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Abstract. Significant efforts have gone into the development of statis-
tical models for analyzing data in the form of networks, such as social
networks. Most existing work has focused on modeling static networks,
which represent either a single time snapshot or an aggregate view over
time. There has been recent interest in statistical modeling of dynamic
networks, which are observed at multiple points in time and offer a richer
representation of many complex phenomena. In this paper, we propose
a state-space model for dynamic networks that extends the well-known
stochastic blockmodel for static networks to the dynamic setting. We then
propose a procedure to fit the model using a modification of the extended
Kalman filter augmented with a local search. We apply the procedure to
analyze a dynamic social network of email communication.
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1 Introduction

Many complex physical, biological, and social phenomena are naturally repre-
sented by networks. Tremendous efforts have been dedicated to analyzing net-
work data, which has led to the development of many formal statistical models
for networks. Most research has focused on static networks, which either repre-
sent a single time snapshot of the phenomenon being investigated or an aggregate
view over time. As such, statistical models for static networks have a long history
in statistics and sociology among other fields [2]. However, most complex phe-
nomena, including social behavior, are time-varying, which has led researchers
to consider dynamic, time-evolving networks.

In this paper, we consider dynamic networks represented by a sequence of
snapshots of the network at discrete time steps. We characterize such networks
using a set of unobserved time-varying states from which the observed snapshots
are derived. We propose a state-space model for dynamic networks that combines
two types of statistical models: a static model for the individual snapshots and a
temporal model for the evolution of the states. The network snapshots are mod-
eled using the stochastic blockmodel [5], a simple parametric model commonly
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used in the analysis of static social networks. The state evolution is modeled by
a stochastic dynamic system. Using a Central Limit Theorem approximation, we
develop a near-optimal procedure for fitting the proposed model in the on-line
setting where only past and present network snapshots are available. The infer-
ence procedure involves a modification of the extended Kalman filter, which is
used for state tracking in many applications [3], augmented with a local search
strategy. We apply the proposed procedure to analyze a dynamic social network
of email communication and predict future email activity.

2 Related Work

Several statistical models for dynamic networks have previously been proposed
by extending a static model to the dynamic setting in a similar fashion to our
proposed model [2]. Two such models include temporal extensions of the expo-
nential random graph model [1] and latent space model [13]. More closely related
to the state-space model we propose are several temporal extensions of stochas-
tic blockmodels (SBMs). SBMs divide nodes in the network into multiple classes
and generate edges independently with probabilities θab dependent on the class
memberships a, b of the nodes [5]. Yang et al. [15] propose a dynamic SBM in-
volving a transition matrix that specifies the probability that a node in class i at
time t switches to class j at time t+1 for all i, j, t and fit the model using Gibbs
sampling and simulated annealing. Ho et al. [4] propose a temporal extension
of a mixed-membership version of the SBM using linear state-space models for
the class membership vectors of node clusters. One major difference between
[4, 15] and this paper is that we treat the edge probabilities θab as time-varying
states, while [4, 15] treat them as time-invariant parameters. In addition, our
model allows for a simpler inference procedure using a Central Limit Theorem
approximation. We demonstrate the importance of the time-varying states for
analysis of a dynamic social network in Section 5.

3 Static Stochastic Blockmodels

We first introduce notation and summarize the static stochastic blockmodel
(SSBM), which we use as the static model for the individual network snap-
shots. We represent a dynamic network by a time-indexed sequence of graphs,
with W t = [wt

ij ] denoting the adjacency matrix of the graph observed at time
step t. wt

ij = 1 if there is an edge from node i to node j at time t, and wt
ij = 0

otherwise. We assume that the graphs are directed, i.e. wt
ij �= wt

ji in general, and

that there are no self-edges, i.e. wt
ii = 0. W (s) denotes the set of all snapshots

up to time s, {W s,W s−1, . . . ,W 1}. The notation i ∈ a indicates that node i
is a member of class a. |a| denotes the number of nodes in class a. The classes
of all nodes at time t is given by a vector ct with cti = a if i ∈ a at time t.
We denote the submatrix of W t corresponding to the relations between nodes
in class a and class b by W t

[a][b]. We denote the vectorized equivalent of a ma-
trix X , i.e. the vector obtained by simply stacking columns of X on top of one
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another, by x. Doubly-indexed subscripts such as xij denote entries of matrix
X , while singly-indexed subscripts such as xi denote entries of the vectorized
equivalent x.

Consider a snapshot at an arbitrary time step t. An SSBM is parameterized
by a k × k matrix Θt = [θtab], where θ

t
ab denotes the probability of forming

an edge between a node in class a and a node in class b, and k denotes the
number of classes. The SSBM decomposes the adjacency matrix into k2 blocks,
where each block is associated with relations between nodes in two classes a and
b. Each block corresponds to a submatrix W t

[a][b] of the adjacency matrix W t.

Thus, given the class membership vector ct, each entry of W t is an independent
realization of a Bernoulli random variable with a block-dependent parameter;

that is, wt
ij ∼ Bernoulli

(
θtctictj

)
.

SBMs are used in two settings:

1. The a priori blockmodeling setting, where class memberships are known or
assumed, and the objective is to estimate the matrix of edge probabilities Θt.

2. The a posteriori blockmodeling setting, where the objective is to simultane-
ously estimate Θt and the class membership vector ct.

Since each entry of W t is independent, the likelihood for the SBM is given by

f
(
W t;Φt

)
=

∏
i�=j

(
θtcicj

)wt
ij
(
1− θtcicj

)1−wt
ij

= exp

{
k∑

a=1

k∑
b=1

[
mt

ab log
(
θtab

)
+
(
nt
ab −mt

ab

)
log

(
1− θtab

)]
}
, (1)

where mt
ab =

∑
i∈a

∑
j∈b w

t
ij denotes the number of observed edges in block

(a, b), and

nt
ab =

{
|a||b| a �= b

|a|(|a| − 1) a = b
(2)

denotes the number of possible edges in block (a, b) [6]. The parameters are given
by Φt = Θt in the a priori setting, and Φt = {Θt, ct} in the a posteriori setting.
In the a priori setting, a sufficient statistic for estimating Θt is the matrix Y t

of block densities (ratio of observed edges to possible edges within a block) with
entries ytab = mt

ab/n
t
ab. Y

t also happens to be the maximum-likelihood estimate
of Θt, which can be shown [6] by setting the derivative of the logarithm of (1)
to 0.

Estimation in the a posteriori setting is more involved, and many methods
have been proposed, including Gibbs sampling [8], label-switching [6, 16], and
spectral clustering [12]. The label-switching methods use a heuristic for solving
the combinatorial optimization problem of maximizing the likelihood (1) over the
set of possible class memberships, which is too large to perform an exhaustive
search.
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4 Dynamic Stochastic Blockmodels

We propose a state-space model for dynamic networks that consists of a tem-
poral extension of the static stochastic blockmodel. First we present the model
and inference procedure for a priori blockmodeling, and then we discuss the ad-
ditional steps necessary for a posteriori blockmodeling. The inference procedure
is on-line, i.e. the state estimate at time t is formed using only observations from
time t and earlier.

4.1 A Priori Blockmodels

In the a priori SSBM setting, Y t is a sufficient statistic for estimating Θt as
discussed in Section 3. Thus in the a priori dynamic SBM setting, we can equiv-
alently treat Y t as the observation rather than W t. The entries of W t

[a][b] are

independent and identically distributed (iid) Bernoulli (θtab); thus by the Central
Limit Theorem, the sample mean ytab is approximately Gaussian with mean θtab
and variance (σt

ab)
2 = θtab(1−θtab)/nt

ab, where n
t
ab was defined in (2). We assume

that ytab is indeed Gaussian for all (a, b) and posit the linear observation model

Y t = Θt + Zt,

where Zt is a zero-mean iid Gaussian noise matrix with variance (σt
ab)

2 for the
(a, b)th entry.

In the dynamic setting where past snapshots are available, the observations
would be given by the set Y (t). The set Θ(t) can then be viewed as states of a
dynamic system that is generating the noisy observation sequence. We complete
the model by specifying a model for the state evolution over time. Since θtab is
a probability and must be bounded between 0 and 1, we instead work with the
matrix Ψ t = [ψt

ab] where ψ
t
ab = log(θtab)− log(1− θtab), the logit of θtab. A simple

model for the state evolution is the random walk

ψt = ψt−1 + vt,

where ψt is the vector representation of the matrix Ψ t, and vt is a random
vector of zero-mean Gaussian entries, commonly referred to as process noise, with
covariance matrix Γ t. The entries of the process noise vector are not necessarily
independent or identically distributed (unlike the entries of Zt) to allow for states
to evolve in a correlated manner. The observation model can then be written in
terms of ψt as1

yt = h
(
ψt

)
+ zt, (3)

where the function h : Rk2 → R
k2

is defined by hi(x) = 1/(1 + e−xi), i.e. the
logistic function applied to each entry of x. We denote the covariance matrix of
zt by Σt, which is a diagonal matrix2 with entries given by (σt

ab)
2. A graphical

representation of the proposed model for the dynamic network is shown in Fig. 1.

1 Note that we have converted the block densities Y t and observation noise Zt to their
respective vector representations yt and zt.

2 The indices (a, b) for (σt
ab)

2 are converted into a single index i corresponding to the
vector representation zt.
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Logistic
SBM

. . .

Fig. 1. Graphical representation of the proposed model. The rectangular boxes denote
observed quantities, and the ovals denote unobserved quantities. The logistic SBM
refers to applying the logistic function to each entry of Ψ t to obtain Θt then generating
W t using Θt and ct.

To perform inference on this model, we assume the initial state is Gaussian
distributed, i.e. ψ0 ∼ N (

μ0, Γ 0
)
, and that {ψ0,v1, . . . ,vt, z1, . . . , zt} are mu-

tually independent. If (3) was linear in ψt, then the optimal estimate of ψt in
terms of minimum mean-squared error would be given by the Kalman filter [3].
Due to the non-linearity, we apply the extended Kalman filter (EKF), which
linearizes the dynamics about the predicted state and provides an near-optimal
estimate of ψt. The predicted state under the random walk model is simply
ψ̂t|t−1 = ψ̂t−1|t−1 with covariance Rt|t−1 = Rt−1|t−1+Γ t. Let J t denote the Ja-
cobian of h evaluated at the predicted state ψ̂t|t−1. The EKF update equations
are as follows [3]:

Near-optimal Kalman gain: Kt = Rt|t−1
(
J t
)T [

J tRt|t−1
(
J t
)T

+Σt
]−1

Posterior state estimate: ψ̂t|t = ψ̂t|t−1 +Kt
[
yt − h

(
ψ̂t|t−1

)]

Posterior estimate covariance: Rt|t =
(
I −KtJ t

)
Rt|t−1

The posterior state estimate ψ̂t|t provides a near-optimal fit to the model at
time t given the observed sequence W (t). How to choose the hyperparameters(
μ0, Γ 0, Σt, Γ t

)
in an optimal manner is beyond the scope of this paper and is

discussed in [14, chap. 5].

4.2 A Posteriori Blockmodels

In many applications, the class memberships ct are not known a priori and must
be estimated along with Ψ t. This can be done using label-switching methods
[6, 16], but rather than maximizing the likelihood, we maximize the posterior
state density given the entire sequence of observations W (t) up to time t to
account for the prior information. This is done by alternating between label-
switching and applying the EKF.
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The posterior state density is given by

f
(
ψt |W (t)

)
∝ f

(
W t |ψt,W (t−1)

)
f
(
ψt |W (t−1)

)
. (4)

By the conditional independence of current and past observations given the cur-
rent state, W (t−1) drops out of the first term in (4). It can thus be obtained
simply by substituting h(ψt) for θt in (1). The second term in (4) is equivalent
to f

(
ψt |y(t−1)

)
because the class memberships at all previous time steps have

already been estimated. By applying the Kalman filter to the linearized tem-
poral model [3], f

(
ψt |y(t−1)

) ∼ N (
ψ̂t|t−1, Rt|t−1

)
. Thus the logarithm of the

posterior density is given by

log f
(
ψt |W (t)

)
= c− 1

2

(
ψt − ψ̂t|t−1

)T (
Rt|t−1

)−1 (
ψt − ψ̂t|t−1

)

+

k∑
a=1

k∑
b=1

{
mt

ab log
[
h
(
ψt
ab

)]
+
(
nt
ab −mt

ab

)
log

[
1− h

(
ψt
ab

)]}
,

(5)

where c is a constant term independent of ψt that can be ignored3.
We use the log-posterior (5) as the objective function for label-switching. We

find that a simple local search (hill climbing) algorithm [11] initialized using the
estimated class memberships at the previous time step suffices, because only a
small fraction of nodes change classes between time steps in most applications.
At the initial time step, we employ the spectral clustering algorithm of Sussman
et al. [12] for the SSBM as the initialization.

5 Application to Enron Email Network

We demonstrate the proposed procedure on a dynamic social network con-
structed from the Enron corpus [9, 10], which consists of about 0.5 million email
messages between 184 Enron employees from 1998 to 2002. We place directed
edges between employees i and j at time t if i sends at least one email to j during
week t. Each time step corresponds to a 1-week interval. We make no distinction
between emails sent “to”, “cc”, or “bcc”. In addition to the email data, the roles
of most of the employees within the company (e.g. CEO, president, manager,
etc.) are available, which we use as classes for a priori blockmodeling. Employees
with unknown roles are placed in an “others” class.

5.1 State Tracking

We begin by examining the temporal variation of the states, which we refer to
as state tracking. Recall that the states Ψ t correspond to the logit of the edge
probabilities Θt. We first apply the a priori EKF to obtain the state estimates
ψ̂t|t and their variances (the diagonal of Rt|t). Applying the logistic function, we
can then obtain the estimated edge probabilities Θ̂t|t with confidence intervals.

3 At the initial time step, ψ̂1|0 = μ0 and R1|0 = Γ 0 + Γ 1.
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(a) Week 59: a normal week

Recipient class

Se
nd

er
 c

la
ss

 

 

1 2 3 4 5 6 7

1

2

3

4

5

6

7
0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Week 89: CEO Skilling resigns

Fig. 2. Estimated edge probability matrices for two selected weeks. Entry (i, j) denotes
the estimated probability of an edge from class i to class j. Classes are as follows: (1)
directors, (2) CEOs, (3) presidents, (4) vice-presidents, (5) managers, (6) traders, and
(7) others. Notice the increase in the probability of edges from CEOs during the week
of Skilling’s resignation.
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Fig. 3. A priori EKF estimated edge probabilities θ̂
t|t
ab (solid lines) with 95% confidence

intervals (shaded region) for selected a, b by week. An increase in edge probabilities
between Enron presidents (a) occurs prior to a similar increase between those in other
roles (b) suggesting insider knowledge.
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Fig. 4. Comparison of ROC curves for link prediction on Enron data. True positive
rate denotes the fraction of actual edges that are correctly predicted, and false positive
rate denotes the fraction of non-edges that are predicted to be edges. The convex com-
bination of either EKF with the EWMA outperforms the EWMA alone by accounting
for block-level characteristics.

Examining the temporal variation of Θ̂t|t reveals some interesting trends. For
example, a large increase in the probabilities of edges from CEOs is found at
week 89. This is the week in which CEO Jeffrey Skilling resigned and is confirmed
to be the cause of the increased probabilities by examining the content of the
emails. Fig. 2 shows a comparison of the matrix Θ̂t|t during a normal week and
during the week Skilling resigned.

Another interesting trend is highlighted in Fig. 3, where the temporal variation
of two selected edge probabilities over the entire data trace with 95% confidence
intervals is shown. Edge probabilities between Enron presidents show a steady
increase as Enron’s financial situation worsens, hinting at more frequent and
widespread insider discussions, while emails between others (not of one of the six
known roles) begin to increase only after Enron falls under federal investigation.

A key observation from this analysis is the importance of modeling the edge
probabilities as time-varying states, as opposed to time-invariant parameters as
in [4, 15]. Indeed the temporal variation of the edge probabilities is what reveals
the internal dynamics of this time-evolving social network. Furthermore, the
temporal model provides estimates with less uncertainty than the static SBM,
with 95% confidence intervals that are 24% narrower on average.

5.2 Dynamic Link Prediction

Next we turn to the task of dynamic link prediction, which differs from static
link prediction [7] because the link predictor must simultaneously predict the
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new edges that will be formed at time t+ 1, as well as the current edges (as of
time t) that will disappear at time t+1, from the observations W (t). The latter
task is not addressed by most static link prediction methods in the literature.

Since the SBM assumes stochastic equivalence between nodes in the same
class, the EKF alone is only a good predictor of the block densities Y t, not
the edges themselves. However, the EKF can be combined with a predictor
that operates on individual edges to form a link predictor. A simple individual-
level predictor is the exponentially-weighted moving average (EWMA) given by
Ŵ t+1 = λŴ t+(1−λ)W t. Using a convex combination of the EKF and EWMA
predictors, we obtain a better link predictor that incorporates both block-level
characteristics (through the EKF) and individual-level characteristics (through
the EWMA). This can be seen from the receiver operating characteristic (ROC)
curves in Fig. 4. The a posteriori EKF slightly outperforms the a priori EKF
because the a posteriori EKF finds a better fit to the dynamic SBM via a better
assignment of nodes to classes than the a priori (assumed) assignment.

6 Conclusion

This paper proposes a statistical model for dynamic networks that utilizes a set
of unobserved time-varying states to characterize the dynamics of the network.
The proposed model extends the well-known stochastic blockmodel for static
networks to the dynamic setting can be used for either a priori or a posteriori
blockmodeling. The main contribution of the paper is a near-optimal on-line in-
ference procedure for the proposed model using a modification of the extended
Kalman filter, augmented with a local search. We applied the proposed inference
procedure to the Enron email network and discovered some interesting trends
when we examined the estimated states. One such trend was a steady increase in
emails between Enron presidents as Enron’s financial situation worsened, while
emails between other employees remained at their baseline levels until Enron fell
under federal investigation. In addition, the proposed procedure showed promis-
ing results for predicting future email activity. We believe the proposed model
and inference procedure can be applied to reveal the internal dynamics of many
other dynamic networks.
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