
Graph Visualization and Navigation in
Information Visualization: A Survey

Ivan Herman, Member, IEEE Computer Society, Guy MelancËon, and M. Scott Marshall

AbstractÐThis is a survey on graph visualization and navigation techniques, as used in information visualization. Graphs appear in

numerous applications such as web browsing, state-transition diagrams, and data structures. The ability to visualize and to navigate in

these potentially large, abstract graphs is often a crucial part of an application. Information visualization has specific requirements,

which means that this survey approaches the results of traditional graph drawing from a different perspective.

Index TermsÐInformation visualization, graph visualization, graph drawing, navigation, focus+context, fish-eye, clustering.

æ

1 INTRODUCTION

ALTHOUGH the visualization of graphs is the subject of
this survey, it is not about graph drawing in general.

Excellent bibliographic surveys [4], [34], books [5], or even
on-line tutorials [26] exist for graph drawing. Instead, the
handling of graphs is considered with respect to informa-
tion visualization.

Information visualization has become a large field and
ªsubfieldsº are beginning to emerge (see, for example, Card
et al. [16] for a recent collection of papers from the last
decade). A simple way to determine the applicability of
graph visualization is to consider the following question: Is
there an inherent relation among the data elements to be
visualized? If the answer to the question is ªno,º then data
elements are ªunstructuredº and the goal of the information
visualization system might be to help discover relations
among data through visual means. If, however, the answer
to the question is ªyes,º then the data can be represented by
the nodes of a graph, with the edges representing the
relations.

Information visualization research dealing with unstruc-
tured data has a distinct flavor. However, such research is
not the subject of this survey. Instead, our discussion
focuses on representations of structured data, i.e., where
graphs are the fundamental structural representation of the data.
Information visualization has specific requirements, which
means that we will approach the results of traditional graph
drawing from a different perspective than other surveys.

1.1 Typical Application Areas

Graph visualization has many areas of application. Most
people have encountered a file hierarchy on a computer
system. A file hierarchy can be represented as a tree (a
special type of graph). It is often necessary to navigate
through the file hierarchy in order to find a particular file.
Anyone who has done this has probably experienced a few
of the problems involved in graph visualization: ªWhere am

I?º ªWhere is the file that I'm looking for?º Other familiar
types of graphs include the hierarchy illustrated in an
organizational chart and taxonomies that portray the
relations between species. Web site maps are another
application of graphs, as well as browsing history. In
biology and chemistry, graphs are applied to evolutionary
trees, phylogenetic trees, molecular maps, genetic maps,
biochemical pathways, and protein functions. Other areas
of application include object-oriented systems (class brow-
sers), data structures (compiler data structures in particu-
lar), real-time systems (state-transition diagrams, Petri
nets), data flow diagrams, subroutine-call graphs, entity
relationship diagrams (e.g., UML and database structures),
semantic networks and knowledge-representation dia-
grams, project management (PERT diagrams), logic pro-
gramming (SLD-trees), VLSI (circuit schematics), virtual
reality (scene graphs), and document management systems.
Note that the information isn't always guaranteed to be in a
purely hierarchical formatÐthis necessitates techniques
which can deal with more general graphs than trees.

1.2 Key Issues in Graph Visualization

The size of the graph to view is a key issue in graph

visualization. Large graphs pose several difficult problems.

If the number of elements is large, it can compromise

performance or even reach the limits of the viewing

platform. Even if it is possible to layout and display all

the elements, the issue of viewability or usability arises

because it will become impossible to discern between nodes

and edges (see Fig. 1, although this tree is by no means a

very complex one). In fact, usability becomes an issue even

before the problem of discernability is reached. It is well-

known that comprehension and detailed analysis of data in

graph structures is easiest when the size of the displayed

graph is small. In general, displaying an entire large graph

may give an indication of the overall structure or a location

within it, but makes it difficult to comprehend. These issues

form the context for most of this survey.

Other than the usual reference to information overload

and the occasional reference to the gestalt principle, papers

in information visualization rarely apply cognitive science

24 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

. The authors are with the Centre for Mathematics and Computer Sciences,
CWI, Kruislaan 413, PO Box 94079, 1090 GB Amsterdam, The
Netherlands. E-mail: {I.Herman, G.Melancon, M.S. Marshall}@cwi.nl.

For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 111225.

1077-2626/00/$10.00 ß 2000 IEEE

and human factors. This is for no lack of trying; very few of

the findings in cognitive science have practical applications

at this time and very few usability studies have been done.

Cognitive aspects are undoubtedly a subject for future

research. For this reason, an objective evaluation of the

merits of a given approach is difficult. The reader has to

bear this limitation in mind when various techniques are

presented.1

The rest of this survey is organized as follows: In

Section 2, we try to give an impression of graph layout

issues and limitations with regard to scalability. Then, we

discuss several approaches to navigation of large graphs

(Section 3), followed by methods of reducing visual

complexity through reorganization of the data (Section 4).

Afterwards, we discuss a few application systems that

implement many of the techniques described in this survey

(Section 5). To help the reader pursue further research and

development, we have listed the various sources of

information that we found particularly important for graph

visualization (Section 6) and provided an extensive list of

references.

2 GRAPH LAYOUT

This section looks at the current results in graph drawing

and layout algorithms, but from the point of view of graph

visualization in information visualization. As we will see,

this point of view differs, in many respects, from the

traditional view of the Graph Drawing community. We will

give an account of the available results and discuss their

relevance for graph visualization, although, in general, we

will not go too far into the technical details. For those

desiring more information, we recommend the excellent

book from Battista et al. [5] as one of the best starting points.

2.1 Background of Graph Drawing

The Graph Drawing community2 grew around the yearly

Symposia on Graph Drawing (GD 'XX conferences), which

were initiated in 1992 in Rome. Springer-Verlag publishes

the proceedings of the conference in the LNCS series, which

contains new layout algorithms, theoretical results on their

efficiency or limitations, and systems demonstrations. The

recent electronic Journal of Graph Algorithms and Applications

is dedicated to papers concerned with design and analysis

of graph algorithms, as well as with experiences and

applications.
The basic graph drawing problem can be put simply:

Given a set of nodes with a set of edges (relations), calculate
the position of the nodes and the curve to be drawn for each
edge. Of course, this problem has always existed for the
simple reason that a graph is often defined by its drawing.
Indeed, Euler himself relied on a drawing to solve the
ªKoÈnigsberger BruÈ ckenproblemº in his 1736 paper (see the
recent book of Jungnickel [74]). The annotated bibliography
by Battista et al. [4] gathers hundreds of papers studying
what a good drawing of a graph is. That is, where the
problem becomes more intricate: It requires the definition of
properties and a classification of layouts according to the
type of graphs to which they can be applied. For example, a
familiar property is planarityÐwhether it is possible to draw
a graph on the plane with no edge crossing. Layout
algorithms may be categorized with respect to the type of
layout they generate. For example, grid layouts position
nodes of a graph at points with integer coordinates. Other
categories of layouts are defined by the methodology on
which they are based. For example, nondeterministic

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION: A SURVEY 25

Fig. 1. A tree layout for a moderately large graph.

1. Ware's new book [123] may become an important source of
information in this area. 2. http://www.cs.brown.edu/people/rt/gd.html.

approaches form a category that uses algorithms such as
force-directed models or simulated annealing. Each class of
graphs and layouts thus generates its own set of problems.
Planarity, for example, raises problems such as:

. Planarity tests for graphs: Is it possible to draw a
graph without edge-crossings?

. Planar layout algorithms according to various con-
straints: Given that a graph is planar, find a layout
satisfying a group of constraints.

Many constraints in use are also expressed in terms of
aesthetic rules imposed on the final layout. Nodes and edges
must be evenly distributed, edges should all have the same
length, edges must be straight lines, isomorphic substruc-
tures should be displayed in the same manner, edge-
crossings should be kept to a minimum, etc.3 Trees have
received the most attention in the literature. Consequently,
additional aesthetics rules have also been formulated for
them. For example, nodes with equal depth should be
placed on a same horizontal line, distance between sibling
nodes is usually fixed, etc. See again the book of Battista
et al. [5] for further examples.

The Reingold and Tilford algorithm for trees [103], [121]
(see Fig. 1) is a good example of a layout algorithm
achieving these aesthetic goals. Isomorphic subtrees are laid
out in exactly the same way and distance between nodes is
a parameter of the algorithm. On the other hand, the more
straightforward and naive algorithm for displaying a tree,
consisting of distributing the available horizontal space to
subtrees according to their number of leaves, actually fails
to achieve some of the aesthetic rules listed above.

Although the adjective ªaestheticº is used, some rules
were originally motivated by more practical issues. For
instance, minimization of the full graph area might be an
important criterion in applications. Some of the rules clearly
apply to a certain category of graphs or layouts only, others
have a more ªabsoluteº character. Furthermore, each of the
rules defines an associated optimization problem, used in a
number of nondeterministic layout algorithms.

There has been some work lately which questions the
absolute character of those rules, however. Usability studies
were conducted in order to evaluate the relevance of these
aesthetics for the end-user. Purchase [100] demonstrates
that ªreducing the crossings is by far the most important
aesthetic, while minimizing the number of bends and
maximizing symmetry have a lesser effect.º Her work
concludes by prioritizing these aesthetics; see also Purchase
et al. [101], [102] for more details. Other authors [10], [29],
[86] report differences in the perception of a graph
depending on its layout. Unfortunately, usability studies
necessitate a great effort, both to realize the experimentation
itself and to analyze its results properly, but we regard this
line of work as essential for information visualization.
Usability studies have recently gained credibility in the
graph visualization community as well, recognizing their
contribution to help focus on important issues in the area.

A wide variety of tasks related to graph drawing have
been studied: layering a graph, turning it into an acyclic
directed graph, planarization of a graph, minimizing the
area occupied by a layout, minimizing the number of bends
in edges, etc. Unfortunately, many of the associated
algorithms are too complex to be practical for applications.
On the positive side, this has motivated the development of
effective heuristics to overcome the complexity of some of
these problems [5], [34].

In graph visualization, a major problem that needs to be
addressed is the size of the graph. Few systems can claim to
deal effectively with thousands of nodes, although graphs
with this order of magnitude appear in a wide variety of
applications. NicheWorks [126], GVF [64], and H3Viewer
[94] are among the few systems that claim to handle data
sets with thousands of elements. The size of a graph can
make a normally good layout algorithm completely
unusable. In fact, a layout algorithm may produce good
layouts for graphs of several hundred nodes, but this does
not guarantee that it will scale up to several thousand
nodes. For example, Fig. 1 illustrates a tree with a few
hundred nodes laid out using the classical Reingold and
Tilford algorithm. The high density of the layout comes as
no surprise and changing particular parameters of the
algorithm will not improve the picture for the graph. Other
2D layout techniques could be used, but most layout
algorithms suffer from the same problem. Because the
layout is so dense, interaction with the graph becomes
difficult. Occlusions in the picture make it impossible to
navigate and query about particular nodes. The use of 3D or
of non-Euclidean geometry have also been proposed to
alleviate these problems. Sections 2.4 and 2.5 provide more
details about these techniques. However, beyond a certain
limit, no algorithm will guarantee a proper layout of large
graphs. There is simply not enough space on the screen. In
fact, from a cognitive perspective, it does not even make
sense to display a very large amount of data. Consequently,
a first step in the visualization process is often to reduce the
size of the graph to display. Classical layout algorithms
remain usable tools for visualization, but only when
combined with these techniques.

Other properties of a layout algorithm can be critical
when navigating through a graph. The concept of predict-
ability has been identified as an important and necessary
aspect of layout algorithms [61], [99]. What is meant by
predictability is that two different runs of the algorithm,
involving the same or similar graphs should not lead to
radically different visual representations. This property is
also referred to in the literature as ªpreserving the mental
mapº of the user [90]. Predictability is often ignored during
analysis of classical layout algorithms, which are usually
used to produce a static view of a graph.

Another important issue is time complexity. Any visuali-
zation system needs to provide near real-time interaction,
where updates must be done in very short time intervals in
order to escape the notice of the user. Having an accurate
estimate of the time complexity of an algorithm can be of
great help for the implementation of large systems when
planning which algorithm to apply.

26 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

3. Actually, some aesthetics are quite arbitrary and are not seen as
absolute rules any more [100], [101]. Ware's book [123] is also an interesting
source of information for this topic.

2.2 Traditional LayoutÐAn Overview

We will briefly review existing layout techniques in graph

drawing, keeping the issues of predictability and time

complexity in mind. Fig. 2 gives a classification of existing

layout techniques. This classification is the work of Mutzel

et al. [96]. Most of the algorithms are described in the book

by Battista et al. [5]. We will focus on the Layout box

containing a list of possible layout types.
A classical Tree Layout will position children nodes

ªbelowº their common ancestor. The algorithm by Reingold

and Tilford [103], [121] is probably the best known layout

technique in the tree layout category (see Fig. 1). It can be

adapted to produce top-down, as well as left-to-right tree

layout, and can also be set to output grid-like positioning.
H-tree layouts are also classical representations for

binary trees [113] which only perform well on balanced

trees. Eades [35] suggests a variation of the algorithm that

behaves well in general (see Fig. 3). The radial positioning

by Eades [35] places nodes on concentric circles according

to their depth in the tree (see Fig. 4). A subtree is then laid

out over a sector of the circle and the algorithm ensures that

two adjacent sectors do not overlap (although this condition

can be ignored to obtain relatively good drawings on

average [63], [126]). The cone tree [20], [106] algorithm can

be used to obtain a ªballoon viewº of the tree by projecting

it onto the plane [20], [71], where sibling subtrees are

included in circles attached to the father node. It is also

possible to compute the node position directly, without

using cone trees[87] (see Fig. 5; Section 2.4 describes cone

trees in more detail).
The Reingold and Tilford algorithm produces a more

classical drawing in the sense that the drawing clearly

reflects the intrinsic hierarchy of the data. The radial and H-

tree positioning are different in this respect because it is less

clear where the root of the tree is and, thus, one might

explore the graph in a less hierarchical fashion. The

Reingold and Tilford, H-tree, radial, and balloon layouts

are all predictable. Tree layout problems usually have the

lowest complexity, which is linear in the number of nodes.

As we can see, although the Tree Layout box occupies only a

small area of Fig. 2, it contains a variety of layouts.

Chapter 3.1 of the book by Battista et al. [5] is a good

starting point for a further overview of these tree layout

techniques. Two tree layout algorithms, which are not part

of the ªtraditionalº arsenal, are also worth mentioning here:

tree-maps [72] (see Fig. 6) and onion graphs [115], which

represent trees by sequences of nested boxes. It is important

to note that, in tree-maps, the size of the individual

rectangles is significant. For example, if the tree represents

a file system hierarchy, this size may be proportional to the

size of the respective file. This is why tree-maps enjoy

popularity in information visualization in spite of the fact

that it is difficult to perceive the structure in this

representation.4 An attempt to overcome this problem has

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION: A SURVEY 27

4. The value of the tree-map is demonstrated in an interactive java applet
at http://smartmoney.com/marketmap/.

Fig. 2. Overview of graph layout algorithms. (Reproduced from Mutzel et al. [96], courtesy of T. Mutzel, Max-Planck-Institut, SaarbruÈcken, Germany.)

been recently presented by Wijk and Wetering [125] in the
form of cushion tree-maps.

A separate box at the bottom of Fig. 2 is devoted to
Planarity. This is a critical issue in graph drawing because
the planarity of a graph may be an important constraint
imposed by practical applications (such as graphs repre-
senting printed circuit boards). The complexity for testing
planarity for undirected graphs can be linear [67]. (See
Chapter 3.3 in Battista et al. [5]. See also Mehlhorn and
Mutzel [88] for a discussion on implementation issues.)
However, many applications impose the additional require-
ment that edges are all in the same direction (planar
drawings often make use of edges going around some
nodes to avoid crossings). This condition, called upward
planarity, turns the original problem into an NP problem.
(See Garg and Tamassia [54]. See also Chapter 6 in Battista
et al. [5]). In information visualization applications, it only
makes sense to check for planarity when dealing with a
small and sparse graph [3], [30], such as a subgraph
obtained by clustering a larger graph (see Section 4.). In
general, we can safely say that planarity is not a central
issue in information visualization.

The Sugiyama Layout box included in Fig. 2 is named
after the seminal work by Sugiyama et al. on layout for

general directed graphs [117]. The basic approach to laying
out a directed graph is to first decide on a layering of its
nodes; that is, assign a layer number to each node and place
nodes of a given layer in a certain order. Several layering
techniques exist, the majority of which rely on the extraction
of an acyclic subgraph. In this process, a subgraph contain-
ing all nodes of the original graph is extracted in such a way
that, when nodes have been placed in their respective
layers, edges will all point in the same direction (usually
downward). Another solution is not to extract a subgraph,
but to turn the original graph into an acyclic one by
reversing the direction of a subset of the edges.

Once the nodes have been assigned to layers, one must
position the nodes within the same layer following an
imposed order. A major effort has been invested in edge-
crossing minimization [5], [34] since the crossing of edges
has been recognized as an obstacle to the readability of
graphs [100], [101]. This is usually done by minimizing the
number of edge-crossings between two consecutive layers.
This minimization step is at the core of complexity for the
whole algorithm. Note that these strategies do not address
the problem of minimizing the number of crossings in the

28 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

Fig. 3. H-tree layout.

Fig. 4. Radial view.

Fig. 5. Balloon view.

Fig. 6. Tree-map: rectangles with color belong to the same level of the

(tree) hierarchy. (Adapted from Johnson and Schneiderman [72]).

whole graph: Even with the restriction of looking at
consecutive layers only, minimization of edge-crossings is
difficult and complex. In fact, Garey and Johnson proved
the problem to be NP-hard [53] and Eades and Whitesides
proved the corresponding decision problem to be NP-
complete [36].

The complexity of a proper minimization has motivated
the development of various heuristics for computing a good
order for the nodes on a layer. Tutte [119] was the first to
propose a heuristic: Starting from an order on the top and
bottom layers, the coordinates of a node are defined to be
the barycenter of those of its neighbors. This corresponds to
the intuitive idea that a node should be kept ªcloseº to its
neighbors. The solution is then obtained by solving a
system of linear equations. One variation to this scheme is
to compute barycentric coordinates by performing a layer-
by-layer descent in the graph. More generally, the four
boxes on the left of the figure correspond to various
preprocessing possibilities for the algorithm in the Sugiyama
Layout category. New improvements and perspectives on
the problem were published recently [73], [79], which
include a detailed report on existing techniques [80] and a
comparison of existing heuristics [81].

The critical element of the general scheme for directed
graphs is its high complexity, although it might be kept
within reasonable bounds if the size of the graphÐor,
should we say, subgraphÐto be drawn is kept small. The
ranking process in itself has a low cost. Indeed, a breadth
first search of the graph returns an acyclic subgraph that
can be used for layering. However, the choice of this
subgraph can determine the quality of the final layout. We
will return to that issue later. It is also not clear whether any
algorithm in this class will be predictable. Some approaches
can certainly be made predictable, but then the price to pay
will be a greater complexity due to the loss in flexibility in
reordering the nodes on a layer. Battista et al. give a
detailed account of edge-crossing minimization in Chapter 9
of their book [5].

The Spring Layout box stands for all nondeterministic
layout techniques, also called Force-Directed Methods. Eades
[33] was the first to propose this approach in graph
drawing, modeling nodes and edges of a graph as physical
bodies tied with springs. Using Hooke's law describing
forces between the bodies, he was able to produce layouts
for (undirected) graphs. Since then, his method was
revisited and improved [28], [47], [49], [75]. Mathematically,
the methods are based on an optimization problem.
Different physical models lead to algorithms of different
complexities and they produce layouts of varying quality.
Spring layouts have been used successfully to produce well-
balanced layout for graphs. In some cases, their output can
even behave well with respect to edge-crossing minimiza-
tion without any supplementary efforts [47]. Bertault has
recently developed a force-directed model preserving edge-
crossings, turning it into a more predictable approach [9].

In general, however, force-directed methods can be
rather slow. Each iteration involves a visit of all pairs of
nodes in the graph and the quality of the layout depends on
the number of full iterations: each step improves the
positions following the underlying mathematical model.

Even one of the best variants [47] is still estimated to work
with a complexity of O�N3�, where N is the number of
nodes in the graph. Moreover, two different runs of the
algorithm on almost identical graphs might produce
radically different layouts. In other words, the methods
may be highly unpredictable. This makes them less
interesting for information visualization since unpredict-
ability can be a major problem for interaction. However, in
some cases, the lack of predictability can be compensated
for if the graph is small or sparse, by animating changes in
the layout to help the user in adapting to the new drawing
[69]. For further information on force-directed methods, the
reader should refer to the comparison of nondeterministic
techniques of Brandenburg et al. [12] or Chapter 10 in the
book of Battista et al. [5].

We will not discuss layouts on grids here. We refer to
Battista et al. [5] for details on that, as well as for learning
more about the additional techniques included in the boxes
ªCompactionº and ªAugmentationº on the right side of
Fig. 2. None of these techniques play a central role in graph
visualization.

The classification of algorithms in Fig. 2 assumes that
layout is determined only by the nodes and edges,
without additional constraints. However, some work has
been done with applications where the nodes of the
graph have preassigned positions in the plane, such as
geographical positions. The challenge is then to find a
way to draw edges, for example, by using polylines or
spline curves [6], [13], [97].

2.3 Spanning Trees

A general problem with the majority of the available
techniques is that they are only applicable for relatively
small graphs.5 The ªtraditionalº concerns of Graph Draw-
ing become much less relevant in graph visualization,
which typically deals with relatively large graphs. In
general, it makes no sense to test a graph of several
hundred nodes for planarity or to try to minimize edge-
crossings. Often, the most obvious and practical solution is
simply to layout a spanning tree for the graph. As we have
already seen, tree layout algorithms [20], [35], [103], [121]
have the lowest complexity and are simpler to implement.
The problem is then transformed into one of finding a
spanning tree. That option involves laying out a graph
based on the positioning of a tree containing all nodes of the
graph which had been previously extracted from the graph.
Additional edges are then added to the tree. The literature
in graph theory proposes a long list of algorithms to
compute spanning trees for graphs, both for the directed
and undirected cases (see, for example, Jungnickel [74]).
Incidentally, using a spanning tree to layout a graph can
also be a solution to gain predictability of the layout.
Although spanning trees are obviously not the only layout
approach in graph visualization, they certainly do and will
play an important role.

Extracting a spanning tree with no particular property
can be done easily. One approach is to visit the nodes of the

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION: A SURVEY 29

5. This is clearly shown by the size of the graphs submitted each year to
the Graph Drawing Contest, although bigger graphsÐand, also, graphs
coming from real-world life situations applicationsÐhave also been
included in recent years.

graph through a breadth first search and collect edges to
form a tree. The search can start from a node that is more
likely to ªactº as the root of the extracted tree. A node
whose distance to all other nodes is minimal is a good
candidate [11]. More sophisticated algorithms have been
designed to satisfy various optimization goals. If a weight
function exists for the graph, algorithms exist to compute
spanning trees minimizing (or maximizing) the total weight
of the tree. One solution is to iteratively build a tree by
adding edges adjacent to the set of already selected nodes,
each time selecting an edge with minimal (maximal)
weight. Different choices for the weight function will yield
different solutions and will also affect the complexity of the
extracting process (see, for example, Chapters 4 and 5 of
Jungnickel [74]). The complexity of this task varies accord-
ing to the variant used. The naive solution has a complexity
of O�N2�; better solutions exist which bring the complexity
down to O�N logN� or to O�E logN� (where N and E
denote the number of nodes and edges of the graph,
respectively).

A weight function can be used to extract different
spanning trees and, consequently, to obtain different
possible layouts for the same graph (although the imple-
mentor must be aware of the fact that a spanning tree
realizing an optimization goal for a given weight function
does not necessarily produce a good view of the graph). Use
of weight functions can also be applied to directed acyclic
graphs to avoid going through the task of edge-crossing
minimization. For large and dense acyclic directed graphs,
the use of layers as a weight function (the weight of a node
or edge is its layer number) has proven to give good results
(see, for instance, Herman et al. [63]).

2.4 3D Layout

One popular technique is to display graphs in 3D instead of
2D. The hope is that the extra dimension will give, literally,
more ªspaceº and that this will ease the problem of

displaying large structures. Furthermore, the user can
navigate to find a view without occlusions. The simplest
approach is to generalize classical 2D layout algorithms for
3D. Fig. 7, for example, shows a 3D version of a radial tree
algorithm, while Fig. 8 is a generalization [104] of the two-
dimensional approach using nested boxes [115]. Most force-
directed methods are also described in dimension indepen-
dent terms, which allows them to be generalized to 3D
(such as the approaches based on simulated annealing by
Davidson and Harel [28] and, also, from Cruz and Twarog
[27]). The reader may find further examples in the overview
by Young [128] or in the new book by Ware [123].

In spite of their apparent simplicity, Figs. 7 and 8 show
that displaying graphs in 3D can also introduce new
problems. Objects in 3D can occlude one another and it is
also difficult to choose the best ªviewº in space [38]. As a
consequence, virtually all 3D displays of graphs include
additional visual cues, like transparency, depth queuing,
etc. They also allow the user to interactively change the
view by ªmoving aroundº in space. But, the ability to
change perspective adds another difficulty. Common
practices, such as the minimization of edge-crossings, are
less rewarding if the user can change the perspective and
see edge-crossings from another angle. However, it is the
job of the application to provide the best possible view of
the information in the perspective initially provided to the
user, so aesthetics cannot be dismissed.

The cone tree , [107] (see Fig. 9) is one of the best known
3D graph (in this case, tree) layout techniques in informa-
tion visualization.6 In contrast to the previous examples,
cone trees have been developed directly for 3D, instead of
generalizing another 2D algorithm.

Mathematically, the layout is quite simple. A node is
placed at the apex of a cone with its children placed evenly
along its base. In the original implementation, each layer
has cones of the same height and the cone base diameters
for each level are reduced in a progression so that the
bottom layer fits into the width of what the authors called

30 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

6. The term ªcam treeº is also used. Strictly speaking, cam trees are
horizontal arrangements, whereas cone trees are vertical. We will not
differentiate between them.

Fig. 7. 3D version of a radial algorithm. (Courtesy of S. Benford,

University of Nottingham, U.K.)

Fig. 8. Information Cube. (Courtesy of J. Rekimoto, Sony Computer

Science Laboratory, Inc., Japan [104].)

the ªroom,º i.e., the box containing the full cone tree. The

original idea of cone trees has been reimplemented by

others [20], [59], [71] with, in some cases, a refined layout

algorithm. CarrieÁre and Kazman [20], for example, calculate

an approximation of the diameter for each cone base by

traversing the tree bottom-up and by taking the number of

descendents into account at each step to make better use of

the available space. Jeong and Pang [71] replace the cones

with discs to reduce occlusion.
The interactive and visual aspects of cone trees are

essential to make them usable. Not only are some of the

labels at the nodes transparent, but the user can pick any

node and rotate the cone tree so that the chosen node is

brought to the front. This can either be done automatically,

by the system, or as a result of further user interaction. For

horizontal cone trees, the effect somewhat resembles

stepping through Rolodex cards arranged in multiple

levels.
Gaining more ªspaceº is not the only possible advantage

of using 3D. Because of general human familiarity with 3D

in the physical world, 3D lends itself to the creation of real-

world metaphors that should help in perceiving complex

structures. One of the earliest widespread applications is

the File System Navigator (see Fig. 10), which came with

earlier SGI Workstations until version 5 of their operating

system. The layout of the graph (a tree representing the

user's file space) is a simple planar layout. The 3D aspect

consists, on the one hand, of adding blocks on the plane

whose sizes are proportional to the file sizes and, on the

other hand, of the ability to ªflyº over the virtual landscape

created by those blocks. This cityscape approach has been

implemented in various other systems, see, for example,

SDM [24], or, more recently, the system presented by Chen

and Carr [22]. More complex 3D metaphors include the

Perspective Wall [107], which represents the data as posters

on a big wall in virtual space. VizNet [43] and Vitesse [98]

both use an idea similar to the perspective wall by mapping

objects onto the surface of a sphere with highly related

objects placed close to a selected object of interest. The Web

Book [15] displays an animated book in 3D with Web page

contents, etc. Here again, we refer to the overview of Young
[128] for further examples.

In spite of all the technical development in the area, and
their undeniably attractive features, 3D graph visualization
techniques have significant difficulties. In our view, the
main reason lies with the inherent cognitive difficulties of
3D navigation in our current systems. Perceptual and
navigational conflicts are caused by the discrepancy of
using 2D screens and 2D input devices to interact with a 3D
world, combined with missing motion and stereo cues (see
the overview of Ware and Franck [122] for how important
these cues are). Limited 3D interaction, such as the ability to
rotate an object for inspection without getting closer to it,
may provide 3D interaction that doesn't cause disorienta-
tion. If advanced VR-like systems, such as a Workbench,
CAVE, or large tiled displays are used, some of these
difficulties may be solved. However, such facilities are not
widely available and are still too expensive to serve as a
basis for most information visualization applications. When
more advanced display and interactive facilities (e.g., haptic
displays and interaction, stereo views, etc.) become more
widely available, 3D techniques may have a profound effect
in graph visualization.

2.5 Hyperbolic Layout

The hyperbolic layout of graphs (mainly trees) is one of the
new forms of graph layout which has been developed with
graph visualization and interaction in mind. The first
papers in this area are from Lamping et al. [82], [83],
followed by a series of papers by Munzner [92], [93], [94].
Both developed, for example, Web content viewers based
on these techniques. The technique has been since used by
other systems, too, see, for example, Robinson [108] or
Wilson and Bergeron [127]. Hyperbolic views, which can be
implemented in either 2D or 3D, provide a distorted view of
a tree (see Fig. 11). It resembles the effect of using fish-eye
lenses on traditional tree layouts. This distorted view makes
it possible to interact with potentially large trees, making it
suitable for real-life applications. We will come back to this

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION: A SURVEY 31

Fig. 9. A cone tree. (Courtesy of M. Hemmje, GMD, Germany [59].)

Fig. 10. The SGI File System Navigator.

distortion effect later in this survey (see Section 3.2) when
we will focus on navigation rather than layout.

Hyperbolic views represent a radically different direc-
tion in layout when compared to the algorithms described
so far, due to their different geometrical background. In
fact, some of the classical layout algorithms can be reused in
a hyperbolic setting, yielding sometimes quite different
results, as demonstrated later in this section. Hyperbolic
views are also surrounded by a sort of mystery because few
people in the information visualization community really
understand the mathematics of hyperbolic visualization.
Furthermore, it is quite difficult to reproduce the results.
Unfortunately, none of the papers are didactic enough to
reveal the mystery. We will discuss the main elements of
these layout methods further with the hope that the reader
will gain a better understanding of the technique.

Hyperbolic geometry is based on an axiomatic system
almost identical to the traditional Euclidean axioms with
the exception of one, the so-called fifth postulate. Whereas
the Euclidean postulate states that if a line does not intersect
a point, then there is only one line intersecting the point and
parallel to the original line (i.e., nonintersecting and
coplanar), in hyperbolic geometry there exists more than
one such parallel line. This alternative set of axioms results
in a perfectly consistent form of geometry, albeit different in
flavor: The traditional trigonometric equations are no
longer valid, the sum of the internal angles of a triangle is
no longer 180 degrees, etc.7 (These differences, by the way,
represent significant difficulties for implementors using
hyperbolic geometry.)

It is also possible to define a consistent model for the
hyperbolic plane (or space) within the Euclidean space,
thereby making a logical link between the two worlds. A
model in this respect means defining a subset of the

Euclidean space and the notions of ªpoints,º ªlines,º
ªintersections,º ªlengthº within this subset so that the
axioms of hyperbolic geometry would be valid locally.
Several different models were developed. The best known
are the Klein and the PoincareÂ models. The Klein model (see
Fig. 12) uses an open disc (or sphere for 3D) as a subset, i.e.,
the hyperbolic plane in this model consists of the points
within the perimeters of the disc. Hyperbolic lines are
represented by chords of the disc. Intersection is just the
Euclidean intersection. The only major difference is the
length of a line segment. We will not give a detailed
definition here. Suffice it to say that this length is defined as
a function of the position of the points vis-aÁ-vis the
perimeter of the disc: Segments which are congruent in a
hyperbolic sense are exponentially smaller in the Euclidean
sense when approaching the perimeter. To prove the local
validity of all the axioms of hyperbolic geometry requires
some nontrivial work. The validity of the negation of
Euclid's fifth postulate is quite obvious, though, just
consider the line l and the point P on the figure. The
PoincareÂ model is quite similar, although hyperbolic lines
are represented by arcs which intersect ortogonally the
perimeter of the disc.

It is now possible to give a more exact description of
what the hyperbolic graph layouts do orthogonally: They
perform a layout algorithm in the hyperbolic plane or space
and, then, display the results in the familiar Euclidean plane
or space using one of the models of hyperbolic geometry. That is,
what we see is not hyperbolic geometry per se, but its
representation in Euclidean geometry. The original paper of
Lamping et al. used the PoincareÂ model, whereas Munzner
primarily uses the Klein model. In Fig. 11, for example, the
Klein model for hyperbolic 3D space is used to display the
tree. The distortion effect referred to earlier is the result of
the exponential shrinking of congruent line segments closer
to the disc perimeter when viewed in the Euclidean space.

The different spatial nature of hyperbolic geometry
makes some rather simple layout algorithms suddenly
viable. As an example, consider the outline of the following
tree placement algorithm (see Fig. 13).8 The algorithm starts

32 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

Fig. 12. The Klein model for the hyperbolic plane. The line segment AB

and A'B' have an equal length in the hyperbolic sense.

Fig. 11. Hyperbolic view of a tree in 3D. (Courtesy of T. Munzner,

Stanford University.)

7. The interested reader might want to refer to Coxeter [25] for further
details. Also, look at the papers of Gunn [56] or Hausman et al. [57].

8. This algorithm is essentially the same as the one used in the paper of
Lamping and Rao [83].

from the root of the tree, positioning the subtrees
recursively in a circular fashion. In each step, the algorithm
determines a wedge to place a subtree. The goal is to find
wedges in such a way that no crossing would occur
between edges of different subtrees. If the point P on the
figure refers to a node, and the wedge QPR with angle � is
the one assigned to the subtree starting at P, the main step
of the algorithm is to define subwedges for the subtrees of P
(starting at P1, P2, and P3). The angle � is divided into (for
the sake of simplicity, equal) subangles, one for each
subtree. The subdivision of the original wedge results in
the radii PQ0, PQ00, etc. (see the figure). The points P1, P2, P3

are positioned in the middle of these subwedges at some
suitable distance from P. The next step is to determine the
constraining wedges for these subtrees. This can be done by
establishing parallel lines with PQ, PQ0, PQ00, starting at the
points P1, P2, P3, etc. These lines will determine the new
wedges with angles �1, �2, �3, etc., and the recursion step
can continue for each of the corresponding subtrees.
Obviously, because parallel lines are used, the children's
wedges will not overlap.

The algorithm is very naive and would lead to quite
unusable figures on the Euclidean plane. Indeed, the wedge
angles become very small after a few steps, which shrinks
the space available for the next subtree. However, if the
same algorithm is used on a hyperbolic plane, the situation
is quite different. Fig. 14 shows the same algorithm in the
Klein model. The major difference is the way the parallel
lines to PQ0, PQ00, etc., are calculated: The (hyperbolic)
parallel lines are the lines intersecting on the perimeter of
the disc of our model. The effect will be to ªopenº the
angles �1, �2, �3. To cite Lamping and Rao [83]: ªEach child
will typically get a wedge that spans about as big an angle
as does its parent's wedge.º Of course, although visible on
the Klein model, this statement has to be substantiated
through explicit formulae using the hyperbolic trigono-
metric calculations, which is quite possible. The result is a
perfectly feasible layout algorithm. It should be noted that
Munzner uses different layouts. More details on her
spherical placement can be found in one of her papers
[93], which is actually a generalization of the cone tree

algorithm described in Section 2.4. However, here again, the
placement algorithm is used in terms of hyperbolic
geometry, taking advantage of the ªlarge spaceº available
in hyperbolic space.

3 NAVIGATION AND INTERACTION

Navigation and interaction facilities are essential in in-
formation visualization. No layout algorithm alone can
overcome the problems raised by the large sizes of the
graphs occurring in the visualization applications. Further-
more, the task of revealing the structure of the graph calls
for innovative approaches.

3.1 Zoom and Pan

Zoom and pan are traditional tools in visualization. They
are quite indispensable when large graph structures are
explored. Zoom is particularly well-suited for graphs
because the graphics used to display them are usually
fairly simple (lines and simple geometric forms). This
means that zoom can, in most cases, be performed by
simply adjusting screen transformations and redraw the
screen's contents from an internal representation, rather
than zooming into the pixel image. In other words, no
aliasing problems occur.

Zooming can take on two forms. Geometric zooming
simply provides a blow up of the graph content. Semantic-
zooming means that the information content changes and
more details are shown when approaching a particular area
of the graph. The technical difficulty in this case is not with
the zooming operation itself, but rather with assigning an
appropriate level of detail, i.e., a sort of clustering, to
subgraphs. The more general problem of clustering is
addressed in Section 4.

Although conceptually simple, zoom and pan does
create problems when used in interactive environments.
Let us imagine, for example, the following setting: The
graph being displayed is the road network of Europe and
the user has zoomed into the area around Amsterdam. The
user then wants to change the view of the area around
Milano. Doing this without changing the zoom factor, at

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION: A SURVEY 33

Fig. 14. The same tree positioning algorithm on the hyperbolic plane,

using the Klein model to visualize the results.

Fig. 13. A simple tree positioning algorithm on the Euclidean plane.

least temporarily, might be too slow because the user has to
first zoom out, pan to Milano, and zoom in again.
Furthermore, the user wants the system to make the
necessary moves smoothly. A naive implementation might
calculate the necessary changes for the pan and the zoom
independently and perform the changes in parallel. The
problem is that, when zooming in, the world view expands
exponentially fast and the target point moves away faster
than the pan can keep up with. The net result is that the
target is approached nonmonotonically: It first moves away
as the zoom dominates and only later comes back to the
center of the view, which can be quite disturbing.

The zoom and pan problem is not restricted to graphs
nor is the elegant solution proposed by Furnas and
Bederson [51] to alleviate it. Nevertheless, graph visualiza-
tion systems can greatly benefit from their approach, so we
will provide a short description here. Furnas and Bederson
introduce the concept of space-scale diagrams (see Fig. 15).
The basic idea is to define an abstract space ªby creating
many copies of the original 2D picture, one at each possible
magnification, and stacking them up to form an inverted
pyramid.º Points in the original image can be represented
by rays that contain information both about the point and
its magnification. Various combinations of (continuous)
zoom and pan actions can then be described as paths in this
space by describing the central position of a window
parallel to the x±y plane. A cost, or ªlength,º can also be
associated to each path and, if the length is judiciously
chosen, a minimum length path can represent an optimal
combination of zoom and pan movements. Furnas and
Bederson not only give a solution to the problem outlined
above; space-scale diagrams can also be used to describe
semantic zooming (instead of stacking the same picture in
the pyramid, the content of the picture may depend on

the magnification level), which also allows for the
development of a specialized authoring system for
semantic zooming [52].

3.2 Focus+Context Techniques

A well-known problem with zooming is that if one zooms
on a focus, all contextual information is lost.9 Such a loss of
context can become a considerable usability obstacle. A set
of techniques that allow the user to focus on some detail
without losing the context can alleviate this problem. The
term focus+context has been used to describe these techni-
ques. They do not replace zoom and pan, but rather
complement them. The complexity of the underlying data
might make zoom an absolute necessity. However,
focus+context techniques are a good alternative and full-
blown applications systems often implement both.10

3.2.1 Fisheye Distortion

Graphical fisheye views are popular techniques for
focus+context. Fisheye views imitate the well-known fish-
eye lens effect by enlarging an area of interest and showing
other portions of the image with successively less detail (see
Fig. 16).

We will describe some of the mathematics involved in
the fisheye technique. Conceptually, the graph is mapped
onto the plane and a ªfocusº point is defined (usually by the
user). The distance from the focus to each node of the tree is
then distorted by a function h�x� and the distorted points,
and connecting edges, are displayed. The function h�x�
should be concave, mapping monotonically the [0, 1]
interval onto [0, 1] (see Fig. 17). The distortion created by
the fisheye view is the consequence of the form of the
function, which has a faster increment around 0 (hence
affecting the nodes around the focus), with the increment
slowing down when closing up to 1. The exact definition of
the function may yield a lesser or stronger distorting effect.
A simple distortion function, for example, used by Sarkar
and Brown [110], [111] is: h�x� � �d� 1�=�d� 1=x� (this is
the function plotted in Fig. 17). The factor d is the so-called
distortion factor, which can be set interactively by the user.
It should be positive; the larger it is, the stronger the fisheye
distortion. Fig. 18 shows the effect of this function (with
d � 4) on the regular grid around the origin.

There are some variations to this basic scheme. What we
have just described is usually referred to as a ªpolarº
distortion, in the sense that it applies to the nodes radially
in all directions starting from the focus point. An alternative
is to use a ªCartesianº fisheye: The distance distortion is
applied independently on the x and y directions before
establishing the final position of the node (see again Fig. 16).
Other variations are possible. Consult the overview of
Carpendale et al. [18] or Keahey and Robertson [77] for
further examples and for their visual effects. The final

34 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

Fig. 15. A space-scale diagram. The yellow rectangles represent

possible window positions in space-scale, yielding different zoom

factors and pan positions. (Adapted from Furnas and Bederson [51].)

9. Unless a separate window, for example, keeps the context visible,
which is done by several systems. But, this solution is not fully satisfactory
either.

10. All techniques described in this section are geometric, i.e., they operate
on the geometric representation of the underlying graphs. This is in contrast
with a logical focus+context view described in an often-cited paper of
Furnas [50]. In our view, the work of Furnas is more related to what we call
ªmetrics,º rather than to graphical focus+context. See Section 4.2 for further
details.

choice should depend on the style of the graph to be
explored, as well as the layout algorithm in use.

This simple but powerful technique is an important form
of navigation that complements zoom and pan. However,
implementors should be aware of one of the pitfalls. The
essence of a fisheye view is to distort the position of each
node. If the distortion is faithfully applied, the edges
connecting the nodes will also be distorted. Mathematically,
the result of this distortion is a general curve. Standard
graphics systems (e.g., X11, Java2D, OpenGL) do not offer
the necessary facilities to transform lines into these curves
easily (the curves can be rather complex). The implemen-
ter's only choice is, therefore, to approximate the original
line segments with a high number of points, transform

those points, and display a polyline to approximate the
ideal, transformed curve. The problem is that the number of
approximating points must be relatively high if a smooth
impression is desired (on average, 60 points per edge),
which leads to a prohibitively large number of calculations
and may make the responsiveness of the system sink to an
unacceptably low level. The only viable solution is to apply
the fisheye distortion on the node coordinates only and to
connect the transformed nodes by straight-line edges. The
consequence of this inexact solution is that unintended
edge-crossings might occur (see, for example, the upper left
quadrant of Fig. 16b). This is one of those typical situations
when the pragmatism required by information visualization
should prevail. If large graphs are explored, these extra
intersection points do not really matter much and it is more
important to keep the exploration tool fast.

3.2.2 Focus+Context Layout Techniques

The fisheye technique is independent of the layout algo-
rithm and is defined as a separate processing step on the
graphical layout of the graph. Interacting with fisheye
means changing the position of the focus point and/or
modifying the distortion value. This independence has
positive and negative aspects. On the positive side, it allows
for a modular organization of software in which fisheye is a
separate step in the graph rendering pipeline somewhere
between the layout module and the actual display.
Fisheye can also be significantly faster than the layout
algorithm, which is an important issue for interaction.

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION: A SURVEY 35

Fig. 16. Fisheye distortion. (a) Represents the graph without the fisheye.
(b) Uses polar fisheye, whereas (c) uses Cartesian fisheye with a
different layout of the same graph. The green dots on (b) and (c) denote
the focal points of the fisheye distortion. Note the extra edge-crossing
on (b).

Fig. 17. The Sarkar-Brown distortion function with a distortion factor 2

(red curve) and 4 (blue curve).

Fig. 18. Fisheye distortion of a regular grid of the plane. The distortion

factor is 4.

However, the fisheye distortion may destroy the aes-
thetics governing the layout algorithm. For example, as
we have seen in the previous section, it can add new and
unwanted edge-crossings.

An alternative is to build appropriate distortion possibi-
lities into the layout algorithm itself, thereby merging the
focus+context effects and the layout proper. Interacting
with the distortion would mean interacting with (some)
parameters governing the layout algorithm. The hyperbolic
layout (see Section 2.5) does just that. The hyperbolic view
of a graph, whether in 2D or 3D, produces a distorted view,
not unlike the fisheye view (see Fig. 11). The equivalent of
the focal point of the graphical fisheye view is the center of
the Euclidean circle (or sphere) which is used to ªmapº the
hyperbolic view onto the Euclidean space through either
the Klein or the PoincareÂ model. Interacting with the view
means changing the position of this center point within the
graph.

Similar effects can be achieved by using 3D techniques
(see also Section 2.4). By putting objects on 3D surfaces, for
example, the view created by the perspective or parallel
projections create a natural distortion on the 2D screen. In
the Vitesse system [98], for example, the user has only
limited 3D navigation facilities. The main goal of mapping
objects onto a sphere or an ellipsoid is indeed to achieve a
focus+context distortion. More complex surfaces (such as
3D surfaces of blended Gaussian curves) have also been
used to achieve focus+context effects (see Carpendale et al.
[17], [18]). Other 3D visualization techniques, already cited
in Section 2.4 (such as the Perspective Wall [107]), apply this
principle as well.

The hyperbolic layout is special because it is a graph
layout algorithm that was developed with the focus+con-
text distortion in mind. In fact, we do not know of any
systematic research conducted on the existing, and more
traditional, layout algorithms to decide whether such layout
dependent distortions are possible or not, and, if yes, to
exploit this feature in real systems. This is in spite of the fact
that, at least in some cases, the possibility of applying such
distortion control is clearly available. For example, Fig. 5
shows a balanced view of a tree, using a balloon layout
algorithm [87]. This algorithm defines the radii of the circles
by taking the number of descendents into account. The
algorithm can be easily directed to give one of the circles a

larger ªshareº of the display space by shrinking all the
others, thereby creating a focus+context effect on that circle
[63]. We think that such research would provide valuable
input for the implementors of graph visualization systems.

3.2.3 Further Issues in Focus+Context Techniques

There are further issues in the area of focus+context that can
be of interest, some of which could be the basis for future
research as well (a general characterization and taxonomy
of distortion techniques is also presented in Leung and
Apperly [84]). For example, fisheye is based on the choice of
a distortion function, but we presented only a simple
version here, used by Sarkar and Brown. This function can
be replaced by others with different distortion features
(arctan or tanh functions, piecewise linear approximations
to speed up processing, etc.) [44], [77], [111]. The techniques
can also be extended to 3D [19]. Also, just as we could speak
about ªsemantic zoom,º one could also refer to ªsemantic
focus+context,º meaning that, when the distortion becomes
too ªextreme,º in some sense, nodes might disappear after
all. Sarkar and Brown describe this technique in their paper
[110], but finer control over this facility might lead to new
insights as well. Note that the space-scale diagrams [51] (see
Section 3.1) can also be used to model fisheye distortions,
which may lead to interesting results in combining
(semantic) fisheye with zoom and pan. Finally, multifocal
focus+context methods can also be applied [18], [76], [77],
allowing the user to simultaneously concentrate on several
important areas of the graph or to use the system in a
cooperative environment [98].

An interesting example that combines various techni-
ques, including multifocal zoom and focus+context, is
provided by Schaffer et al. [112]. Their system also shows
the fundamental importance of clustering, which we
address in Section 4. They consider graphs that already
have a hierarchical clustering. The lefthand side of Fig. 19
shows a drawing of the initial graph. The dotted rectangles
denote the logical clusters (they appear on the figure only
for the sake of the explanation; they would not necessarily
appear on a real screen). The righthand side of the same
figure shows the same graph after a multifocal zoom/
fisheye action on clusters A and D. These clusters are now
bigger, while the other clusters have shrunk. Moreover,
cluster C has disappeared as a result of a sort of a ªsemantic
fisheyeº action on the graph. Schaffer et al. describe the

36 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

Fig. 19. Multifocal fisheye/zoom in a hierarchically clustered graph. The dotted rectangles denote the (logical) clusters. Note the disappearance of

cluster C on the righthand side. (Adapted from Schaffer et al. [112].)

mathematics of distortion and shrinking used to achieve
these results. Similar ideas can also be found in the DA±TU
system of Huang and Eades [70]. However, much remains
to be done in combining these different approaches to
achieve a coherent set of navigation techniques.

3.3 Incremental Exploration and Navigation

We have emphasized several times that the size of the
graph is a major problem in graph visualization applica-
tions. There are cases when this size is so huge that it
becomes impossible to handle the full graph at any time; the
World Wide Web is an obvious example. Incremental
exploration techniques are good candidates for such situa-
tions. The system displays only a small portion of the full
graph and other parts of the graph are displayed as needed.
The advantage of such an incremental approach is that, at
any given time, the subgraph to be shown on the screen
may be limited in size, hence, the layout and interaction
times may not be critical any more. This approach to graph
exploration is still relatively new, but interesting results in
the area are already available, see, for example [14], [40],
[68], [69], [99], [130].

Incremental exploration means that the system places a
visible ªwindowº on the graph, somewhat similar to what
pan does. Exploration means to move this window (also
referred to as logical frames by Huang et al. [68]) along some
trajectory (see Fig. 20). Implementation of such incremental
exploration has essentially two aspects, namely:

. decide on a strategy to generate new logical frames

. reposition the content of the logical frame after each
change.

Generating new logical frames is always under the control
of the user. In some cases, the logical frame simply contains
the nodes visited so far. This is the case, for example, in the
NESTOR tool, implemented by Zeiliger [130], which uses
incremental exploration to record a history of the user's
surfing the World Wide Web: Newly accessed web pages
are simply added to the logical frame to generate a new one.
Huang et al. [68] (who also implemented a tool along the
same lines to explore the World Wide Web [69]) anticipate
the user's future interaction by adding not only a new node
to a frame, but also its immediate neighbors. Huang et al.

[68] or North [99] also include a control over throwing away
some part of the logical frame to avoid saturation on the
screen.

As far as the repositioning is concerned, the simplest
solution is to use the same layout algorithm for each logical
frame. This is done, for example, by Huang et al. [68]. (Note
that the latter use a modified spring algorithm. This is one
case where the relatively small graph on the screen makes
the use of a force-directed method perfectly feasible in
graph visualization.) North [99] and Brandes and Wagner
[14] go further by providing dynamic control over the
parameters that direct the layout algorithms.

As said above, this line of visual graph management is
still quite new, but we think that it will gain in importance
in the years to come and that it will complement the
navigation and exploration methods described elsewhere in
this survey.

4 CLUSTERING

As mentioned earlier, it is often advantageous to reduce the
number of visible elements being viewed. Limiting the
number of visual elements to be displayed both improves
the clarity and simultaneously increases performance of
layout and rendering [78]. Various ªabstractionº and
ªreductionº techniques have been applied by researchers
in order to reduce the visual complexity of a graph. One
approach is to perform clustering.

Clustering is the process of discovering groupings or
classes in data based on a chosen semantics. Clustering
techniques have been referred to in the literature as cluster
analysis, grouping, clumping, classification, and unsupervised
pattern recognition [41], [89]. We will refer to clustering that
uses only structural information about the graph as
structure-based clustering (also referred to as identifying
natural clusters [109]). The use of the semantic data
associated with the graph elements to perform clustering
could be termed content-based clustering.

Although content-based clustering can yield groupings
which are most appropriate for a particular application and
can even be combined with structure-based clustering, most
mentions of clustering in graph visualization are references
to purely structure-based clustering, with a few notable
exceptions [91], [105]. This is probably due to the fact that
content-based clustering requires application-specific data
and knowledge. Any application which implements con-
tent-based clustering is likely to be so specialized to a
problem domain that it is no longer general enough for use
in other application areas. Furthermore, an advantage of
using structure-based clustering is that natural clusters
often retain the structure of the original graph, which can be
useful for user orientation in the graph itself.

It is important to note that clustering can be used to
accomplish functions such as filtering and search. In
visualization terms, filtering usually refers to the deem-
phasis or removal of elements from the view, while search
usually refers to the emphasis of an element or group of
elements. Both filtering and search can be accomplished by
partitioning elements into two or more groups and, then,
emphasizing one of the groups.

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION: A SURVEY 37

Fig. 20. Exploration of a huge graph. (Adapted from Huang et al. [69].)

By far the most common clustering approach in graph
visualization is to find clusters which are disjoint or
mutually exclusive, as opposed to clusters that overlap
(found by a process called clumping). Disjoint clusters are
simpler to navigate than overlapping clusters because a
visit of the clusters only visits the members once. It should
be noted, however, that it is not always possible to find
disjoint clusters, such as in the case of language-oriented or
semantic topologies.

A common technique for finding natural clusters is to
choose the clustering with the least number of edges
between members. This technique is described by Mirkin
[89]. It is also known as the Ratio Cut technique in VLSI
design [124]. This technique extends to the case when edges
have a weight. The task is then to minimize the total weight
of the edges connecting members [109]. Natural clusters can
also be obtained by applying a spring model (see below).

4.1 Layout of a Clustered Graph

After discovering clusters within the data, we can reduce
the number of elements to display by restricting our view to
the clusters themselves. This provides an overview of the
structure and allows us to retain a context while reducing
visual complexity. Looking at the simpler and smaller
clustered graph, the user should be better able to grasp the
overall structure of the graph. Most algorithms look for a
balance between the number of clusters and the number of
nodes within clusters [1], [31]. A small number of clusters
allows for fast processing and navigation. However, this
number should not be too small because, otherwise, the
visible information content is too low.

A common technique is to represent the clusters with
glyphs and treat them as super-nodes in a higher-level or
compound graph, which we can now navigate instead of the
original graph. Some approaches have already been
proposed [37], [112]. Huang and Eades [70] also give a
precise definition of how edges between super-nodes can be
induced (they refer to this idea as abridgement). This
technique has also been implicitly implemented in many
other visualization systems. One original solution is to omit
the edges and position the nodes in a way that indicates

their connectivity [126]. This solution eliminates the
problem of edge-crossings and reduces visual clutter.

If clustering is performed by successively applying the
same clustering process to groups discovered by a previous
clustering operation, the process is referred to as hierarchical
clustering [89]. A containment hierarchy will result from
hierarchical clustering and this may be navigated as a tree,
with each cluster represented as a node in the tree (see
Fig. 21). Hierarchical clustering can therefore be used to
induce a hierarchy in a graph structure that might not
otherwise have a hierarchical structure.

The approaches discussed until now involve first finding
logical clusters, then laying out the graph of clusters. A
completely different approach to clustering is based on
force-directed layout. It lets forces between nodes influence
the position of the node in the layout. All nodes in the
system exert repulsive force on the others and related nodes
are attracted to each other. After several iterations in which
the positions are adjusted according to the calculated force,
the system stabilizes, yielding clusters which are visually
apparent. In a case study of Narcissus [60], the authors
report that this technique can produce useful clusters in a
relatively small number of iterations. As with other N-body
problems, the complexity is O�N3�. Another example of
clustering by layout is described for the SemNet system
[42], where clustering is accomplished by using semantic
information to determine the positioning of nodes.

4.2 Node Metrics for Clustering

In order to cluster a graph, we must use numerical
measures associated with the nodes. A node metric can be
used to measure or to quantify an abstract feature
associated with a node in order to compare it with others
of the same type and acquire a ranking. A metric can be
implemented as a numeric computable function. Clustering
can be accomplished by assigning elements to groups
according to their metric value. Metrics can also be used to
implement search or filtering in which elements with a
certain metric value or a value above a threshold are
highlighted.

The term metric, or node metric, has been used in many
different ways in graph visualization. In this survey, we
will use the term to refer to a measure that is associated with a
node in the graph. We have identified the concept of node
metrics in several places in the literature [11], [50], [61], [78].
Of course, similar concepts can be applied to metrics
associated with edges.

A metric is structure-based if it only uses information
about the structure of the graph. A metric is content-based if
it uses information or data associated with the node such as
text. The advantage of a structural metric is that no domain
knowledge is required. This makes a structural metric
useful for all applications. It is possible, of course, to
combine structural and content-based metrics for more
powerful effects. A simple approach is to allow the user to
add an application-specific ªweightº to the nodes, which is
then combined with the structural metric [50], [61], [62].

An example of a structural metric is the degree of a
node (i.e., the number of edges connected to the node).
With such a metric, the application could exclusively
display the nodes with a degree higher than or equal to a

38 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

Fig. 21. A structure induced by hierarchical clustering. (Adapted from

Eades and Feng [37].)

threshold value. This would give a view of data which

shows the nodes that have the largest number of relations

with other nodes. A metric more specific to trees (called

the Strahler metric [120]) has been applied in Fig. 22, in

which nodes with the highest Strahler metric values

generate a skeleton or backbone which is then emphasized

(see Herman et al. [61], [62]).
Metrics can also be composed due to their numeric

nature [62]. By choosing, for example, the weighted average

of metrics, the user can choose how much influence a

particular feature has on the resulting composed metric and

thereby influence the resulting clustering. The Degree of

Interest (DOI) function of Furnas [50] is also an example of a

metric that is composed of two other metrics (in this case, a

metric based on distance and a level of detail).
Node metrics can be used for many different purposes

and, in our view, all the possible applications have not yet

been fully explored. For instance, metrics can also be used

to govern a spanning tree extraction procedure (see

Section 2.3). Furnas's DOI function has been used to

generate a focus+context view of the graph.11 In another

application, metrics are used to influence layout [127].
Once a subset of nodes has been selected, as with a

skeleton, a method of representing the unselected nodes

must be chosen. In the case of clustering, the selected set of

nodes is the set of super-nodes or the groups themselves.

Kimelman et al. name three possible approaches [78] (see

Fig. 22):

. Ghosting: deemphasizing nodes, or relegating nodes
to the background.

. Hiding: simply not displaying the unselected nodes.
This is also referred to as folding or eliding.

. Grouping: grouping nodes under a new super-node
representation.

These approaches may be combined, for example, with

clusters represented by transparent super-nodes used by

Sprenger et al. [116] in the IVORY system. Fig. 22c

demonstrates an alternative where the size and the shape

of the glyph representing the grouping is used to indicate

the structure of the underlying subgraph. The resulting

graph, technically a compound graph, is a sort of high-level

map or schematic view [23], [62] of the original graph, which

is useful for navigation of the original graph.
Clustering is full of challenges and is applied in many

different fields, which has the unfortunate consequence that

results about clustering are disseminated in journals and

conferences addressing very different topics. This makes it

difficult to gather the results into a unified theory or into a

structured set of methodologies. Surprisingly, the book by

Battista et al. [5] does not include a chapter on clustering,

although the Graph Drawing Symposia welcomes papers

on the topic every year. Our feeling is that this issue should

receive more attention in the future, especially from the

information visualization community.

5 SYSTEMS

The area of graph visualization has reached a level of

maturity in which large applications and application

frameworks are being developed. However, it is difficult

to enumerate all the systems because of the sheer quantity.

Furthermore, some of them have a short lifetime because

they are research tools and others are embedded in

specialized applications. An overview of all graph visuali-

zation systems would go beyond the scope of this survey.

However, we have already referred to a number of systems

in earlier sections, based on features that we found

interesting or important. Some other systems also caught

our attention. Without any claim to completeness, we

briefly describe a few additional systems below.
Efforts to develop software libraries and frameworks

have been underway in several places. Some libraries are

directed at mathematicians and include large libraries of

algorithms, while others are meant for more general

application. Some of the libraries and frameworks that are

available are GTL [45], LINK [8], GFC [21], GDT [55], and

GVF [64]. Although there is no widely used standard for

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION: A SURVEY 39

Fig. 22. Different schematic views of a tree: (a) ghosting, (b) hiding, and

(c) grouping.

11. As mentioned earlier, although Furnas referred to this technique as
ªfish-eye,º his technique is not limited to fish-eye in the geometric sense, as
described in Section 3.2.1.

graph description formats, GML [66] and GraphXML [65]

are available.
SemNet [42] is one of the few systems to provide graph

editing while still providing a comprehensive set of tools to

visualize large graphs. It is also one of the earliest complete

systems that we know about.
Clustering has been applied by many older systems

such as SemNet [42], Narcissus [60], SKETCH [118], and the

Navigational View Builder [91]. Some newer systems that

cluster graphs are NicheWorks [126], DA±TU [70], STAR-

LIGHT [105], and a new system used by Bell Laboratories

[58] for network visualization.
NicheWorks is an example of a complete system

implementation that can be adapted for very specific

applications. As an example, it has been used to visualize

Y2K related problems [39]. The fsviz system of CarrieÁre and

Kazman [20], the da Vinci system of the University of

Bremen [48], or the Latour system developed at CWI [63]

fall into the same category. We should also mention the

company called Tom Sawyer Software,12 which offers a

number of products based on various graph drawing

techniques.
A few systems stand out because of unique features. The

STARLIGHT [105] system performs content-based cluster-

ing and allows multiple mappings and layouts. It is one of

the few systems that allows a 3D graph to be mapped to

locations on a plane (for associating nodes or entire graphs

with geographical positions). Shiozawa et al. [114] use a

similar type of 3D to 2D mapping in order to view cell

dependencies in a spreadsheet application. Another system,

SDM [24] is unique because of a method of filtering in

which nodes of interest are selected from a cityscape view

by a plane above them. A similar cityscape view of nodes is

used by Chen and Carr [22]. A system called WebPath [46]

uses a fog effect in a 3D rendering of web history to limit the

window of viewing. Graphs have also been used in an

attempt to understand images and the transformations on

them, where edges represent operations [85]. A system for

viewing Bayesian Belief Networks [129] is one of a unique

few (including [8], [63]) to employ animation for informa-

tive purposes. A highly interactive system called Constella-

tion [95] has sophisticated zooming and highlighting

features that facilitate the analysis of linguistic networks.
The World Wide Web is one of the typical application

areas where graph visualization may play an important role

in the future. H3View [93], based on hyperbolic viewing

(see Section 2.5), is part of a Web site management tool of

SGI, whereas the similar ideas of Lamping et al. [82], [83]

are also exploited by a commercial spin-off of Xerox, called

Inxight.13 Earlier in this survey, we referred to NESTOR [1]

or WebOFDAV [69], which can be used as web navigation

tools. Other examples in this category are the Harmony

Browser [1], Mapa [32], or Fetuccino [7] (the latter also

combines the results of a web search engine with graph

visualization).

6 JOURNALS AND CONFERENCES

This survey is based on an extensive literature overview

drawn from various conferences and journals. One of the

difficulties of the field is that results are spread over a large

number of different publications. To help the reader in

pursuing research in the area, we list here some of the main

publications which may be of interest:

. The Graph Drawing Symposia are organized yearly at
various locations in the World. The proceedings are
published by Springer-Verlag. These symposia have
evolved into the traditional meeting places of the
graph drawing community.

. The new Journal of Graph Algorithms and Applications
(JGAA) is an on-line journal which gathers a similar
community as the graph drawing symposia. The
home page of the journal is at Brown University,14

but Oxford University Press will also publish the
collected papers in book formats.

. Graph drawing has strong relationships with
computational geometry and algorithms. As a
consequence, specialized journals like Computa-
tional Geometry: Theory and Applications or Algor-
ithmica might also be a valuable source, although
the papers in these journals tend to be much more
ªmathematicalº, hence, more difficult to read for
the computer graphics and information visualiza-
tion communities.

. As said before, the yearly CHI'XX and UIST'XX
conferences, both sponsored by ACM SIGCHI, often
contain important papers for information visualiza-
tion due to the importance of the user interface issue.
Similarly, the ACM Transactions on Human Computer
Interaction can be a valuable source of information.

. The yearly InfoViz'XX symposia form a separate
track within the well-known IEEE Visualization
conference. These symposia, as well as the Visuali-
zation conference itself, have become one of the
leading events in the area by now.

. Somewhat confusingly, there is also a yearly IEEE
Conference on Information Visualization which, how-
ever, has no real connection to the InfoViz'XX
symposia (besides being sponsored by IEEE, too).
Our own experience is that the academic level of
InfoViz'XX is somewhat better.

. What was known before as the series of Eurographics
Workshop on Scientific Computing'XX has recently
changed its name to Data Visualization'XX, with
information visualization as a separate track. The
workshops have become joint Eurographics IEEE
TCVG symposia and are considered as the European
ªsisterº conference to IEEE Visualization.

. Some traditional computer graphics journals, like
the IEEE Transactions on Visualization and Computer
Graphics or the Computer Graphics Forum (which
include the proceedings of the Eurographics con-
ferences, too), have an increasing number of papers
in information visualization.

40 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

12. http://www.tomsawyer.com.
13. http://www.inxight.com. 14. http://www.cs.brown.edu/publications/jgaa.

. Finally, application-oriented journals or conference
proceedings may also include papers on information
visualization related to their respective application
area. Examples include the proceedings of the yearly
XXth World Wide Web or the Digital Library'XX
conferences.

Obviously, the list is not exhaustive, but, hopefully, it is still

useful for the reader as a starting point.

REFERENCES

[1] C.J. Alpert and A.B. Kahng, ªRecent Developments in Netlist
Partitioning: A Survey,º Integration: The VLSI J., vol. 19, pp. 1-81,
1995.

[2] K. Andrews, ªVisualizing Cyberspace: Information Visualization
in the Harmony Internet Browser,º Proc. IEEE Symp. Information
Visualization (InfoViz '95), pp. 97-105, 1995.

[3] P.K. Argawal, B. Aronov, J. Pach, R. Pollack, and M. Sharir,
ªQuasi-Planar Graphs Have a Linear Number of Edges,º Proc.
Symp. Graph Drawing, GD '95, pp. 1-7, 1995.

[4] G. di Battista, P. Eades, R. Tamassia, and I.G. Tollis, ªAlgorithms
for Drawing Graphs: An Annotated Bibliography,º Computational
Geometry: Theory and Applications, vol. 4, no. 5, pp. 235-282, 1994.

[5] G. di Battista, P. Eades, R. Tamassia, and I.G. Tollis, Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice Hall,
1999.

[6] R.A. Becker, S.G. Eick, and A.R. Wilks, ªVisualizing Network
Data,º IEEE Trans. Visualization and Computer Graphics, vol. 1, no. 1,
pp. 16-28, 1995.

[7] I. Ben-Shaul, M. Herscovici, M. Jacovi, Y.S. Maarek, D. Pelleg, M.
Shtalhaim, V. Soroka, and S. Ur, ªAdding Support for Dynamic
and Focused Search with Fetuccino,º Proc. Eighth Int'l World Wide
Web Conf., pp. 575-587, 1999.

[8] J. Berry, N. Dean, M. Goldberg, G. Shannon, and S. Skiena, ªGraph
Drawing and Manipulation with LINK,º Proc. Symp. Graph
Drawing GD '97, pp. 425-437, 1999.

[9] F. Bertault, ªA Force-Directed Algorithm that Preserves Edge
Crossing Properties,º Proc. Symp. Graph Drawing, GD '99, pp. 351-
358, 1999.

[10] J. Blythe, C. McGrah, and D. Krackhardt, ªThe Effect of Graph
Layout on Inference from Social Network Data,º Proc. Symp. Graph
Drawing, GD '95, pp. 40-51, 1995.

[11] R.A. Botafogo, E. Rivlin, and B. Schneiderman, ªStructural
Analysis of Hypertexts: Identifying Hierarchies and Useful
Metrics,º ACM Trans. Information Systems, vol. 10, no. 2, 1992.

[12] F.J. Brandenburg, M. Himsolt, and C. Rohrer, ªAn Experimental
Comparison of Force-Directed and Randomized Graph Drawing
Algorithms,º Proc. Symp. Graph Drawing GD '95, 1996.

[13] U. Brandes, G. Shubina, and R. Tamassia, ªImproving Angular
Resolution in Visualizations of Geographic Networks,º Data
Visualization '2000, Proc. Joint Eurographics and IEEE TCVG Symp.
Visualization, to appear.

[14] U. Brandes and D. Wagner, ªA Bayesian Paradigm for Dynamic
Graph Layout,º Proc. Symp. Graph Drawing GD '97, pp. 236-247,
1997.

[15] S.K. Card, G.G. Robertson, and W. York, ªThe WebBook and the
Web Forager: An Information Workspace for the World Wide
Web.º Human Factors in Computer Systems, CHI '96 Conf. Proc.,
pp. 111-117, 1996.

[16] Readings in Information Visualization, S.K. Card, J.D. Mackinlay,
and B. Shneiderman, eds. Morgan Kaufmann, 1999.

[17] M.S.T. Carpendale, D.J. Cowperthwaite, and F.D. Fracchia, ª3D
Pliable Surfaces,º Proc. UIST '95 Symp., pp. 217-266, 1995.

[18] M.S.T. Carpendale, D.J. Cowperthwaite, F.D. Fracchica, and T.
Shermer, ªGraph Folding: Extending Detail and Context Viewing
into a Tool for Subgraph Comparisons,º Proc. Symp. Graph
Drawing GD '95, pp. 127-139, 1996.

[19] M.S.T. Carpendale, D.J. Cowperthwaite, and F.D. Fracchia,
ªExtending Distortion Viewing from 2D to 3D,º IEEE Computer
Graphics and Applications, vol. 17, no. 4, pp. 42-51, 1997.

[20] J. CarrieÁre and R. Kazman, ªResearch Report: Interacting with
Huge Hierarchies: Beyond Cone Trees,º Proc. IEEE Conf. Informa-
tion Visualization `95, pp. 74-81, 1995.

[21] C.L. Cesar, Graph Foundation Classes for Java. IBM, http://
www.alphaWorks.ibm.com/tech/gfc, 1999.

[22] C. Chen and L. Carr, ªVisualizing the Evolution of a Subject
Domain: A Case Study,º Proc. IEEE Visualization '99 Conf., pp. 449-
452, 1999.

[23] M.C. Chuah, ªDynamic Aggregation with Circular Visual De-
signs,º Proc. IEEE Symp. Information Visualization (InfoViz '98),
pp. 30-37, 1998.

[24] M.C. Chuah, S.F. Roth, J. Mattis, and J. Kolojejchick, ªSDM:
Malleable Information Graphics,º Proc. IEEE Symp. Information
Visualization, pp. 36-42, 1995.

[25] H.S.M. Coxeter, Introduction to Geometry. John Wiley & Sons, 1973.
[26] I.F. Cruz and R. Tamassia, ªOnline Tutorial on Graph Drawing,º

http://www.cs.brown.edu/people/rt/papers/gd-tutorial/gd-
constraints.pdf. year?

[27] I.F. Cruz and J.P. Twarog, ª3D Graph Drawing with Simulated
Annealing,º Proc. Symp. Graph Drawing GD '95, pp. 162-165, 1995.

[28] R. Davidson and D. Harel, ªDrawing Graphs Nicely Using
Simulated Annealing,º ACM Trans. Graphics, vol. 15, no. 4,
pp. 301-331, 1996.

[29] E. Dengler and W. Cowan, ªHuman Perception of Laid-Out
Graphs,º Proc. Symp. Graph Drawing GD '98, pp. 441-444, 1998.

[30] A. Denise, M. Vasconcellos, and D.J.A. Welsh, ªThe Random
Planar Graph,º Congressus Numerantium, vol. 113, pp. 61-79, 1996.

[31] C.A. Duncan, M.T. Goodrich, and S.G. Kobourov, ªBalanced
Aspect Trees and Their Use for Drawing Very Large Graphs,º
Proc. Symp. Graph Drawing GD '98, pp. 111-124, 1998.

[32] D. Durand and P. Kahn, ªMAPA,º Proc. Ninth ACM Conf.
Hypertext and Hypermedia (Hypertext '98), 1998.

[33] P. Eades, ªA Heuristic for Graph Drawing,º Congressus Numer-
antium, vol. 42, pp. 149-160, 1984.

[34] P. Eades and K. Sugiyama, ªHow to Draw a Directed Graph,º
J. Information Processing, vol. 13, no. 4, pp. 424-434, 1990.

[35] P. Eades, ªDrawing Free Trees,º Bulletin of the Inst. for Combina-
torics and Its Applications, pp. 10-36, 1992.

[36] P. Eades and S.H. Whitesides, ªDrawing Graphs in Two Layers,º
Theoretical Computer Science, vol. 131, no. 2, pp. 361-374, 1994.

[37] P. Eades and Q.-W. Feng, ªMultilevel Visualization of Clustered
Graphs,º Proc. Symp. Graph Drawing GD '96, pp. 101-112, 1997.

[38] P. Eades, M.E. Houle, and R. Webber, ªFinding the Best
Viewpoints for Three-Dimensional Graph Drawings,º Proc. Symp.
Graph Drawing GD '97, pp. 87-98, 1998.

[39] S.G. Eick, ªA Visualization Tool for Y2K,º Computer, vol. 31, no. 10,
pp. 63-69, 1998.

[40] J. Eklund, J. Sawers, and R. Zeiliger, ªNESTOR Navigator: A Tool
for the Collaborative Construction of Knowledge through Con-
structive Navigation,º Proc. Ausweb '99, Fifth Australian World Wide
Web Conf., 1999.

[41] B. Everitt, Cluster Analysis, first ed. Heinemann Educational Books
Ltd., 1974.

[42] K.M. Fairchild, S.E. Poltrock, G.W. Furnas, ªSemNet: Three-
Dimensional Representation of Large Knowledge Bases,º Cogni-
tive Science and Its Applications for Human-Computer Interaction,
pp. 201-233, Lawrence Erlbaum Assoc., 1988.

[43] K.M. Fairchild, ªInformation Management Using Virtual Reality-
Based Visualisations,º Virtual Reality: Application and Explorations,
Academic Press, 1993.

[44] A. Formella and J. Keller, ªGeneralized Fisheye Views of Graphs,º
Proc. Symp. Graph Drawing GD '95, pp. 242-253, 1995.

[45] M. Forster, A. Pick, and M. Raitner, Graph Template Library, Univ.
of Passau, http://infosun.fmi.uni-passau.de/GTL/, 1999.

[46] E. FreÂcon and G. Smith, ªWebPathÐA Three Dimensional Web
History,º Proc. IEEE Symp. Information Visualization (InfoViz '98),
1998.

[47] A. Frick, A. Ludwig, and H. Mehldau, ªA Fast Adaptive Layout
Algorithm for Undirected Graphs,º Proc. Symp. Graph Drawing GD
'93, pp. 389-403, 1994.

[48] M. FroÈhlich and M. Werner, ªDemonstration of the Interactive
Graph Visualization System da Vinci,º Proc. DIMACS Workshop
Graph Drawing '94, 1995.

[49] T.M.J. Fruchterman and E.M. Reingold, ªGraph Drawing by
Force-Directed Placement,º SoftwareÐPractice & Experience, vol. 21,
pp. 1,129-1,164, 1991.

[50] G.W. Furnas, ªGeneralized Fisheye Views,º Human Factors in
Computing Systems, CHI '86 Conf. Proc., pp. 16-23, 1986.

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION: A SURVEY 41

[51] G.W. Furnas and B.B. Bederson, ªSpace-Scale Diagrams: Under-
standing Multiscale Interfaces,º Human Factors in Computing
Systems, CHI '95 Conf. Proc., pp. 234-241, 1995.

[52] G.W. Furnas and X. Zhang, ªMuSE: A Multi-Scale Editor,º Proc.
UIST '98 Symp., 1998.

[53] M.R. Garey and D.S. Johnson, ªCrossing Number is NP-
Complete,º SIAM J. Algebraic and Discrete Methods, vol. 4, no. 3,
pp. 312-316, 1983.

[54] A. Garg and R. Tamassia, ªOn the Computational Complexity of
Upward and Rectilinear Planarity Testing,º Proc. Symp. Graph
Drawing, GD '95, pp. 286-297, 1995.

[55] Graph Drawing Toolkit. Third Univ. of Rome, http://www.dia.
uniroma3.it/~gdt/, 1999.

[56] C. Gunn, ªVisualizing Hyperbolic Space,º Proc. Eurographics
Workshop Computer Graphics and Math., pp. 299-313, 1992.

[57] B. Hausmann, B. Slopianka, and H.-P. Seidel, ªExploring Plane
Hyperbolic Geometry,º Proc. Workshop Visualization and Math.,
pp. 21-36, 1998.

[58] T. He, ªInternet-Based Front-End to Network Simulator,º Data
Visualization '99, Proc. Joint Eurographics and IEEE TCVG Symp.
Visualization, pp. 247-252, 1999.

[59] M. Hemmje, C. Kunkel, and A. Willet, ªLyberWorldÐA Visua-
lization User Interface Supporting Fulltext Retrieval,º Proc. ACM
SIGIR '94, 1994.

[60] R.J. Hendley, N.S. Drew, A.M. Wood, and R. Beale, ªNarcissus:
Visualising Information,º Proc. IEEE Symp. Information Visualiza-
tion, pp. 90-96, 1995.

[61] I. Herman, M. Delest, and G. MelancËon, ªTree Visualization and
Navigation Clues for Information Visualization,º Computer
Graphics Forum, vol. 17, no. 2, pp. 153-165, 1998.

[62] I. Herman, M.S. Marshall, G. MelancËon, D.J. Duke, M. Delest, and
J.-P. Domenger, ªSkeletal Images as Visual Cues in Graphs
Visualization,º Data Visualization '99, Proc. Joint Eurographics and
IEEE TCVG Symp. Visualization, pp. 13-22, 1999.

[63] I. Herman, G. MelancËon, M.M. de Ruiter, and M. Delest,
ªLatourÐA Tree Visualization System,º Proc. Symp. Graph
Drawing GD '99, pp. 392-399, 1999. A more detailed version in:
Reports of the Centre for Math. and Computer Sciences, Report
number INS-R9904, available at: http://www.cwi.nl/InfoVisu/
papers/LatourOverview.pdf, 1999.

[64] I. Herman, M.S. Marshall, and G. MelancËon, ªAn Object-Oriented
Design for Graph Visualization,º Reports of the Centre for Math. and
Computer Sciences, Report no. INS-R0001, available at: http://
www.cwi.nl/InfoVisu/GVF/GVF.pdf, 2000.

[65] I. Herman and M.S. Marshall, ªGraphXML,º Reports of the Centre
for Math. and Computer Sciences, available at: http://www.cwi.nl/
InfoVisu/GVF/GraphXML/GraphXML.pdf, 1999.

[66] M. Himsolt, GMLÐGraph Modelling Language, Univ. of Passau,
http://infosun.fmi.uni-passau.de/Graphlet/GML/, 1997.

[67] J. Hopcroft and R.E. Tarjan, ªEfficient Planarity Testing,º J. ACM,
vol. 21, no. 4, pp. 549-568, 1974.

[68] M.L. Huang, P. Eades, and J. Wang, ªOnline Animated Graph
Drawing Using a Modified Spring Algorithm,º J. Visual Languages
and Computing, vol. 9, no. 6, 1998.

[69] M.L. Huang, P. Eades, and R.F. Cohen, ªWebOFDAVÐNavigat-
ing and Visualizing the Web On-Line with Animated Context
Swapping,º Proc. Seventh World Wide Web Conf., pp. 636-638, 1998.

[70] M.L. Huang and P. Eades, ªA Fully Animated Interactive System
for Clustering and Navigating Huge Graphs,º Proc. Symp. Graph
Drawing GD '98, pp. 374-383, 1998.

[71] C.-S. Jeong and A. Pang, ªReconfigurable Disc Trees for
Visualizing Large Hierarchical Information Spaceº Proc. IEEE
Symp. Information Visualization (InfoViz '98), 1998.

[72] B. Johnson and B. Schneiderman, ªTree-Maps: A Space-Filling
Approach to the Visualization of Hierarchical Information
Structures,º Proc. IEEE Visualization '91, pp. 275-282, 1991.

[73] M. Juenger and P. Mutzel, ª2-Layer Straightline Crossing
Minimization: Performance of Exact and Heuristic Algorithms,º
J. Graph Algorithms and Applications, vol. 1, pp. 33-59, 1997.

[74] D. Jungnickel, Graphs, Networks and Algorithms. Springer Verlag,
1999.

[75] T. Kamada and S. Kawai, ªAn Algorithm for Drawing General
Undirected Graphs,º Information Processing Letters, vol. 31, pp. 7-
15, 1989.

[76] K. Kaugars, J. Reinfelds, and A. Brazma, ªA Simple Algorithm for
Drawing Large Graphs on Small Screens,º Proc. Symp. Graph
Drawing GD '94, pp. 278-281, 1995.

[77] T.A. Keahey and E.L. Robertson, ªTechniques for Non-Linear
Magnification Transformations,º Proc. IEEE Symp. Information
Visualization (InfoViz '97), pp. 38-45, 1997.

[78] D. Kimelman, B. Leban, T. Roth, and D. Zernik, ªReduction of
Visual Complexity in Dynamic Graphs,º Proc. Symp. Graph
Drawing GD '93, 1994.

[79] M.R. Laguna, R. MartõÂ, and V. Vals, ªArc Crossing Minimization
in Hierarchical Digraphs with Tabu Search,º Computers and
Operations Research, vol. 24, no. 12, pp. 1,165-1,186, 1997.

[80] M. Laguna and R. MartõÂ, ªGRASP and Path Relinking for 2-Layer
Straight Line Crossing Minimization,º INFORMS J. Computing,
vol. 11, pp. 44-52, 1999.

[81] M. Laguna and R. MartõÂ, ªHeuristics and Meta-Heuristics for 2-
Layer Straight Line Crossing Minimization,º URL: http://www-
bus.colorado.edu/Faculty/Laguna/, 1999.

[82] J. Lamping, R. Rao, and P. Pirolli, ªA Focus+context Technique
Based on Hyperbolic Geometry for Visualizing Large Hierar-
chies,º Human Factors in Computing Systems, CHI '95 Conf. Proc.,
1995.

[83] J. Lamping and R. Rao, ªThe Hyperbolic Browser: A Focus+con-
text Technique for Visualizing Large Hierarchies,º J. Visual
Languages and Computing, vol. 7, no. 1, pp. 33-55, 1996.

[84] Y.K. Leung and M.D. Apperly, ªA Review and Taxonomy of
Distortion-Oriented Presentation Techniques,º ACM Trans. Com-
puter-Human Interaction, vol. 1, no. 2, pp. 126-160, 1994.

[85] K.L. Ma, ªImage GraphsÐA Novel Approach to Visual Data
Exploration,º Proc. IEEE Visualization '99, pp. 81-88, 1999.

[86] M. McGrath, J. Blythe, and D. Krackhardt, ªThe Effect of Spatial
Arrangement on Judgments and Errors in Interpreting Graphs,º
Social Networks, vol. 19, no. 3, pp. 223-242, 1997.

[87] G. MelancËon and I. Herman, ªCircular Drawings of Rooted
Trees,º Reports of the Centre for Math. and Computer Sciences, report
number INS±9817, available at: http://www.cwi.nl/InfoVisu/
papers/circular.pdf, 1998.

[88] K. Mehlhorn and P. Mutzel, ªOn the Embedding Phase of the
Hopcroft and Tarjan Planarity Testing Algorithm,º Algorithmica,
vol. 16, pp. 233-242, 1996.

[89] B. Mirkin, Mathematical Classification and Clustering. Kluwer
Academic, 1996.

[90] K. Misue, P. Eades, W. Lai, and K. Sugiyama, ªLayout Adjustment
and the Mental Map,º J. Visual Languages and Computing, vol. 6,
pp. 183-210, 1995.

[91] S. Mukherjea, J.D. Foley, and S. Hudson, ªVisualizing Complex
Hypermedia Networks through Multiple Hierarchical Views,º
Human Factors in Computing Systems, CHI '95 Conf. Proc., pp. 331-
337, 1995.

[92] T. Munzner and P. Burchard, ªVisualizing the Structure of the
World Wide Web in 3D Hyperbolic Space,º Proc. VRML '95 Symp.,
1995.

[93] T. Munzner, ªH3: Laying Out Large Directed Graphs in 3D
Hyperbolic Space,º Proc. 1997 IEEE Symp. Information Visualization
(InfoViz '97), pp. 2-10, 1997.

[94] T. Munzner, ªDrawing Large Graphs with H3Viewer and Site
Manager,º Proc. Symp. Graph Drawing GD '98, pp. 384-393, 1998.

[95] T. Munzner, F. GuimbretieÁre, and G. Robertson, ªConstellation: A
Visualization Tool for Linguistic Queries from MindNet,º Proc.
IEEE Symp. Information, InfoVis '99, pp. 132-135, 1999.

[96] P. Mutzel, C. Gutwengwer, R. Brockenauer, S. Fialko, G. Klau, M.
Kruger, T. Ziegler, S. Naher, D. Alberts, D. Ambras, G. Koch, M.
Junger, C. Bucheim, and S. Leipert, ªA Library of Algorithms for
Graph Drawing,º Proc. Symp. Graph Drawing GD '97 Symp.,
pp. 456-457, 1998.

[97] T. Munzner, E. Hoffman, K. Claffy, and B. Fenner, ªVisualizing
the Global Topology of the MBone,º Proc. IEEE Symp. Information
Visualization, 1996.

[98] L. Nigay and F. Vernier, ªDesign Method of Interaction
Techniques for Large Information Space,º Proc. Advanced Visual
Interfaces (AVI '98), 1998.

[99] S. North, ªIncremental Layout in DynaDAG,º Proc. Symp. Graph
Drawing GD '95, pp. 409-418, 1995.

[100] H.C. Purchase, ªWhich Aesthetic Has the Greatest Effect on
Human Understanding?º Proc. Symp. Graph Drawing GD '97,
pp. 248-261, 1998.

[101] H.C. Purchase, R.F. Cohen, and M. James, ªValidating Graph
Drawing Aesthetics,º Proc. Symp. Graph Drawing GD '95, pp. 435-
446, 1995.

42 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

[102] H.C. Purchase, R.F. Cohen, and M. James, ªAn Experimental
Study of the Basis for Graph Drawing Algorithms,º ACM J.
Experimental Algorithmics, vol. 2, no. 4, 1997.

[103] E.M. Reingold and J.S. Tilford, ªTidier Drawing of Trees,º IEEE
Trans. Software Eng., vol. 7, no. 2, pp. 223-228, 1981.

[104] J. Rekimoto and M. Green, ªThe Information Cube: Using
Transparency in 3D Information Visualization,º Proc. Third Ann.
Workshop Information Technologies & Systems (WITS '93), 1993.

[105] J.S. Risch, D.B. Rex, S.T. Dowson, T.B. Walters, R.A. May, and B.D.
Moon, ªThe STARLIGHT Information Visualization System,º
Proc. IEEE Conf. Information Visualization, pp. 42-49, 1997.

[106] G.G. Robertson, J.D. Mackinlay, and S.K. Card, ªCone Trees:
Animated 3D Visualizations of Hierarchical Information,º Human
Factors in Computing Systems, CHI '91 Conf. Proc., pp. 189-194, 1991.

[107] G.G. Robertson, S.K. Card, and J.D. Mackinlay, ªInformation
Visualization Using 3D Interactive Animation,º Comm. ACM,
vol. 36, no. 4, pp. 57-71, 1993.

[108] A. Robinson, EBI Hyperbolic Viewer. European Bioinformatics Inst.,
available at: http://industry.ebi.ac.uk/~alan/components, 1998.

[109] T. Roxborough and A. Sen, ªGraph Clustering Using Multiway
Ratio Cut,º Proc. Symp. Graph Drawing GD '97, pp. 291-296, 1998.

[110] M. Sarkar and M.H. Brown, ªGraphical Fish-Eye Views of
Graphs,º Human Factors in Computing Systems, CHI '92 Conf. Proc.,
pp. 83-91, 1992.

[111] M. Sarkar and M.H. Brown, ªGraphical Fisheye Views,º Comm.
ACM, vol. 37, no. 12, pp. 73-84, 1994.

[112] D. Schaffer, Z. Zuo, S. Greenberg, L. Bartram, J. Dill, S. Dubs, and
M. Roseman, ªNavigating Hierarchically Clustered Networks
through Fisheye and Full-Zoom Methods,º ACM Trans. Computer-
Human Interaction, vol. 3, no. 2, pp. 162-188, 1996.

[113] Y. Shiloach, ªArrangements of Planar Graphs on the Planar
Lattices,º PhD thesis, Weizmann Inst. of Science, Rehovot, Israel,
1976.

[114] H. Shiozawa, K.-i. Okada, and Y. Matsushita, ª3D Interactive
Visualization for Inter-Cell Dependencies of Spreadsheets,º Proc.
IEEE Symp. Information Visualization (InfoViz '99), pp. 79-82, 1999.

[115] G. Sindre, B. Gulla, and H.G. Jokstad, ªOnion Graphs: Aesthetics
and Layout,º Proc. IEEE/CS Symp. Visual Languages (VL '93),
pp. 287-291, 1993.

[116] T.C. Sprenger, M. Gross, D. Bielser, and T. Strasser, ªIVORYÐAn
Object-Oriented Framework for Physics-Based Information Visua-
lization in Java,º Proc. IEEE Symp. Information Visualization (InfoViz
'98), 1998.

[117] K. Sugiyama, S. Tagawa, and M. Toda, ªMethods for Visual
Understanding of Hierarchical Systems Structures,º IEEE Trans.
Systems, Man, and Cybernetics, vol. 11, no. 2, pp. 109-125, 1989.

[118] K. Sugiyama and K. Misue, ªVisualization of Structural Informa-
tion: Automatic Drawing of Compound Digraphs,º IEEE Transac-
tions on Systems, Man, and Cybernetics, vol. 21, no. 4, pp. 876-892,
1991.

[119] W. Tutte, ªHow to Draw a Graph,º Proc. London Math. Soc., vol. 3,
no. 13, pp. 743-768, 1963.

[120] X.G. Viennot, ªTrees Everywhere,º Proc. 15th CAAP Conf., pp. 18-
41, 1990.

[121] J.Q. Walker II, ªA Node-Positioning Algorithm for General Trees,º
SoftwareÐPractice and Experience, vol. 20, no. 7, pp. 685-705, 1990.

[122] C. Ware and G. Franck, ªEvaluation of Stereo and Motion Cues for
Visualising Information in Three Dimensions,º ACM Trans.
Graphics, vol. 15, no. 2, pp. 121-140, 1996.

[123] C. Ware, Information Visualization: Perception for Design. Morgan
Kaufmann, 2000.

[124] Y.C. Wei and C.K. Cheng, ªRatio Cut Partitioning for Hierarchical
Designs,º IEEE Trans. Computer-Aided Design, vol. 10, no. 7,
pp. 911-921, 1991.

[125] J.J. van Wijk and H. van de Wetering, ªCushion Treemaps:
Visualization of Hierarchical Information,º Proc. IEEE Symp.
Information Visualization (InfoViz '99), pp. 73-78, 1999.

[126] G.J. Wills, ªNiche WorksÐInteractive Visualization of Very Large
Graphs,º Proc. Symp. Graph Drawing GD '97, pp. 403-415, 1998.

[127] R.M. Wilson and R.D. Bergeron, ªDynamic Hierarchy Specifica-
tion and Visualization,º Proc. IEEE Symp. Information Visualization
(InfoViz '99), pp. 65-72, 1999.

[128] P. Young, ªThree Dimensional Information Visualization (Sur-
vey),º Computer Science Technical Report, Centre for Software
Maintenance Dept. of Computer Science, Univ. of Durham,
available at: http://www.dur.ac.uk/~dcs3py/pages/work/
documents/lit-survey/IV-Survey/index.html, 1996.

[129] J.-D. Zapata-Rivera, E. Neufeld, and J.E. Greer, ªVisualization of
Bayesian Belief Networks,º Proc. IEEE Visualization '99, Late
Breaking Hot Topics, pp. 85-88, 1999.

[130] R. Zeiliger, ªSupporting Constructive Navigation of Web Space,º
Proc. Workshop Personalized and Solid Navigation in Information
Space, 1998.

Ivan Herman graduated as applied mathemati-
cian in 1979 in Budapest, Hungary, and received
his PhD at the University of Leiden, The
Netherlands, in 1990. He is currently a senior
researcher at the Centre for Mathematics and
Computer Science (CWI) in Amsterdam and is
head of the research group on information
visualization. He has been chief designer and
implementor of several graphics and multimedia
systems, and is also author or coauthor of close

to 50 scientific publications in international journals and conferences. He
is currently cochair of the Ninth World Wide Web conference and of the
second joint Eurographics/IEEE TSVG Symposium on Visualization. He
has been a member of the Eurographics Executive Committee since
1987 and a member of its Executive Board since 1990. He is also
member of the IEEE Computer Society and of the Advisory Committee
of the World Wide Web Consortium.

Guy MelancËon received his PhD in mathe-
matics from the University of QueÂbec in Mon-
treÂal, Canada, in 1991 and recently defended his
ªhabilitationº in computer science at the Uni-
versity of Bordeaux I, France. He is currently a
scientific researcher at the Centre for Mathe-
matics and Computer Science (CWI) in Amster-
dam and also holds a permanent position at the
University of Bordeaux I, France. He is the
author or coauthor of many scientific publica-

tions in international journals and conferences in combinatorial mathe-
matics and information visualization. He is currently coorganizer of the
second joint Eurographics/IEEE TSVG Symposium on Visualization.

M. Scott Marshall received a BA in computer
science from the University of California at
Berkeley in 1992. He is currently a research
associate at the Centre for Mathematics and
Computer Science (CWI) in Amsterdam, work-
ing in the information visualization research
group. He recently helped to implement an ISO
standard for multimedia called PREMO and
coauthored a book on the subject. His research
interests include scientific, medical, and infor-

mation visualization and knowledge representation. He is currently
working on his PhD dissertation on graph visualization in cooperation
with the University of Bordeaux, France.

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION: A SURVEY 43

