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Abstract. Given a sample covariance matrix, we solve a maximum likelihood problem penalized
by the number of nonzero coefficients in the inverse covariance matrix. Our objective is to find a
sparse representation of the sample data and to highlight conditional independence relationships
between the sample variables. We first formulate a convex relaxation of this combinatorial problem,
we then detail two efficient first-order algorithms with low memory requirements to solve large-scale,
dense problem instances.
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1. Introduction. We discuss a problem of model selection.1 Given n variables
drawn from a Gaussian distribution N (0, C), where the true covariance matrix C
is unknown, we estimate C from a sample covariance matrix Σ by maximizing its
log-likelihood. Following [7], setting a certain number of coefficients in the inverse
covariance matrix Σ−1 to zero, a procedure known as covariance selection, improves
the stability of this estimation procedure by reducing the number of parameters to
estimate and highlight structure in the underlying model.

Here, we focus on the problem of discovering this pattern of zeroes in the inverse
covariance matrix. We seek to trade-off the log-likelihood of the solution with the
number of zeroes in its inverse, and solve the following estimation problem:

maximize log detX − 〈Σ, X〉 − ρCard(X)

subject to αIn � X � βIn
(1.1)

in the variable X ∈ Sn, where Σ ∈ S+
n is the sample covariance matrix, Card(X)

is the cardinality of X, i.e., the number of nonzero components in X, ρ > 0 is a
parameter controlling the trade-off between log-likelihood and cardinality, and finally,
α, β > 0 fix bounds on the eigenvalues of the solution.

Zeroes in the inverse covariance matrix correspond to conditionally independent
variables in the model and this approach can be used to simultaneously determine
a robust estimate of the covariance matrix and, perhaps more importantly, discover
structure in the underlying graphical model. In particular, we can view (1.1) as a
model selection problem using Akaike (AIC, see [1]) or Bayes (BIC, see [5]) information
criterions. Both these problems can be written as in (1.1) with ρ = 2/N for the AIC
problem and ρ = 2 log(N/2)/N for the BIC problem, where N is the sample size.
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FIRST-ORDER METHODS FOR COVARIANCE SELECTION 57

This has applications in speech recognition (see [2, 3]) or gene networks analysis (see
[9, 8], for example).

The Card(X) penalty term makes the estimation problem (1.1) combinatorial
(NP-hard in fact), and our first objective here is to derive a convex relaxation to this
problem which can be solved efficiently. We then derive two first-order algorithms
geared towards memory efficiency and large-scale, dense problem instances.

In [3], Bilmes proposed a method for covariance selection based on choosing sta-
tistical dependencies according to conditional mutual information computed using
training data. Other recent work involves identifying those Gaussian graphical mod-
els that are best supported by the data and any available prior information on the
covariance matrix. This approach is used by [13, 9] on gene expression data. Recently,
[6, 12] also considered penalized maximum likelihood estimation for covariance selec-
tion. In contrast to our results here, [12] works on the Cholesky decomposition of X
using an iterative (heuristic) algorithm to minimize a nonconvex penalized likelihood
problem, while [6] proposes a set of large scale interior point algorithms to solve sparse
problems, i.e., problems for which the conditional independence structure is already
known.

The paper is organized as follows, in section 2, we detail our convex relaxation of
problem (1.1) and study the dual. In section 3, we derive two efficient algorithms to
solve it. Finally, in section 4 we describe some numerical results.

2. Problem setup.

2.1. Convex relaxation. Given a sample covariance matrix Σ ∈ S+
n , we can

write the following convex relaxation to the estimation problem (1.1):

maximize log detX − 〈Σ, X〉 − ρ1T |X|1

subject to αIn � X � βIn,
(2.1)

with variable X ∈ Sn, where 1 is the n-vector of ones, so that 1T |X|1 =
∑n

i,j=1 |Xij |.
The penalty term involving the sum of absolute values of the entries of X is a proxy for
the number of its nonzero elements: the function 1T |X|1 can be seen as the largest
convex lower bound on Card(X) on the hypercube, an argument used by [11] for
rank minimization. It is also often used in regression techniques, such as the LASSO
studied in [19], when sparsity of the solution is a concern. This relaxation is provably
tight in certain cases (see [10]). In our model, the bounds (α, β) on the eigenvalues
of X are fixed and user-chosen. Although we allow α = 0 and β = +∞, such bounds
are useful in practice to control the condition number of the solution.

When α = 0 and β = +∞, for ρ = 0, provided Σ � 0, problems (1.1) and (2.1)
have a unique solution X� = Σ−1, and the corresponding maximum-likelihood esti-
mate is Σ. Due to noise in the data, in practice, the sample estimate Σ may not have
a sparse inverse, even if the underlying graphical model exhibits conditional indepen-
dence properties. By striking a trade-off between the maximality of the likelihood
and the number of nonzero elements in the inverse covariance matrix, our approach is
potentially useful at discovering structure, precisely conditional independence prop-
erties in the data. This means that we have to focus on the case where the matrix X
is dense. At the same time, it serves as a regularization technique: when Σ is rank-
deficient, there is no well-defined maximum-likelihood estimate, whereas the solution
to problem (2.1) is always unique and well defined for ρ > 0, as seen later.

D
ow

nl
oa

de
d 

12
/2

3/
23

 to
 1

85
.1

60
.1

13
.2

43
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

58 A. D’ASPREMONT, O. BANERJEE, AND L. EL GHAOUI

2.2. Dual problem, robustness. We can rewrite the relaxation (2.1) as the
following min-max problem:

max
{X: αIn�X�βIn}

min
{U : |Uij |≤ρ}

log detX − 〈Σ + U,X〉,(2.2)

which gives a natural interpretation of problem (2.1) as a worst-case robust maxi-
mum likelihood problem with componentwise bounded, additive noise on the sample
covariance matrix Σ. The corresponding Lagrangian is given by

L(X,U, P,Q) = log detX − Tr((Σ + U + Q− P )X) − αTrP + βTrQ,

and we get the following dual to (2.1):

minimize − log det(Σ + U + Q− P ) − n + αTrP − βTrQ

subject to P,Q � 0, |Uij | ≤ ρ, i, j = 1, . . . , n,
(2.3)

in the variables U,P,Q ∈ Sn. In what follows, we denote by ‖X‖2 the largest singular
value of the matrix X and by ‖X‖F its Frobenius norm. When α = 0 and β = +∞,
the first-order optimality conditions impose X(Σ + U) = In, hence we always have

X � α(n)In with α(n) :=
1

‖Σ‖2 + nρ
;

zero duality gap also means Tr(ΣX) = n − ρ1T |X|1. Because X and Σ are both
positive semidefinite, we get

‖X‖2 ≤ ‖X‖F ≤ 1T |X|1 ≤ n/ρ,

which, together with Tr(ΣX) ≥ λmin(Σ)‖X‖2, means ‖X‖2 ≤ n/λmin(Σ). Finally
then, we must always have

X � β(n)In with β(n) := nmin

(
1

ρ
, ‖Σ−1‖2

)

and 0 < α(n) ≤ λ(X) ≤ β(n) < +∞ at the optimum. Setting α = 0 and β = +∞ in
problem (2.1) is then equivalent to setting α = α(n) and β = β(n). Since the objective
function of problem (2.1) is strictly convex when 0 < α(n) ≤ λ(X) ≤ β(n) < +∞,
this shows that (2.1) always has a unique solution.

3. Algorithms. In this section, we present two algorithms for solving problem
(2.1), one based on an optimal first-order method developed in [18], the other based
on a block-coordinate gradient method. Of course, problem (2.1) is convex and can
readily be solved using interior point methods (see [4], for example). However, such
second-order methods become quickly impractical for solving (1.1), since the corre-
sponding complexity to compute an ε-suboptimal solution is O(n6 log(1/ε)). Note,
however, that we cannot expect to do better than O(n3), which is the cost of solving
the nonpenalized problem for dense covariance matrices Σ.

3.1. Smooth optimization. The recently-developed first-order algorithms due
to [18] trade-off a better dependence on problem size against a worst dependence on
accuracy, usually 1/ε instead of its logarithm and the method we describe next has
a complexity of O(n4.5/ε). In addition, the memory requirement of these first-order
methods is much lower than that of interior-point methods, which involve forming a
dense Hessian, and hence, become quickly prohibitive with a problem having O(n2)
variables.
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FIRST-ORDER METHODS FOR COVARIANCE SELECTION 59

Nesterov’s model. The algorithm in [18] supposes that the function to minimize
conforms to a certain representation. This is the case for our problem here, so we first
write (2.2) in the saddle-function format described in [18]:

min
X∈Q1

− log detX + 〈Σ, X〉 + ρ1T |X|1 ≡ min
X∈Q1

max
U∈Q2

f̂(X) + 〈A(X), U〉,

where we define f̂(X) = − log detX + 〈Σ, X〉, A = ρIn2 , and

Q1 := {X ∈ Sn : αIn � X � βIn} , Q2 := {U ∈ Sn : ‖U‖∞ ≤ 1} .

The adjoint of this problem, corresponding to the dual problem (2.3), is then written:

max
U∈Q2

φ(U) where φ(U) := min
X∈Q1

− log detX + 〈Σ + U,X〉.(3.1)

When a function can be represented in this saddle function format, the method de-
scribed in [18] combines two steps.

Regularization: By adding a strongly convex penalty to the saddle function rep-
resentation of f , the algorithm first computes a smooth ε-approximation of f with
Lipschitz continuous gradient. This can be seen as a generalized Moreau–Yosida reg-
ularization step (see [14], for example).

Optimal first order minimization: The algorithm then applies the optimal first-
order scheme for functions with Lipschitz continuous gradients detailed in [16] to the
regularized function. Each iteration requires efficiently computing the regularized
function value and its gradient. In all the semidefinite programming applications
detailed here, this can be done extremely efficiently, with a complexity of O(n3) and
memory requirements in O(n2). The method is only efficient if all these steps can be
performed explicitly or at least very efficiently. As we will see below, this is the case
here.

Prox-functions and related parameters. To Q1 and Q2 we now associate norms
and so-called prox-functions. For Q1, we use the Frobenius norm and a prox-function:

d1(X) = − log detX + n log β.

The function d1 is strongly convex on Q1, with a convexity parameter of σ1 = 1/β2,
in the sense that ∇2d1(X)[H,H] = Tr(X−1HX−1H) ≥ β−2‖H‖2

F for every H. Fur-
thermore, the center of the set, X0 := arg minX∈Q1

d1(X) is X0 = βIn and satisfies
d1(X0) = 0. With our choice, we have D1 := maxX∈Q1

d1(X) = n log(β/α).
To Q2, we also associate the Frobenius norm and the prox-function d2(U) =

‖U‖2
F /2. With this choice, the center U0 of Q2 is U0 = 0. Furthermore, the function

d2 is strongly convex on its domain with a convexity parameter with respect to the
2-norm σ2 = 1, and we have D2 := maxU∈Q2 d2(U) = n2/2.

The function f̂ has a gradient that is Lipschitz-continuous with respect to the
Frobenius norm on the set Q1 with Lipschitz constant M = 1/α2. Finally, the norm
(induced by the Frobenius norm) of the operator A = ρIn2 is ρ.

Smooth minimization. The method is based on replacing the objective of the
original problem, f(X), with fε(X), where ε > 0 is the desired accuracy, and fε is a
penalized function involving the prox-function d2, defined as

fε(X) := f̂(X) + max
U∈Q2

{〈X,U〉 − (ε/2D2)d2(U)}.(3.2)
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60 A. D’ASPREMONT, O. BANERJEE, AND L. EL GHAOUI

The above function turns out to be a smooth uniform approximation to f everywhere,
with maximal error ε/2. Furthermore, the function fε has a Lipschitz-continuous
gradient with Lipschitz constant given by L(ε) := M + D2‖A‖2/(2σ2ε). A specific
first-order algorithm detailed in [16] for smooth, constrained convex minimization is
then applied to the function fε to get a convergence rate in O(1/ε).

Nesterov’s algorithm. Choose ε > 0 and set X0 = βIn, the algorithm then updates
primal and dual iterates Yk and Ûk using the following steps:

1. Compute ∇fε(Xk) = −X−1 + Σ + U∗(Xk), where U∗(X) solves (3.2).
2. Find Yk = argminY ∈Q1

{〈∇fε(Xk), Y −Xk〉 + 1
2L(ε)‖Y −Xk‖2

F }.
3. Find Zk = argminZ∈Q1

{
L(ε)d1(Z)

σ1
+
∑k

i=0
i+1
2 (fε(Xi) + 〈∇fε(Xi), Z −Xi〉)

}
.

4. Update Xk = 2
k+3Zk + k+1

k+3Yk and Ûk = kÛk−1+2U∗(Xk)
(k+2) .

5. Repeat until the duality gap is less than the target precision:

− log detYk + 〈Σ, Yk〉 + ρ1T |Yk|1 − φ(Ûk) ≤ ε.

The key to the method’s success is that steps 1–3 and 5 can be performed explicitly
and only involve an eigenvalue decomposition. Step one above computes the (smooth)
function value and gradient. The second step computes the gradient mapping, which
matches the gradient step for unconstrained problems (see [17, p. 86]). Steps three and
four update an estimate sequence [17, p. 72] of fμ whose minimum can be computed
explicitly and gives an increasingly tight upper bound on the minimum of fμ. We
now present these steps in detail for our problem.

Step 1. The first step requires computing the gradient of the function

fε(X) = f̂(X) + max
u∈Q2

〈X,U〉 − (ε/2D2)d2(U).

This function can be expressed in closed form as fε(X) = f̂(X)+
∑

i,j ψμ(Xij), where

ψε(x) :=

{
|x| − (ε/4D2) if |x| ≥ (ε/2ρD2),

D2x
2/ε otherwise,

which is simply the Moreau–Yosida regularization of the absolute value and the gra-
dient of the function at X is

∇fμ(X) = −X−1 + Σ + U∗(X),

with

U∗(X) := max(min(X/μ, ρ),−ρ),

with min. and max. understood componentwise. The cost of this step is dominated
by that of computing the inverse of X, which is O(n3).

Step 2. This step involves a problem of the form

TQ1(X) = arg min
Y ∈Q1

〈∇fε(X), Y −X〉 +
1

2
L‖Y −X‖2

F ,

where X ∈ Q1 is given. This problem can be reduced to one of projection on Q1,
namely

min
Y ∈Q1

‖Y −G‖2
F ,
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FIRST-ORDER METHODS FOR COVARIANCE SELECTION 61

where G := X − L−1∇fε(X). Using the rotational invariance of this problem, we
reduce it to a vector problem:

minλ

∑
i(λi − γi)

2 : α ≤ λi ≤ β, i = 1, . . . , n,

where γ is the vector of eigenvalues of G. This problem admits a simple explicit
solution:

λi = min(max(γi, α), β), i = 1, . . . , n.

The corresponding solution is then Y = V Tdiag(λ)V , where G = V Tdiag(γ)V is
the eigenvalue decomposition of G. The cost of this step is dominated by the cost of
forming the eigenvalue decomposition of G, which is O(n3).

Step 3. The third step involves solving a problem of the form

Z := arg max
X∈Q1

d1(X) + 〈S,X〉,(3.3)

where S is given. Again, due to the rotational invariance of the objective and feasible
set, we can reduce the problem to a one-dimensional problem:

minλ

∑
i σiλi − log λi : α ≤ λi ≤ β,

where σ contains the eigenvalues of S. This problem has a simple, explicit solution:

λi = min(max(1/σi, α), β), i = 1, . . . , n.

The corresponding solution is then Y = V Tdiag(λ)V , where S = V Tdiag(σ)V is the
eigenvalue decomposition of S. Again, the cost of this step is dominated by the cost
of forming the eigenvalue decomposition of S, which is O(n3).

Computing φ(Ûk). For a given matrix Ûk the function φ in (3.1) is computed as

φ(Ûk) = min
X∈Q1

− log detX + 〈Σ + Ûk, X〉.

This means projecting (Σ + Ûk)
−1 on Q1 only involves an eigenvalue decomposition.

Complexity estimate. To summarize, for step 1, the gradient of fε is readily com-
puted in closed form, via the computation of the inverse of X. Step 2 essentially
amounts to projecting on Q1 and requires an eigenvalue problem to be solved; like-
wise for step 3. In fact, each iteration costs O(n3). The number of iterations necessary
to achieve an objective with absolute accuracy less than ε is then given by

N(ε) := 4‖A‖1

ε

√
D1D2

σ1σ2
+

√
MD1

σ1ε
=

κ
√
n(log κ)

ε
(4nαρ +

√
ε),(3.4)

where κ = β/α bounds the solution’s condition number. Thus, the overall complexity
when ρ > 0 is in O(n4.5/ε), as claimed.

3.2. Block-coordinate gradient methods. In this section, we focus on the
particular case where α = 0 and β = +∞ (hence, implicitly α = α(n) and β =
β(n)) and derive gradient minimization algorithms that take advantage of the problem
structure. We consider the following problem:

max
X

log detX − 〈Σ, X〉 − ρ1T |X|1(3.5)
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in the variable X ∈ Sn, where ρ > 0 again controls the trade-off between log-likelihood
and sparsity of the inverse covariance matrix. Its dual is given by

minimize − log det(Σ + U) − n

subject to |Uij | ≤ ρ, i, j = 1, . . . , n,
(3.6)

in the variable U ∈ Sn. We partition the matrices X and U in block format:

X =

(
Z x

xT y

)
and U =

(
V u

uT w

)
,

where Z � 0 and U are fixed and x, u ∈ R(n−1), y, w ∈ R are the variables (row
and column) we are updating. We also partition the sample matrix according to the
same block structure:

Σ =

(
A b

bT c

)
,

where A ∈ S(n−1), b ∈ R(n−1), c ∈ R. In the methods that follow, we will update
only one column (and corresponding row) at a time and without loss of generality we
can always assume that we are updating the last one.

Block-coordinate descent. The dual problem (3.6):

minimize − log det(Σ + U) − n

subject to |Uij | ≤ ρ, i, j = 1, . . . , n,

in the variable U ∈ Sn, can be written in block format as

minimize − log det(A + V ) − log
(
(w + c) − (b + u)T (A + V )−1(b + u)

)
− n

subject to |w| ≤ ρ, |ui| ≤ ρ, i = 1, . . . , n,

in the variables u ∈ R(n−1) and w ∈ R (V is fixed at each iteration). We directly
get w = ρ so the diagonal of the optimal solution must be ρ1. The main step at each
iteration is then a box constrained quadratic program (QP):

minimize (b + u)T (A + V )−1(b + u)

subject to |ui| ≤ ρ, i = 1, . . . , n,
(3.7)

in the variable u ∈ R(n−1). To summarize, the block coordinate descent algorithm
proceeds as follows:

1. Pick the row and column to update.
2. Compute (A + V )−1.
3. Solve the box constrained QP in (3.7).
4. Repeat until duality gap is less than precision: 〈Σ, X〉 − n + ρ1T |X|1 ≤ ε.

At each iteration, we need to compute the inverse of the submatrix (A+V ) ∈ S(n−1),
but we can update this inverse using the Sherman–Woodbury–Morrison formula on
two rank-two updates; hence, it is only necessary to compute a full inverse at the first
iteration.
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Block-coordinate ascent. For a fixed Z, problem (3.5) is equivalent to

maximize log
(
y − xTZ−1x

)
− 2bTx− y(c + ρ) − 2ρ‖x‖1

subject to y − xTZ−1x > 0, y > 0,

in the variables x ∈ R(n−1), y ∈ R, where Z � 0 (given) and the Schur complement
constraints imply X � 0. We can solve for the optimal y explicitly and the problem
in x becomes

max
x

−xTQx− 2bTx− 2ρ‖x‖1,

where Q := (c + ρ)Z−1. Its dual is also box-constrained QP:

minimize (b + u)TZ(b + u)

subject to ‖u‖∞ ≤ ρ,

in the variable u ∈ R(n−1). At the optimum for this QP, we must have

x = − 1

(c + ρ)
Z(b + u), and y =

1

(c + ρ)
+

1

(c + ρ)2
(b + u)TZ(b + u),

and we iterate as above.
Smooth optimization for box-constrained QPs. The two block-coordinate methods

detailed in this section both amount to solving a sequence of box-constrained quadratic
program of the form

minimize xTAx + bTx

subject to ‖x‖∞ ≤ ρ,
(3.8)

in the variable x ∈ Rn. The objective function has a Lipschitz continuous gradient
with constant L = 2λmax(A) on the box B = {x ∈ Rn : ‖x‖∞ ≤ ρ}, where we
can define a prox function (1/2)‖x‖2 which is strongly convex with constant one and
bounded above by (1/2)nρ2 on B. From [16] or [18], we know that solving (3.8) up
to a precision ε will require at most 2ρ

√
nλmax(A)/

√
ε iterations of the first-order

method detailed in [16], with each iteration equivalent to a matrix-vector product
and a projection on the box B. This means that the total complexity of solving (3.8)
is given by

O

(
ρn2.5

√
λmax(A)

ε

)
.

Complexity estimate. Following [15], with block coordinate descent corresponding
to coordinate descent with the almost cyclic rule (defined in [15], it simply means here
that we go through each index at least once per outer iteration) and using the fact
that log det(X) satisfies the strict concavity assumptions in [15, assumption A2], we
can show that the convergence rate of the block coordinate descent method is at least
linear. Each iteration requires solving a box-constrained QP and takes O(n3log(1/ε))
operations using an interior point solver or O(n2.5/

√
ε) using the optimal first-order

scheme in [16]. We cannot use the same argument to show convergence of block
coordinate ascent but empirical performance is comparable. In practice we have
found that a small number of sweeps through all columns, independent of problem
size n, is sufficient for convergence.
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Implementation. The block coordinate descent methods implemented here cor-
respond to coordinate descent using the almost cyclic rule, alternative row/column
selection rules could improve the convergence speed. Also, each iteration of the block
coordinate descent method corresponds to two rank-two updates of the inverse matrix;
hence, the cost of maintaining the inverse submatrix using the Sherman–Woodbury–
Morrison formula is only O(n2).

4. Numerical results. In this section we test the performance of the methods
detailed above on some randomly generated examples. We first form a sparse matrix
A with a diagonal equal to one and a few randomly chosen, nonzero off-diagonal terms
equal to +1 or −1. We then form the matrix

B = A−1 + σV

where V ∈ Sn is a symmetric, i.i.d. uniform random matrix. Finally, we make B
positive definite by shifting its eigenvalues, and use this noisy, random matrix to test
our covariance selection methods.

   

 

 

 
   

 

 

 
   

 

 

 

Noisy inverse B−1Solution for ρ = 0.5Original inverse A

Fig. 4.1. Recovering the sparsity pattern. We plot the original inverse covariance matrix A,
the solution to problem (2.1), and the noisy inverse B−1.

In Figure 4.1, we plot the sparsity patterns of the original inverse covariance
matrix A, the solution to problem (2.1), and the noisy inverse B−1 in a randomly
generated example with n = 30, σ = 0.15, and ρ = 0.5. In Figure 4.2 we represent the
dependence structure of interest rates (sampled over a year) inferred from the inverse
covariance matrix. Each node represents a particular interest rate maturity and the
nodes are linked if the corresponding coefficient in the inverse covariance matrix is
nonzero (i.e., they are conditionally dependent). We compare the solution to problem
(2.1) on this matrix for ρ = 0 and ρ = 0.1 and notice that in the sparse solution the
rates appear clearly clustered by maturity.

In Figure 4.3, we study computing times for various choices of algorithms and
problem sizes. On the left, we plot CPU time to reduce the duality gap by a factor 10−2

versus problem size n, on randomly generated problems, using the coordinate descent
code and the optimal first-order for solving box QPs. On the right, we plot duality gap
versus CPU time for both smooth minimization and block-coordinate algorithms for a
randomly generated problem of size n = 250. For the smooth minimization code, we
set α = 1/λmax(B) and we plot computing time for both β = 1/(2λmin(B)) (smooth.
opt. 1/2) and β = 2/λmin(B) (smooth. opt. 2). In the examples of Figure 4.3, we
notice that the numerical cost of our methods grows experimentally as O(n3).
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Fig. 4.2. We plot the network formed using the solution to problem (2.1) on an interest rate
covariance matrix for ρ = 0 (left) and ρ = 0.1 (right). In the sparse solution the rates appear clearly
clustered by maturity.
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Fig. 4.3. Computing time. Left: We plot CPU time to reduce the duality gap by a factor
10−2 versus problem size n, on randomly generated problems, using the coordinate descent code and
the optimal first-order algorithm for solving box QPs (dashed line, circles), smooth minimization
(dotted line, squares), and a simple conjugate gradient method with a Polak–Ribiere update, without
preconditioning (solid line, stars). Right: We plot the duality gap versus CPU time for both smooth
minimization and block-coordinate algorithms for a problem of size n = 250.
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