that g4 is always smaller than one. Also, if A = {V(G)}, then g4 = 0.
The modularity ¢*(G) is defined as the maximum of g4 over all possible
partitions A of V(G); that is,

¢ (G) = max qa(G).
In order to maximize ¢4(G) one wants to find a partition with large edge contri-
bution subject to small degree tax. If ¢*(G) approaches 1 (which is the maximum
possible value), we observe a strong community structure; conversely, if ¢*(G) is
close to zero, we are given a graph with no community structure.

2.2 Random Graph Models

Classical Models. Let us recall two classical models of random graphs that are
extensively studied in the literature. The binomial random graph G(n,p) is the
random graph G with the vertex set [n] := {1,2,...,n} in which every pair
{i,j} € ([g]) appears independently as an edge in G with probability p. Note
that p = p(n) may (and usually does) tend to zero as n tends to infinity.

However, in this paper we concentrate on another probability space, the prob-
ability space of random d-regular graphs with uniform probability distribution.
This space is denoted G, 4, and asymptotics are for n — oo with d > 2 fixed,
and n even if d is odd.

We say that an event in a probability space holds asymptotically almost surely
(or a.a.s.) if the probability that it holds tends to 1 as n goes to infinity. Since
we aim for results that hold a.a.s., we will always assume that n is large enough.
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Preferential Attachment. The Preferential Attachment (PA) model, introduced
by Barabdsi and Albert [5], was an early stochastic model of complex networks.
We will use the following precise definition of the model, as considered by Bol-
lobds and Riordan in [10] as well as Bollobés et al. [11].

Let GY be the null graph with no vertices (or let Gi be the graph with
one vertex, vq, and one loop). The random graph process (GY);>o is defined
inductively as follows. Given Gﬁ_l, we form G¢ by adding a vertex v; together
with a single edge between v; and v;, where ¢ is selected randomly with the
following probability distribution:

Pi = 5) — {deg(vs,t —D/@2t-1) 1<s<t-1,
1/(2t — 1) s=t,

where deg(vs,t — 1) denotes the degree of v, in G'ffl. In other words, we send an
edge e from v; to a random vertex v;, where the probability that a vertex is chosen
is proportional to its degree at the time, counting e as already contributing one
to the degree of v;.

For m € N\ {1}, the process (G%,)i>0 is defined similarly with the only
difference that m edges are added to G%, ! to form G?, (one at a time), counting
previous edges as already contributing to the degree distribution. Equivalently,
one can define the process (GL,):>0 by considering the process (GY);>0 on a
sequence v}, vh, ... of vertices; the graph G%, is formed from G{™ by identifying

s !/ /! ! s s s s !/ ! !/
vertices vy, v5,...,v;, to form vy, identifying vertices vy, 1,v,, 0,...,05, tO

rm
form v, and so on. Note that in this model G, is in general a multigraph,
possibly with multiple edges between two vertices (if m > 2) and self-loops.

It was shown in [11] that for any m € N a.a.s. the degree distribution of G},
follows a power law: the number of vertices with degree at least k falls off as
(1+ o(1))ck™2n for some explicit constant ¢ = c(m) and large k < n'/'®. Also,
in the case m = 1, G is a forest. Each vertex sends an edge either to itself or to
an earlier vertex, so the graph consists of components which are trees, each with
a loop attached. The expected number of components is then >} | 1/(2t —1) ~
(1/2)logn and, since events are independent, we derive that a.a.s. there are
(1/24 o(1)) logn components in G} by Chernoff’s bound. Moreover, Pittel [32]
essentially showed that a.a.s. the largest distance between two vertices in the
same component of G7 is (Y1 +o0(1)) log n, where ~ is the solution of ye! ™7 = 1.
In contrast, for the case m > 2 it is known that a.a.s. GJ», is connected and its
diameter is (1 4+ o(1))logn/loglogn [10].

Spatial Preferential Attachment. The Spatial Preferential Attachment (SPA)
model [1], designed as a model for the World Wide Web, combines geometry
and preferential attachment, as its name suggests. Setting the SPA model apart
is the incorporation of ‘spheres of influence’ to accomplish preferential attach-
ment: the greater the degree of a vertex, the larger its sphere of influence, and
hence the higher the likelihood of the vertex gaining more neighbors.

We now give a precise description of the SPA model. Let S = [0, 1]™ be the
unit hypercube in R equipped with the torus metric derived from any of the
L, norms. This means that for any two points x and y in S,
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d(z,y) = min{||x—y+u\|p T u € {—1,0,1}m}.

The torus metric thus ‘wraps around’ the boundaries of the unit square; this
metric was chosen to eliminate boundary effects. The parameters of the model
consist of the link probability p € [0,1], and two positive constants A; and As,
which, in order to avoid the resulting graph becoming too dense, must be chosen
so that pA; < 1. The SPA model generates stochastic sequences of directed
graphs (G : t > 0), where G = (V4, Ey), and V; C S. Let deg™ (v,t) be the in-
degree of the vertex v in Gy, and deg™ (v, 1) its out-degree. We define the sphere
of influence S(v,t) of the vertex v at time ¢ > 1 to be the ball centered at v
with volume |S(v,t)| defined as follows:

Ardeg™ (v, t) + As
t )

1S(v,8)] = (2)
or S(v,t) = S and |S(v,t)| = 1 if the right-hand-side of (2) is greater than 1.

The process begins at t = 0, with G being the null graph. Time-step ¢, ¢ > 1,
is defined to be the transition between G;_; and G;. At the beginning of each
time-step t, a new vertex v; is chosen wuniformly at random from S, and added
to Vz_1 to create V;. Next, independently, for each vertex u € V;_; such that
vy € S(u,t — 1), a directed link (v, u) is created with probability p. Thus, the
probability that a link (v, ) is added in time-step ¢ equals p |S(u,t — 1)]|.

The SPA model produces scale-free networks, which exhibit many of the
characteristics of real-life networks (see [1,13]). In [19], it was shown that the
SPA model gave the best fit, in terms of graph structure, for a series of social
networks derived from Facebook. In [20], some properties of common neighbors
were used to explore the underlying geometry of the SPA model and quantify
vertex similarity based on distance in the space. However, the distribution of
vertices in space was assumed to be uniform [20] and so in [21] non-uniform
distributions were investigated which is clearly a more realistic setting.

2.3 Previous Results on Modularity

In this section we discuss known bounds for modularity in different random
graph models.
The isoperimetric number of a graph G is defined as

. . e(V1,Va)
G) = _ArL )
e L ey AR AT

where e(V1,V2) = {uv € E(G) : u € Vi,v € Va}| is the number of edges between
the sets V7 and V5. The following result was shown by McDiarmid and Skerman
in [23]. Let G be any d-regular graph on n vertices. As mentioned in [23], the
following useful upper bound on the modularity is almost immediate:

¢*(G) < max{1 — i(G)/d,3/4}. (3)
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Turning to random d-regular graphs, Bollobds in [8] showed that a.a.s. i(G,, 4) >
(1 — n)d/2, where 0 < 1 < 1 is such that 2%/¢ < (1 —n)'=7(1 4+ )"+ and so
a.a.s.

4" (Gn,a) < Uy = Ui(d) :== max{1/2 +n/2,3/4}.

As a result, we get the first non-trivial upper bounds for ¢*(G, 4) presented in
Table 1 that hold a.a.s.

In [23], the bound (3) was slightly improved when the maximum size of parts
in our partition is restricted. Formally, given § > 0, for a graph G with n > 1/6
vertices, they define ¢5(G) to be the maximum modularity of all partitions for
G such that each part has size at most dn. They show that for any ¢ > 0 there
exists § > 0 such that any d-regular graph with at least 1/§ vertices satisfies

5(G) <1-2i(G)/d +e.
Again, using the result of Bollobds we get that there exists § > 0 such that
U2 = Ug(d) = ’I7+€

serves as an upper bound that holds a.a.s. for ¢s(Gn.q); again, see Table1 for
numerical values for small values of d. It is straightforward to see that i(G) >
d/2 — /(log2)d (see, for example, [8]) and so, in particular, Us can be made
arbitrarily small by taking d large enough (and § small enough). However, let
us note that these upper bounds for ¢5(G,,q), while useful, cannot be directly
translated into any bound for ¢*(Gp.q)-

Table 1. Upper bounds for ¢*(G,,q) and for g5(Gn,q) (Us)

Uy Us Us

0.9386 | 0.8771 | 0.8038
0.8900 | 0.7800 | 0.6834
0.8539 | 0.7078 | 0.6024
0.8261 | 0.6521 | 0.5435
0.8038 | 0.6076 | 0.4984
0.7855]0.5710 | 0.4624
0.7702 ] 0.5403 | 0.4330
1010.7570 | 0.5140 | 0.4083

O 0| N ||| =] W |

Investigating random d-regular graphs continues in [24], a very recent paper.
In fact, some of our results for this model mentioned below are obtained inde-
pendently there. Moreover, they investigate the class of graphs whose product
of treewidth and maximum degree is much less than the number of edges. This
shows, for example, that random planar graphs typically have modularity close
to 1, which is another indication that clusters naturally emerge where geometry
is included.
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3 Random d-regular Graphs

3.1 Lower Bound

For completeness, let us briefly discuss the following known lower bound for
the modularity of G, 4. It is known that a.a.s. for any d € N\ {1,2}, G, 4 is
Hamiltonian. As pointed out in [23], one can use this fact to partition the graph
such that it breaks the cycle into [y/n] paths of length at most [/n]. For this
particular partition the edge contribution is 2/d — O(1/y/n) and the degree tax
is O(1/4/n). It follows then that a.a.s.

[\

2+0(1).

q*(gn,d) 2 d

= —o(/v) =
(Our more general lower bound that holds for graphs with average degree d
implies the same—see Theorem 4 for more.) Whereas this trivial lower bound
could be sharp for d = 3 it is definitely not the case for large d. As pointed out
in [24], there exists a universal constant ¢ > 0 such that a.a.s. ¢*(Gn.q) > ¢/Vd.

3.2 Slightly Improved, Numerical Upper Bound

Let us consider the following, natural, approach that already improves slightly
an upper bound for ¢*(G,, q4). Consider any d-regular graph with n vertices. For
a given partition A = {Ay,..., A} of the vertex set V(G), let x; = |A;|/n and
yi = 2|E(A4;)|/]A;]; that is, set A; has z;n vertices and induces y;x;n/2 edges.
Then (1) can be simplified to

(JA—zk:CCz‘ (%*%) (4)

As it is simply a weighted average, g4 > U would imply that there exists some
set of size xn that induces yzn/2 edges, and y/d — x > U. Using the pairing
model [7], we will show that a.a.s. it is not the case (for some carefully chosen
U = U(d)) and, as a result, it will yield an upper bound for ¢*(G,,4) that holds
a.a.s.

For a given d € N\ {1, 2}, let

flzy,d) = x(y/2 —1)log(z) + (1 — z)(d — 1) log(1 — z) + dlog(d)/2 (5)
—zylog(y)/2 — x(d — y)log(d — y) — (d — 2zd + zy) log(d — 2zd + zy) /2.

It will be clear once we establish the connection between the function f and
random d-regular graphs, but it is straightforward to see that for any = € (0,1)
we have f(z,d,d) < 0 and f(z,y,d) > 0 for some y € (0,d). Indeed, for example
note that for a fixed = € (0,1/2], f(x,y,d) is strictly concave in y € (0,d) as

d*f(z,y,d) _ —(d(1 — 2z) + y)dz <0
dy? 2(d(1 —2z) +xy)(d—y)y
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Let y3 = y3(x,d) be the largest value of y € (0,1) such that f(x,y,d) = 0; in
particular, f(z,y,d) <0 for any y € (y3,d). Finally, let

Us = Us(d) := sup (yg(x,d) — x) .
z€(0,1) d

As usual, see Table1 for numerical values for small values of d. The promised
upper bound follows immediately from the following theorem.

Theorem 1. Let d € N\ {1,2} and £ > 0 be an arbitrarily small constant. The
following property holds a.a.s. for G, q. No set A of size xn (for any x = z(n) €
(0,1)) induces a graph with yzn/2 edges, where ys(x,d)+e¢ <y < d and y3(z,d)
1s defined as above. In particular, this implies that

q*(Gn.a) < Us +¢/d,
where Us = Us(d) is defined as above.

3.3 Explicit but Weaker Upper Bound

Theorem 1 provides an upper bound that can be easily numerically computed
for a given d € N\ {1,2}. Next, we present a slightly weaker but an explicit
bound that can be obtained using the expansion properties of random d-regular
graphs that follow from their eigenvalues. In particular, it will imply that a.a.s.
¢*(Gn.a) = O(1/V/d) and so ¢*(Gn.q) — 0 as d — oo.

Theorem 2. Let d € N\ {1,2} and £ > 0 be an arbitrarily small constant. The
following property holds a.a.s. for G, 4. No set A of size xn induces a graph with
more than yxn/2 edges, where y = dx + A(1 —x). In particular, this implies that

a.a.s.
A_2/d—T4e _ 2
d= d =V

q"(Gn,a) <

4 The Preferential Attachment Model

4.1 Constant Average Degree Graphs

In order to obtain a lower bound for modularity of Preferential Attachment
graphs, we first analyze graphs with constant average degree in general. In this
section, we extend the results of [26] and we start with the analysis of trees. It
was proven in [26] that trees with maximum degree A = o(¥/n) have asymptotic
modularity 1. We generalize this result in two ways: first, we relax the condition
on maximum degree; second, we allow our graphs to be disconnected, that is,
we consider forests instead of trees. We prove the following theorem.

Theorem 3. Let {F,} be a sequence of forests, F,, is a forest on n vertices with
no isolated ones and A = A(F,) = o(n). Then ¢*(F,) > 1-0 (1 / %) =1-0(1)

asn — oo.
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Note that it is also known that the asymptotic modularity of trees with
maximum degree A = Q(n) is strictly less than 1 [26]. Hence, the assumption
A = o(n) cannot be eliminated. Now we can use the previous theorem to get
the following result for graphs of bounded average degree.

Theorem 4. Let {G,} be a sequence graphs, G, is a connected graph on n

&LG")‘ < D for some constant D, and A =

A(Gr) = o(n). Then ¢*(Gn) > 5 — O ( A) =2 —o(1).

n

vertices with the average degree

4.2 Lower Bound
The following theorem easily follows from the above result.

Theorem 5. For any ¢ > 0 a.a.s.

* [ m 1 71/4+s> _
g (Gp) > - o (n = o(1).

As in the case of random d-regular graphs, it is natural to conjecture that
the above lower bound is not sharp. Let ¢ € (0,1) and consider the follow-
ing partition: A; = {v1,...,0en}, 42 = V(G™)\ 41 = {vent1,-..,0n}. Using
martingales, it is possible to show that a.a.s. ) ., deg(v,n) ~ 2mn./c (and
S0 Y ,ca,deg(v,n) ~ 2mn(l — \/c)). Clearly, e(A;) = men and so a.as.
e(Ay, Ay) ~ 2mn(y/c — ¢) and e(Az) ~ mn(1 + ¢ — 2/c). The edge contribution
and the degree tax are then both asymptotic to 1 + 2¢ — 24/c. Not surprisingly,
such partition cannot be used to get a non-trivial lower bound for the modular-
ity but, similarly to the situation for random d-regular graphs, we may try to
use it as a starting point to get slightly better partition. The basic idea is very
simple: one can start with a given partition (or partition the vertices randomly
into two classes), and if a vertex has more neighbors in the other class than in
its own, then we randomly decide whether to shift it to the other class or leave
it where it is. This approach proved to be useful to get a bound for the bisection
width in random d-regular graphs [3] which, in turn, yields a lower bound for
the modularity [24]. We plan to investigate it further in the journal version of
this paper.

4.3 Upper Bound

The edge expansion p = p(G) of a graph G is defined as follows:

_ e(S,V\S)
p= SCV(G),|SI<|V]/2 15|

In [25] it was shown that a.a.s. p(G) > «, provided that 2(m—1) —4a—1 > 0.
In other words, for any € > 0 we have that a.a.s.

m 34¢
Gn)> — —
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Using this observation one can easily obtain a non-trivial upper bound for
7" (Gp).

Let ¢ > 0 be an arbitrary small constant. Consider any partition 4 =
{A1,..., Ay} of the vertex set V(GI). If |A;| > n/2 for some 7, then the degree

tax is at least 5
(Z’UGAi deg(v, ’I’L)) > (m|AZ|)2 — i
4|E(G™)| ~ 4(mn)? 16°

On the other hand, if |A;| < n/2 for all 4, then a.a.s. the number of edges between
parts is equal to

k k
1 pn m 3+¢
) N> | = > [ 22
el V\A) 2 5 3 sl = 2 (5-25)n

N |

i=1

and so the edge contribution is a.a.s. at most

1(1 3+5> 3 3+e < 15+¢

4 8m

74+8m_ 16 7

for any m > 2. The following result holds.

Theorem 6. For any e > 0 a.a.s.

15+¢
*GTL < .
Q( 2)_ 16

Moreover, for any m > 3 a.a.s.

15
* G'n. < —.
¢ (Gm) < 14
Much stronger expansion property was recently obtained in [15]. We are
currently working on using this property to obtain general upper bound for
¢*(G™,) that holds for any integer m as well as specific stronger bounds for small
values of m. Details will be provided in the journal version of this paper.

5 The Spatial Preferential Attachment Model

Consider G,, = (V,,, E,,), a graph generated by the SPA model. As the modularity
is defined for undirected graphs, we consider G, that is a graph obtained from
G, by replacing each directed edge (u,v) by undirected edge uv. (As edges in G,
are always from ‘younger’ to ‘older’ vertices, there is no problem with generating
multigraph; G, is a simple graph.) Let us recall that V,, C S where S is the
unit hypercube [0, 1]". We use the geometry of the model to obtain a suitable
partition that yields high modularity of G,,. The following properties (proved
many times; see, for example, [1,13]) are the only properties of the model that
are used in the proof: a.a.s. for every pair i,t such that 1 < i <t < n we have
that
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deg™ (v;,t) = O((t/i)pA1 log® n), (6)

deg™ (v;,t) = O(log2 n)7 (7)

and |E(G,)| = ©(n). Now, we are ready to state our result for the SPA model.

Theorem 7. Let p € (0,1], Ay, A2 > 0, and suppose that pA; < 1. Then, the
following holds a.a.s.:

q*(én) -1-0 (nmax{fl/m,fl+pA1}/2 10g9/2 n) - 1_ 0(1)
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