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Abstract—We present a distributed graph database system to
manage historical data for large evolving information networks,
with the goal to enable temporal and evolutionary queries
and analysis. The cornerstone of our system is a novel, user-
extensible, highly tunable, and distributed hierarchical index
structure called DeltaGraph, that enables compact recording of
the historical network information, and that supports efficient
retrieval of historical graph snapshots for single-site or parallel
processing. Our system exposes a general programmatic API
to process and analyze the retrieved snapshots. Along with the
original graph data, DeltaGraph can also maintain and index
auxiliary information; this functionality can be used to extend
the structure to efficiently execute queries like subgraph pattern
matching over historical data. We develop analytical models
for both the storage space needed and the snapshot retrieval
times to aid in choosing the right construction parameters
for a specific scenario. We also present an in-memory graph
data structure called GraphPool that can maintain hundreds of
historical graph instances in main memory in a non-redundant
manner. We present a comprehensive experimental evaluation
that illustrates the effectiveness of our proposed techniques at
managing historical graph information.

I. INTRODUCTION

In recent years, we have witnessed an increasing abundance
of observational data describing various types of information
networks, including social networks, biological networks, cita-
tion networks, financial transaction networks, communication
networks, to name a few. There is much work on analyzing
such networks to understand various social and natural phe-
nomena like: “how the entities in a network interact”, “how
information spreads”, “what are the most important (central)
entities”, and “what are the key building blocks of a network”.
With the increasing availability of the digital trace of such
networks over time, the topic of network analysis has naturally
extended its scope to temporal analysis of networks, which has
the potential to lend much better insights into various phenom-
ena, especially those relating to the temporal or evolutionary
aspects of the network. For example, we may want to know:
“which analytical model best captures a network’s evolution”,
“how information spreads over time”, “who are the people
with the steepest increase in centrality measures over a period
of time”, “what is the average monthly density of a network
since 1997”, “how the clusters in a network evolve over time”
etc. Historical queries like, “who had the highest PageRank
centrality in a citation network in 1960”, “which year amongst
2001 and 2004 had the smallest network diameter”, “how

many new triangles have been formed in the network over the
last year”, also involve the temporal aspect of the network.
More generally a network analyst may want to process a
network’s historical trace in different, usually unpredictable
ways to gain insights into various phenomena. There is also
interest in visualizations over temporal graphs [1].

To support a broad range of network analysis tasks, we
require a graph1 data management system at the backend
capable of low-cost storage and efficient retrieval of the
historical network information, in addition to maintaining the
current state of the network for updates and other queries,
temporal or otherwise. However, the existing solutions for
graph data management lack adequate techniques for temporal
annotation, or for storage and retrieval of large scale historical
changes on the graph. In this paper, we present the design of a
graph data management system that we are building to provide
support for executing temporal analysis queries and historical
queries over large-scale evolving information networks.

Our primary focus in this paper is on efficiently supporting
snapshot retrieval queries where the goal is to retrieve in
memory one or more historical snapshots of the information
network as of specified time points. The typically unpre-
dictable, iterative, and procedural nature of network analysis
makes this perhaps the most important type of query that
needs to be supported. We assume there is enough memory
to hold the retrieved snapshots in memory (we discuss below
how we exploit overlap in the retrieved snapshots to minimize
the memory requirements); we allow the snapshots to be
retrieved in a partitioned fashion across a set of machines
in parallel to handle very large networks. This design decision
was motivated by both the current hardware trends and the fact
that, most network analysis tasks tend to access the underlying
network in unpredictable ways, leading to unacceptably high
penalties if the data does not fit in memory. Most current large-
scale graph analysis systems, including Pregel [18], Giraph2,
Trinity [27], Cassovary (Twitter graph library)3, Pegasus [12],
load the entire graph into memory prior to execution.

The cornerstone of our system is a novel hierarchical
index structure called DeltaGraph. A DeltaGraph is a rooted,
directed graph whose lowest level corresponds to the snapshots

1We use the terms graph and network interchangeably in this paper.
2http://giraph.apache.org
3https://github.com/twitter/cassovary
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Fig. 1. Dynamic network analysis (e.g., understanding how “communities”
evolve in a social network, how centrality scores change in co-authorship
networks, etc.) can lend important insights into social, cultural, and natural
phenomena. The right plot was constructed using our system over the DBLP
network, and shows the evolution of the nodes ranked in top 25 in 2004.

of the network over time (that are not explicitly stored), and the
interior nodes correspond to graphs constructed by combining
the lower level graphs (these are typically not valid snapshots
as of any specific time point). The information stored with each
edge, called edge deltas, is sufficient to construct the graph
corresponding to the target node from the graph corresponding
to the source node, and thus a specific snapshot can be
created by traversing any path from the root to the snapshot.
While conceptually simple, DeltaGraph is a powerful, general,
and tunable index structure that enables trading off different
resources and user requirements as per a specific application’s
need, both at construction time and at run-time. Portions of the
DeltaGraph can be pre-fetched and materialized, allowing us
to trade increased memory utilization for reduced query times.
DeltaGraph is also extensible, providing a user the opportunity
to define additional indexes to be created and maintained in
order to efficiently execute specific queries (e.g., subgraph
pattern matching, reachability, etc.) over the historical graph
data. Finally, DeltaGraph utilizes several other optimizations
including a column-oriented storage to minimize the data
that needs to be fetched to answer a query, and multi-query
optimization to simultaneously retrieve many snapshots.

DeltaGraph naturally enables distributed storage and pro-
cessing to scale to very large graphs. The edge deltas can be
stored in a distributed fashion through use of horizontal par-
titioning, and the historical snapshots can be loaded parallely
onto a set of machines in a partitioned fashion; in general, the
two partitionings need not be aligned, but for computational
efficiency, we currently require that they be aligned. Horizontal
partitioning also results in lower snapshot retrieval latencies
since the different deltas needed for reconstruction can be
fetched in parallel.

The second key component of our system is an in-memory
data structure called GraphPool. A typical network evolution
query may require analyzing 100’s of snapshots from the
history of a graph. Maintaining these snapshots in memory
independently of each other would likely be infeasible. The
GraphPool data structure exploits the commonalities in the
snapshots that are currently in memory, by overlaying them

on a single graph data structure (typically a union of all
the snapshots in memory). GraphPool also employs several
optimizations to minimize the amount of work needed to
incorporate a new snapshot and to clean up when a snapshot
is purged after the analysis has completed.

We have built a prototype implementation of our system in
Java, using the Kyoto Cabinet4 disk-based key-value store as
the back-end engine to store the DeltaGraph components (in
the distributed case, we run one instance on each machine).
Our design decision to use a key-value store at the back-
end was motivated by the flexibility, the fast retrieval times,
and the scalability afforded by such systems; since we only
require a simple get/put interface from the storage engine,
we can easily plug in other cloud-based, distributed key-value
stores like HBase5. Our comprehensive experimental evalua-
tion shows that our system can retrieve historical snapshots
containing up to millions of nodes and edges in several 100’s
of milliseconds or less, often an order of magnitude faster than
prior techniques like interval trees, and that the execution time
penalties of our in-memory data structure are minimal.

Finally, we note that our proposed techniques are general
and can be easily extended for efficient snapshot retrieval in
temporal relational databases as well.

Outline: We begin with a discussion of the prior work (Section
II). We then discuss the key components of the system, the data
model, and present the high level system architecture (Section
III). Then, we describe the DeltaGraph structure in detail
(Section IV), and develop analytical models for the storage
space and snapshot retrieval times (Section V). We then briefly
discuss GraphPool (Section VI). Finally, we present the results
of our experimental evaluation (Section VII).

II. RELATED WORK

We only discuss the most related work here and refer
the reader to the extended version of the paper for a more
detailed discussion [13]. There has been an increasing interest
in dynamic network analysis over the last decade, fueled by
the increasing availability of large volumes of temporally an-
notated network data. Many works have focused on designing
analytical models that capture how a network evolves (see,
e.g., [16], [14]). There is also much work on understanding
how communities or graph structures evolve, identifying key
individuals, locating hidden groups in dynamic networks, and
visualizing temporal evolution [5], [30], [10], [20], [4], [1],
[24], [21]. Our goal in this work is to build a graph data
management system that can efficiently and scalably support
these types of dynamic network analysis tasks over large
volumes of data in real-time.

There is a vast body of literature on temporal relational
databases, starting with the early work in the 80’s on devel-
oping temporal data models and temporal query languages. We
won’t attempt to present an exhaustive survey of that work, but
instead refer the reader to several surveys and books on this

4http://fallabs.com/kyotocabinet
5http://hbase.apache.org
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topic [22], [31], [8], [29], [25]. The most basic concepts that a
relational temporal database is based upon are valid time and
transaction time, considered orthogonal to each other. Under
that nomenclature, our data management system is based on
valid time. From a querying perspective, both valid-time and
transaction-time databases can be treated as simply collections
of intervals. Salzberg and Tsotras [25] present a comprehen-
sive survey of indexing structures for temporal databases. They
also present a classification of different queries that one may
ask over a temporal database. Under their notation, our focus
in this work is on the valid timeslice query, where the goal
is to retrieve all the entities and their attribute values that are
valid as of a specific time point. We discuss the related work
on snapshot retrieval queries in more detail in Section IV-A.

There has been resurgence of interest in general-purpose
graph data management systems in both academia and indus-
try. Several commercial and open-source graph management
systems are being actively developed (e.g., Neo4j6, GBase7,
Pregel [18], Giraph, Trinity [27], Cassovary, Pegasus [12]).
There is much ongoing work on efficient techniques for
answering various types of queries over graphs and on building
indexing structures for them. However, we are not aware of
any graph data management system that focuses on optimiz-
ing snapshot retrieval queries over historical traces, and on
supporting rich temporal analysis of large networks.

There is also prior work on temporal RDF data and temporal
XML Data. Several works (e.g., [23], [32]) have considered
the problems of subgraph pattern matching or SPARQL query
evaluation over temporally annotated RDF data. There is also
much work on version management in XML data stores and
scientific datasets [7], [15], [19]. Ghandeharizadeh et al. [9]
provide a formalism on deltas, which includes a delta arith-
metic. All these approaches assume unique node identifiers
to merge deltas with deltas or snapshots. Buneman et al. [7]
propose merging all the versions of the database into one
single hierarchical data structure for efficient retrieval. In a
recent work, Seering et al. [26] present a disk-based versioning
system that uses efficient delta encoding to minimize space
consumption and retrieval time in array-based systems. Lomet
et al. [17] show how to integrate a temporal index (TSB-
tree) into SQL Server. However, none of that prior work
focuses on snapshot retrieval in general graph databases, or
proposes techniques that can flexibly exploit the memory-
resident information.

III. OVERVIEW

We begin with briefly describing our graph data model, the
system architecture, and different types of snapshot retrieval
queries that we support.

A. Graph Data Model

The most basic model of a graph over a period of time is as a
collection of graph snapshots, one corresponding to each time
instance (we assume discrete time). Each such graph snapshot

6http://www.neo4j.org
7http://www.graphbase.net
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Fig. 2. Architecture of our system: our focus in this work is on the
components below the dashed line.

contains a set of nodes and a set of edges. The nodes and
edges are assigned unique ids at the time of their creation,
which are not re-assigned after deletion of the components.
A node or an edge may be associated with a list of attribute-
value pairs; the list of attribute names is not fixed a priori and
new attributes may be added at any time. Additionally an edge
contains the information about whether it is a directed edge
or an undirected edge.

We define an event as the record of an atomic activity in
the network. An event could pertain to either the creation or
deletion of an edge or node, or change in an attribute value
of a node or an edge. Alternatively, an event can express the
occurrence of a transient edge or node that is valid only for
that time instance instead of an interval (e.g., a “message”
from a node to another node). Being atomic refers to the fact
that the activity can not be logically broken down further into
smaller events. Hence, an event always corresponds to a single
timepoint. So, the valid time interval of an edge, [ts, te], is
expressed by two different events, edge addition and deletion
events at ts and te respectively. The exact contents of an event
depend on the event type; below we show examples of a new
edge event (NE), and an update node attribute event (UNA).
(a) {NE, N:23, N:4590, directed:no, 11/29/03 10:10}

(b) {UNA, N:23, ‘job’, old:‘..’, new:‘..’, 11/29/07 17:00}

We treat events as bidirectional, i.e., they could be applied to
a database snapshot in either direction of time. For example,
say that at times tk−1 and tk, the graph snapshots are Sk−1
and Sk respectively. If E is the set of all events at time tk,
we have that:

Sk = Sk−1 + E, Sk−1 = Sk − E

where the + and − operators denote application of the events
in E in the forward and the backward direction. A list of
chronologically organized events is called an eventlist.

B. System Overview

Figure 2 shows a high level overview of our system and
its key components. At a high level, there are multiple ways
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that a user or an application may interact with a historical
graph database. Given the wide variety of network analysis
or visualization tasks that are commonly executed against
an information network, we expect a large fraction of these
interactions will be through a programmatic API where the
user or the application programmer writes her own code to
operate on the graph (as shown in the figure). Such interactions
result in what we call snapshot queries being executed against
the database system. Executing such queries is the primary
focus of this paper, and we further discuss these types of
queries below. In ongoing work, we are also working on
developing a high-level declarative query language (similar
to TSQL [29]) and query processing techniques to execute
such queries against our database. As a concrete example,
an analyst who may have designed a new network evolution
model and wants to see how it fits the observed data, may
want to retrieve a set of historical snapshots and process them
using the programmatic API. On the other hand, a declarative
query language may better fit the needs of a user interested in
searching for a temporal pattern (e.g., find nodes that had the
fastest growth in the number of neighbors since joining the
network). Next, we briefly discuss snapshot queries and the
key components of the system.

1) Snapshot Queries: We differentiate between a single-
point snapshot query and a multipoint snapshot query.
An example of the first query is: “Retrieve the graph as of
January 2, 1995”. On the other hand, a multipoint snapshot
query requires us to simultaneously retrieve multiple historical
snapshots (e.g, “Retrieve the graphs as of every Sunday
between 1994 to 2004”). We also support more complex
snapshot queries where a TimeExpression or a time interval
is specified instead. Any snapshot query can specify whether
it requires only the structure of the graph, or a specified subset
of the node or edge attributes, or all attributes. Specifically, the
following is a list of some of the retrieval functions that we
support in our programmatic API.

GetHistGraph(Time t, String attr options): retrieve the graph
as of time t, with attr options specifying the attributes to
fetch. For example, to fetch all node attributes except salary,
and only the edge attribute name, we would use:

attr options = “+node:all-node:salary+edge:name”
GetHistGraphs(List<Time> t list, String attr options): fetch
multiple graphs, with t list specifying a list of time points.
GetHistGraph(TimeExpression tex, String attr options): fetch
a hypothetical graph using a multinomial Boolean expression
over time points. For example, the expression (t1 ∧ ¬t2)
specifies the components of the graph that were valid at time
t1 but not at time t2.
GetHistGraphInterval(Time ts, Time te, String attr options):
retrieve a graph consisting of all the elements that were added
during the time interval [ts, te).

Eventually, our goal is to support Blueprints8, a collection of
interfaces analogous to JDBC but for graph data (we currently

8http://github.com/tinkerpop/blueprints

support a subset). Blueprints is a generic graph Java API that
already binds to various graph database backends (e.g., Neo4j),
and many graph processing and programming frameworks are
built on top of it (e.g., Gremlin, a graph traversal language9;
Furnace, a graph algorithms package10; etc.). By supporting
the Blueprints API, we immediately enable use of many of
these already existing toolkits. The (Java) code snippet below
shows an example program that retrieves several graphs, and
operates upon them.

GraphManager gm = new GraphManager(. . . );
gm.loadDeltaGraphIndex(. . . ); // Load index information
// Retrieve graph structure as of Jan 2, 1985, with node names
HGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);
// Traverse the graph. . .
List<HNode> nodes = h1.getNodes();
List<HNode> neighborList = nodes.get(0).getNeighbors();
HEdge ed = h1.getEdge(nodes.get(0), neighborList.get(0)); . . .
// Retrieve graphs (structures only) on Jan 2 of 1986 and 1987
listOfDates.add(“1/2/1986”);
listOfDates.add(“1/2/1987”);
List<HGraph> h2 = gm.getHistGraphs(listOfDates, “”);

2) Key Components: There are two key data structure
components of our system.

1. GraphPool (Section VI) is an in-memory data structure
that can store multiple graphs together in a compact way by
overlaying the graphs on top of each other. At any time, the
GraphPool contains: (1) the current graph that reflects the
current state of the network, (2) the historical snapshots,
retrieved from the past using the commands above and
possibly modified by an application program, and (3)
materialized graphs, which are graphs that correspond to
interior or leaf nodes in the DeltaGraph, but may not
correspond to any valid graph snapshot (Section IV-E).

2. DeltaGraph (Section IV) is an index structure that stores
the historical network data using a hierarchical index
structure over deltas and leaf-level eventlists (called leaf-
eventlists). To execute a snapshot retrieval query, a set of
appropriate deltas and leaf-eventlists is fetched and the
resulting graph snapshot is overlaid on the existing set of
graphs in the GraphPool. The structure of the DeltaGraph
itself, called DeltaGraph skeleton, is maintained as a
weighted graph in memory (it contains statistics about the
deltas and eventlists, but not the actual data). The skeleton
is used during query planning to choose the optimal set of
deltas and eventlists for a given query.

The data structures are managed and maintained by several
system components. HistoryManager deals with the construc-
tion of the DeltaGraph, plans how to execute a singlepoint
or a multipoint snapshot query, and reads the required deltas
and eventlists from the disk. GraphManager is responsible
for managing the GraphPool data structure, including the
overlaying of deltas and eventlists, bit assignment, and post-

9http://github.com/tinkerpop/gremlin/wiki
10http://github.com/tinkerpop/furnace/wiki
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query clean up. Finally, the QueryManager manages the inter-
face with the user or the application program, and extracts a
snapshot query to be executed against the DeltaGraph. One of
its functions is to translate any explicit references (e.g., user-
id) from the query to the corresponding internal-id and vice-
versa for the final result, using a lookup table. As discussed
earlier, such a component is highly application-specific, and
we do not discuss it further in this paper.

3) Distributed Deployment: In a distributed deployment,
DeltaGraph and GraphPool are both partitioned across a set
of machines by partitioning the node ID space, and assigning
each partition to a separate machine (Section IV-F). The
partitioning used for storage can be different from that used
for retrieval and processing; however, for minimizing wasted
network communication, it would be ideal for the two parti-
tionings to be aligned so that multiple DeltaGraph partitions
may correspond to a single GraphPool partition, but not vice
versa. Snapshot retrieval on each machine is independent of
the others, and requires no network communication among
those. Once the snapshots are loaded into the GraphPool, any
distributed programming framework can be used on top; we
have implemented an iterative vertex-based message-passing
system analogous to Pregel [18].

For clarity, we assume a single-site deployment (i.e., no
horizontal partitioning) in most of the description that follows.

IV. DELTAGRAPH: INDEXING HISTORICAL GRAPH DATA

We begin with discussing previously proposed techniques
for supporting snapshot queries, and why they do not meet
our needs. We then present the DeltaGraph data structure.

A. Prior Techniques and Limitations

An optimal (within constant factors) solution to answering
snapshot retrieval queries is the external interval tree [3]. It
uses optimal space on disk and supports updates in optimal
(logarithmic) time. Segment trees [6] can also be used to solve
this problem, but may store some intervals in a duplicated
manner and hence use more space. Tsotras and Kangelaris [33]
present snapshot index, an I/O optimal solution to the prob-
lem for transaction-time databases. Salzberg and Tsotras [25]
also discuss two extreme approaches to supporting snapshot
retrieval queries, called Copy and Log approaches. In the
Copy approach, a snapshot of the database is stored at each
transaction state, the primary benefit being fast retrieval times;
however the space requirements make this approach infeasible
in practice. The other extreme approach is the Log approach,
where only and all the changes are recorded to the database,
annotated by time. While this approach is space-optimal and
supports O(1)-time updates (for transaction-time databases),
answering a query may require scanning the entire list of
changes and takes prohibitive amount of time. A mix of those
two approaches, called Copy+Log, where a subset of the
snapshots are explicitly stored, is often a better idea.

We found these (and other prior) approaches to be insuffi-
cient and inflexible for our needs for many reasons. (1) They
do not efficiently support multipoint queries that we expect to

S7=
f(S5,S6)

S5 = 
f(S1,S2)

S6=
f(S3,S4)

S1 S2
S3 S4

S8=∅

∆(S1,S5) ∆(S2,S5) 

∆(S5,S7) ∆(S6,S7) 

∆(S7,S8) 

∆(S4,S6) 

E1 E2 E3

L L L

∆(S3,S6) 

Super-Root
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(a)

S7=
f1(S5,S6)

S5 = 
f1(S1,S2)

S6=
f1(S3,S4)

S1
S2 S3 S4

S8=∅

E1 E2 E3

L L L

S11=
f2(S9,S10)

S9 = 
f2(S1,S2)

S10=
f2(S3,S4)

Super-Root

Root1 Root2

(b)

Fig. 3. DeltaGraphs with 4 leaves, leaf-eventlist size L, arity 2. ∆(Si, Sj)
denotes delta needed to construct Si from Sj .

be very commonly used in evolutionary analysis, that need
to be optimized by avoiding duplicate reads and repeated
processing of the events. (2) To cater to the needs of a variety
of different applications, we need the index structure to be
highly tunable, to allow trading off different resources and
user requirements (including memory, disk usage, and query
latencies). Ideally we would also like to control the distribution
of average snapshot retrieval times over the history, i.e., we
should be able to reduce the retrieval times for more recent
snapshots at the expense of increasing it for the older snapshots
(while keeping the utilization of the other resources the same),
or vice-versa. (3) For achieving low latencies, the index
structure should support flexible pre-fetching of portions of
the index into memory and should avoid processing any events
that are not needed by the query (e.g., if only the network
structure is needed, then we should not have to process any
events pertaining to the node or edge attributes). (4) Finally, we
would like the index structure to be able to support different
persistent storage options, ranging from a hard disk to the
cloud; most of the previously proposed index structures are
optimized primarily for disks.
B. DeltaGraph Overview

Our proposed index data structure, DeltaGraph, is a di-
rected graphical structure that is largely hierarchical, with
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(b) Multipoint query {t1, t2, t3}

Fig. 4. Example plans for singlepoint and multipoint retrieval on the
DeltaGraph shown in Figure 3(a).

the lowest level of the structure corresponding to equi-spaced
historical snapshots of the network (equal spacing is not a
requirement, but simplifies analysis). Figure 3(a) shows a
simple DeltaGraph, where the nodes S1, . . . , S4 correspond
to four historical snapshots of the graph, spaced L events
apart. We call these nodes leaves, even though there are
bidirectional edges between these nodes as shown in the
figure. The interior nodes of the DeltaGraph correspond to
graphs that are constructed from its children by applying
what we call a differential function, denoted f(). For an
interior node Sp with children Sc1 , . . . , Sck ,11 we have that
Sp = f(Sc1 , . . . , Sck). The simplest differential function is
perhaps the Intersection function. We discuss other functions
in Section V.

The graphs Sp are not explicitly stored in the DeltaGraph.
Rather we only store the delta information with the edges.
Specifically, the directed edge from Sp to Sci is associated
with a delta ∆(Sci , Sp) that allows construction of Sci from
Sp. It contains the elements that should be deleted from Sp
(i.e., Sp − Sci ) and those that should be added to Sp (i.e.,
Sci − Sp). The bidirectional edges among the leaves also
store similar deltas; here the deltas are simply the eventlists
(denoted E1, E2, E3 in Figure 3), called leaf-eventlists. For a
leaf-eventlist E, we denote by [Estart, Eend) the time interval
that it corresponds to. For convenience, we add a special root
node, called super-root, at the top of the DeltaGraph that is
associated with a null graph (S8 in Figure 3). For convenience,
we call the children of the super-root as roots.

A DeltaGraph can simultaneously have multiple hierarchies
that use different differential functions (Figure 3(b)); this can
be used to improve query latencies at the expense of higher
space requirement.

The deltas and the leaf-eventlists are given unique ids in the
DeltaGraph structure, and are stored in a columnar fashion,
by separating out the structure information from the attribute
information. For simplicity, we assume here a separation of a
delta ∆ (similarly an eventlist E) into three components: (1)
∆struct (Estruct), (2) ∆nodeattr (Enodeattr), and (3) ∆edgeattr

(Eedgeattr). For a leaf-eventlist E, we have an additional
component, Etransient, where the transient events are stored.

Finally, the deltas and the leaf-eventlists are partitioned and

11We abuse the notation somewhat to let Sp denote both the interior node
and the graph corresponding to it.

stored in a distributed key-value store. The node id space is
partitioned using a hash function for this purpose, and the
information associated with an edge is stored in partitions cor-
responding to both its endpoints (information is not duplicated
if the endpoints are in the same partition). The key used for the
key-value store is 〈partition id, delta or elist id, c〉, where
c ∈ {∆struct,∆nodeattr, . . . , Etransient} specifies which of
the components is being fetched or stored, partition id speci-
fies the partition, and delta or elist id specifies the unique id
corresponding to the delta or the eventlist.

C. Singlepoint Snapshot Queries
Given a singlepoint snapshot query at time t1, there are

many ways to answer it from the DeltaGraph. Let E denote
the leaf-eventlist such that t1 ∈ [Estart, Eend) (found through
a binary search at the leaf level). Any (directed) path from the
super-root to the two leaves adjacent to E represents a valid
solution to the query. Hence we can find the optimal solution
by finding the path with the lowest weight, where the weight of
an edge captures the cost of reading the associated delta (or the
required subset of it), and applying it to the graph constructed
so far. We approximate this cost by using the size of the delta
retrieved as the weight. Note that, each edge is associated with
three or more weights, corresponding to different attr options.
In the distributed case, we have a set of weights for each
partition. We also add a new virtual node (node St1 in Figure
4(a)), and add edges to it from the adjacent leaves as shown
in the figure. The weights associated with these two edges are
set by estimating the portion of the leaf-eventlist E that must
be processed to construct St1 from those leaves.

We use the standard Dijkstra’s shortest path algorithm to
find the optimal solution for a specific singlepoint query, using
the appropriate weights. The shortest path thus obtained gives
the minimal deltas and events to be fetched, considering the
different attr options for each query, memory material-
ization (discussed below) and other frequent changes to the
DeltaGraph over time.

D. Multipoint Snapshot Queries
Similarly to singlepoint snapshot queries, a multipoint snap-

shot query can be reduced to finding a Steiner tree in a
weighted directed graph. We illustrate this through an example.
Consider a multipoint query over three timepoints t1, t2, t3
over the DeltaGraph shown in Figure 3(a). We first identify
the leaf-level eventlists that contain the three time points, and
add virtual nodes St1, St2, St3 as shown in Figure 4(b). The
optimal solution to construct all three snapshots is then given
by the lowest-weight Steiner tree that connects the super-
root and the three virtual nodes (using appropriate weights
depending on the attributes that need to be fetched). A possible
Steiner tree is depicted in the figure using thicker edges.
As we can see, the optimal solution to the multipoint query
may not use the optimal solutions for each of the constituent
singlepoint queries. Finding the lowest weight Steiner tree is
unfortunately NP-Hard (and much harder for directed graphs
vs undirected graphs), and we instead use the standard 2-
approximation for undirected Steiner trees for that purpose.
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We first construct a complete undirected graph over the set
of nodes comprising the root and the virtual nodes, with the
weight of an edge between two nodes set to be the weight
of the shortest path between them in the skeleton. We then
compute the minimum spanning tree over this graph, and
“unfold” it to get a Steiner tree over the original skeleton.
This algorithm does not work for general directed graphs,
however we can show that, because of the special structure
of a DeltaGraph, it not only results in valid Steiner trees, but
retains the 2-approximation guarantee as well. We omit the
details for lack of space.

Aside from multipoint snapshot queries, this technique is
also used for queries asking for a graph valid for a composite
TimeExpression, which we currently execute by fetching the
required snapshots into memory and then operating upon them
to find the components that satisfy the TimeExpression.
E. Memory Materialization

For improving query latencies, some nodes in the Delta-
Graph are typically pre-fetched and materialized in memory.
In particular, the highest levels of the DeltaGraph should
be materialized, and further, the “rightmost” leaf (that cor-
responds to the current graph or a recent graph) should also
be considered as materialized. The task of materializing one or
more DeltaGraph nodes is equivalent to running a singlepoint
or a multipoint snapshot retrieval query, and we can use the
algorithms discussed above for that purpose. After a node is
materialized, we modify the in-memory DeltaGraph skeleton
by adding a directed edge with weight 0 from the super-
root to that node. Any further snapshot retrieval queries will
automatically benefit from the materialization.

The option of memory materialization enables fine-grained
runtime control over the query latencies and the memory con-
sumption, without the need to reconstruct the DeltaGraph. For
instance, if we know that a specific analysis task may access
snapshots from a specific period, then we can materialize the
lowest common ancestor of the snapshots from that period to
reduce the query latencies. One extreme case is what we call
total materialization, where all the leaves are materialized
in memory. This reduces to the Copy+Log approach with
the difference that the snapshots are stored in memory in
an overlaid fashion (in the GraphPool). For mostly-growing
networks (that see few deletions), such materialization can be
done cheaply resulting in very low query latencies.

F. DeltaGraph Construction

We first present a batch construction algorithm that operates
on a historical trace of a network, and then present our
approach to keep the DeltaGraph up-to-date as new events
arrive. Besides the graph itself, represented as a list of all
events in a chronological order, E, the batch construction
algorithm accepts four parameters: (1) L, the size of a leaf-
level eventlist; (2) k, the arity of the graph; (3) f(), the
differential function that computes a combined delta from a
given set of deltas; and (4) a partitioning of the node ID space.
The DeltaGraph is constructed in a bottom-up fashion, similar
to how a bulkloaded B+-Tree is constructed. We scan E from

the beginning, creating the leaf snapshots and corresponding
eventlists (containing L events each). When k of the snapshots
are created, a parent interior node is constructed from those
snapshots. Then the edge deltas are created, those snapshots
are deleted, and we continue scanning the eventlist.

The entire DeltaGraph can thus be constructed in a single
pass over E, assuming sufficient memory is available. At
any point during the construction, we may have up to k − 1
snapshots for each level of the DeltaGraph constructed so far.
For higher values of k, this can lead to very high memory
requirements. However, we use the GraphPool data structure
to maintain these snapshots in an overlaid fashion to decrease
the total memory consumption. We were able to scale to rea-
sonably large graphs using this technique. Further scalability
is achieved by making multiple passes over E, processing one
partition in each pass (Section IV-B).

Updates to the Current graph: Ongoing updates to the net-
work are recorded in a separate eventlist. After L such events
are recorded, the eventlist is added to the DeltaGraph at the
end, a new leaf-level snapshot is created, and the DeltaGraph
hierarchy is adjusted to accommodate this new leaf node (by
creating appropriate interior nodes). During the last phase, i.e.,
during the modification of its hierarchy, the DeltaGraph is
locked and no reads are allowed.

G. Extensibility
To efficiently support specific types of queries or tasks, it

is beneficial to maintain and index auxiliary information in
the DeltaGraph, that can be used to effectively answer those
queries. We allow extending the DeltaGraph functionality
through user-defined modules and functions for this purpose.
Due to space constraints, we sketch the key ideas briefly
here; see [13] for further details. In essence, the user can
supply functions that compute auxiliary information for each
snapshot, that will be automatically indexed along with the
original graph data. In addition, the user may also supply
functions that operate on the auxiliary information deltas
during retrieval, that can be used to directly answer specific
types of queries. We illustrate the extensibility framework
through a proof-of-concept example of a subgraph pattern
matching index. Techniques for subgraph pattern matching
are very well studied in literature (see, e.g., [28], [11]). We
evaluated our implementation on Dataset 1 (details in the
Section VII), and assigned labels to each node by randomly
picking one from a list of ten labels. We built the index by
indexing all paths of length 4 (see [13] for details). We were
able to run a subgraph pattern query in 148 seconds to find
all occurrences of a given pattern query, returning a total of
14109 matches over the entire history of the network.

V. DELTAGRAPH ANALYSIS

Next we develop analytical models for storage space, memory
consumption, and query latencies for a DeltaGraph.

A. Model of Graph Dynamics
Let G0 denote the initial graph as of time 0, and let G|E|

denote the graph after |E| events. To develop the analytical
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models, we make some simplifying assumptions, the most
critical being that we assume a constant rate of inserts or
deletes. Specifically, we assume that a δ∗ fraction of the
events result in an addition of an element to a graph (i.e.,
inserts), and ρ∗ fraction of the events result in removal of
an existing element from the graph (deletes). An update is
captured as a delete followed by an insert. Thus, we have
that |G|E|| = |G0| + |E| × δ∗ − |E| × ρ∗. We have that
δ∗ + ρ∗ < 1, but not necessarily = 1 because of transient
events that don’t affect the graph size. Typically we have that
δ∗ > ρ∗. If ρ∗ = 0, we call the graph a growing-only graph.

Note that, the above model does not require that the graph
change at a constant rate over time. In fact, the above model
(and the DeltaGraph structure) don’t explicitly reason about
time but rather only about the events. To reason about graph
dynamics over time, we need a model that captures event
density, i.e., number of events that take place over a period
of time. Let g(t) denote the total number of events that take
place from time 0 to time t. For most real-world networks, we
expect g(t) to be a super-linear function of t, indicating that
the rate of change over time itself increases over time.

B. Differential Functions

Recall that a differential function specifies how the snapshot
corresponding to an interior node should be constructed from
snapshots corresponding to its children. The simplest differ-
ential function is intersection. However, for most networks,
intersection does not lead to desirable behavior. For a growing-
only graph, intersection results in a left-skewed DeltaGraph,
where the delta sizes are lower on the part corresponding to
the older snapshots. In fact, the root is exactly G0 for a strictly
growing-only graph.

Table I shows several other differential functions with better
and tunable behavior. Let p be an interior node with children
a and b. Let ∆(a, p) and ∆(b, p) denote the corresponding
deltas. Further, let b = a+ δab − ρab.
Skewed: For the two extreme cases, r = 0 and r = 1, we have

that f(a, b) = a and f(a, b) = b respectively. By using an
appropriate value of r, we can control the sizes of the two
deltas. For example, for r = 0.5, we get p = a + 1

2δab.
Here 1

2δab means that we randomly choose half of the
events that comprise δab (by using a hash function that
maps the events to 0 or 1). So |∆(a, p)| = 1

2 |δab|, and
|∆(b, p)| = 1

2 |δab|+ |ρab|.
Balanced: This differential function, a special case of mixed,

ensures that the delta sizes are balanced across a and b,
i.e., |∆(a, p)| = |∆(b, p)| = 1

2 |δab| +
1
2 |ρab|. Note that,

here we make an assumption that a + 1
2δab −

1
2ρab is a

valid operation. A problem may occur because an event
∈ ρab may be selected for removal, but may not exist in
a+ 1

2δab. We can ensure that this does not happen by using
the same hash function for choosing both 1

2δab and 1
2ρab.

Empty: This special case makes the DeltaGraph approach
identical to the Copy+Log approach.

The other functions shown in Table I can be used to expose
more subtle trade-offs, but our experience with these functions

TABLE I
DIFFERENTIAL FUNCTIONS

Name Description
Intersection f(a, b, c . . . ) = a ∩ b ∩ c . . .
Union f(a, b, c . . . ) = a ∪ b ∪ c . . .
Skewed f(a, b) = a+ r.(b− a), 0 ≤ r ≤ 1
Right Skewed f(a, b) = a ∩ b+ r.(b− a ∩ b), 0 ≤ r ≤ 1
Left Skewed f(a, b) = a ∩ b+ r.(a− a ∩ b), 0 ≤ r ≤ 1
Mixed f(a, b, c . . . ) = a+r1.(δab +δbc . . . )−r2.(ρab +

ρbc . . . ), 0 ≤ r2 ≤ r1 ≤ 1

Balanced f(a, b, c . . . ) = a+ 1
2
.(δab + δbc . . . )− 1

2
.(ρab +

ρbc . . . )
Empty f(a, b, c . . . ) = ∅

suggests that, in practice, Intersection, Union, and Mixed
functions are likely to be sufficient for most situations.

C. Space and Time Estimation Models

Next, we develop analytical models for various quantities
of interest in the DeltaGraph, including the space required to
store it, the distribution of the delta sizes across levels, and
the snapshot retrieval times. We focus on the Balanced and
Intersection differential functions; we omit detailed derivations
for lack of space, and refer the reader to [13] instead.

We make several simplifying assumptions in the analysis
below. As discussed above, we assume constant rates of inserts
and deletes. Let L denote the leaf-eventlist size, and let E
denote the complete eventlist corresponding to the historical
trace. Thus, we have N = |E|

L + 1 leaf nodes. We denote
by k the arity of the graph, and assume that N is a power
of k (resulting in a complete k-ary tree). We number the
DeltaGraph levels from the bottom, starting with 1 (i.e., the
bottommost level is called the first level).

Balanced Function: Although it appears somewhat complex,
the Balanced differential function is the easiest to analyze. The
total amount of space required to store all the deltas (excluding
the one from the empty super-root node to the root) can be
shown to be:

(logk N−1)
2 (k − 1)(δ∗ + ρ∗)|E|

The size of the snapshot corresponding to the root itself can be
seen to be: |G0|+ 1

2 (δ∗−ρ∗)|E| (independent of k). Although
this may seem high, we note that the size of the current graph
(G|E|) is: |G0| + (δ∗ − ρ∗)|E|, which is larger than the size
of the root. Further, there is a significant overlap between the
two, especially if |G0| is large, making it relatively cheap to
materialize the root.

Also, because of symmetry, we can show that the total
weight of the shortest path between the root and any leaf is:
1
2 (δ∗ + ρ∗)|E|, resulting in balanced query latencies for the
snapshots (for specific timepoints corresponding to the same
leaf-eventlist, there are small variations because of different
portions of the leaf-eventlist that need to be processed).

Intersection: On the other hand, the Intersection function is
much trickier to analyze. In fact, just calculating the size of
the intersection for a sequence of snapshots is non-trivial in
the general case. As above, consider a graph containing |E|
events. The root of the DeltaGraph contains all events that
were not deleted from G0 during that event trace. We state
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the following analytical formulas for the size of the root for
some special cases without full derivations.
ρ∗ = 0: For a growing-only graph, |root| = G0.
δ∗ = ρ∗: Here, the size of the graph remains constant (i.e.,

G|E| = G0). We can show that: |root| = |G0|e−
|E|δ∗
|G0| .

δ∗ = 2ρ∗: |root| = |G0|2
|G0|+ρ∗|E| .

The last two formulas both confirm our intuition that, as the
total number of events increases, the size of the root goes to
zero. Similar expressions can be derived for the sizes of any
specific interior node or the deltas, by plugging in appropriate
values of |E| and |G0|. We omit resulting expressions for the
total size of the index for the latter two cases.

The Intersection function does have a highly desirable
property that, the total weight of the shortest path between
the super-root and any leaf is exactly the size of that leaf.
Since an interior node contains a subset of the events in
each of its children, we only need to fetch the remaining
events to construct the child. However, this means that the
query latencies are typically skewed, with the older snapshots
requiring less time to construct than the newer snapshots (that
are typically larger).

D. Discussion

We briefly discuss the impact of different construction
parameters and suggest strategies for choosing the right pa-
rameters. We then briefly present a qualitative comparison with
interval trees, segment trees, and the Copy+Log approach.

Effect of different construction parameters: The parame-
ters involved in the construction of the DeltaGraph give it high
flexibility, and must be chosen carefully. The optimal choice of
the parameters is highly dependent on the application scenario
and requirements. The effect of arity is easy to quantify in most
cases: higher arity results in lower query access times, but usu-
ally much higher disk space utilization (even for the Balanced
function, the query access time becomes dependent on k for
a more realistic cost model where using a higher number of
queries to fetch the same amount of information takes more
time). Parameters such as r (for Skewed function) and r1, r2
(for Mixed function) can be used to control the query retrieval
times over the span of the eventlist. For instance, if we expect
a larger number of queries to be accessing newer snapshots,
then we should choose higher values for these parameters.

The choice of differential function itself is quite critical.
Intersection typically leads to lower disk space utilization,
but also highly skewed query latencies that cannot be tuned
except through memory materialization. Most other differential
functions lead to higher disk utilization but provide better
control over the query latencies. Thus if disk utilization is
of paramount importance, then Intersection would be the
preferred option, but otherwise, the Mixed function (with the
values of r1 and r2 set according to the expected query
workload) would be the recommended option.

Fine-tuning the values of these parameters also requires
knowledge of g(t), the event density over time. The analytical
models that we have developed reason about the retrieval times

for the leaf snapshots, but these must be weighted using g(t)
to reason about retrieval times over time. For example, the
Balanced function does not lead to uniform query latencies
over time for graphs that show super-linear growth. Instead, we
must choose r1, r2 > 0.5 to guarantee uniform query latencies
over time in that case.

Qualitative comparison with other approaches: The
Copy+Log approach can be seen as a special case of
DeltaGraph with Empty differential function (and arity = N ).
Compared to interval trees, DeltaGraph will almost always
need more space, but its space consumption is usually lower
than segment trees. Assume that δ∗ + ρ∗ = 1 (this is the
worst case for DeltaGraph). Then, for the Balanced function,
with arity (k) = 2, the disk space required is O(|E| logN).
Since the number of intervals is at least |E|/2, the space
requirements for interval trees and segment trees are O(|E|)
and O(|E| log |E|) respectively. For growing-only graphs
and the Intersection function, we see similar behavior. In
most other scenarios, we expect the total space requirement
for DeltaGraph to be somewhere in between O(|E|) and
O(|E| logN), and lower if δ∗ + ρ∗ � 1 (which is often the
case for social networks).

Regarding query latencies, for Intersection without any
materialization, the amount of information retrieved for an-
swering a snapshot query is exactly the size of the snapshot.
Both interval trees and segment trees behave similarly. On the
other hand, if the root or some of the higher levels of the
DeltaGraph are materialized, then the query latencies could
be significantly lower than what we can achieve with either
of those approaches. For Balanced function, if the root is
materialized, then the average query latencies are similar for
the three approaches. However, for the Balanced function, the
retrieval times do not depend on the size of the retrieved
snapshot, unlike interval and segment trees, leading to more
predictable and desirable behavior. Again, with materializa-
tion, the query latencies can be brought down even further.

VI. GRAPHPOOL

The in-memory graphs are stored in the in-memory Graph-
Pool in an overlapping manner. In this section, we briefly
describe the key ideas behind this data structure.

Description: GraphPool maintains a single graph that is the
union of all the active graphs including: (1) the current graph,
(2) historical snapshots, and (3) materialized graphs (Figure
5). Each component (node or edge), and for each attribute,
each of its possible attribute values, are associated with a
BitMap string (called BM henceforth), used to decide which
of the active graphs contain that component or attribute. A
GraphID-Bit mapping table is used to maintain the mapping
of bits to different graphs. Figure 5(c) shows an example of
such a mapping. Each historical graph that has been fetched is
assigned two consecutive Bits, {2i, 2i+1}, i ≥ 1. Materialized
graphs, on the other hand, are only assigned one Bit.

Bits 0 and 1 are reserved for the current graph membership.
Specifically, Bit 0 tells us whether the element belongs to the

1005



1

9 8

7 6

Gt1 1

8

7 6

3

4

5

Gcurrent

6

3
2

4

Gt2

1

9
8

7 6

3 2

4

5

1 3

4

67

8

GraphPool(current,t1,t2)
(a)

(b) (c)

1

9 8

7 6

Gt1 1

8

7 6

3

4

5

Gcurrent

6

3
2

4

Gt2

1

9
8

7 6

3 2

4

5

1 3

4

67

8

GraphPool(current,t1,t2)

1

9
8

7 6

Gt1
1

8

7 6

3

4

5

Gcurrent

6

3
2

4

Gt2

1

9
8

7 6

3 2

4

5

1 3

4

67

8

GraphPool(current,t1,t2)

Figure 5: GraphPool consisting of overlaid graphs at times
tcurrent, t1 and t2.

Table 3: GraphId-Bit Mapping Table
Bit GraphID Graph Dep
2,3 34 Hist. Graph -
4 4 Mat. Graph -
5 41 Mat. Graph -
6,7 35 Hist. Graph 4

icant optimization opportunity. Even if a historical graph differs
from the current graph or one of the materialized graphs in only a
few elements, we would still have to set the corresponding bit ap-
propriately for all the elements in the graph. We can use the bit
pair, {2i, 2i + 1}, to eliminate this step. We mark the historical
graph as being dependent on a materialized graph (or the current
graph) in such a case. For example, in Table ??, historical snapshot
35 is dependent on materialized graph 4. If Bit 2i is true, then the
membership of an element in the historical graph is identical to its
membership in the materialized graph (i.e., if present in one, then
present in another). On the other hand, if Bit 2i is false, then Bit
2i + 1 tells us whether the element is contained in the historical
graph or not (independent of the materialized graph).

When a graph is pulled into the memory either in response to
a query or for materialization, it is overlaid onto the current in-
memory graph, edge by edge and node by node. The number of
graphs that can be overlaid simultaneously depends primarily on
the amount of memory required to contain the union of all the
graphs. The bitmap size is dynamically adjusted to accommo-
date more graphs if needed, and overall does not occupy significant
space. The determination of whether to store a graph as being de-
pendent on a materialized graph is made at the query time. During
the query plan construction, we count the total number of events
that need to be applied to the materialized graph, and if it is small
relative to the size of the graph, then the fetched graph is marked
as being dependent on the materialized graph.

Updates to the Current graph: As the current graph is being up-
dated, the DeltaGraph index is continuously updated. All the new
events are recorded in a recent eventlist. When the eventlist reaches
sufficient size (i.e., L), the eventlist is inserted into the index and

the index is updated by adding appropriate edges and deltas. We
omit further details because of lack of space.

Clean-up of a graph from memory: When a historical graph is
no longer needed, it needs to be cleaned. Cleaning up a graph
is logically a reverse process of fetching it in to the memory. The
naive way would be to go through all the elements in the graph,
and reset the appropriate bit(s), and delete the element if no bits
are set. However the cost of doing this can be quite high. We in-
stead perform clean-up in a lazy fashion, periodically scanning the
GraphPool in the absence of query load, to reset the bits, and to see
if any elements should be deleted. Also, in case the system is run-
ning low on memory and there are one or more unneeded graphs,
the Cleaner thread is invoked and not interrupted until the desired
amount of memory is liberated.

7. EMPIRICAL EVALUATION
In this section, we present the results of a comprehensive exper-

imental evaluation conducted to evaluate the performance of our
prototype system, implemented in Java using the Kyoto Cabinet
key-value store as the underlying persistent storage. The system
provides a programmatic API including the API discussed in Sec-
tion 3.2.1; in addition, we have implemented a Pregel-like itera-
tive framework for distributed processing, and the subgraph pattern
matching index presented in Section ??. Unless otherwise stated,
the experiments were run on a single core on a single machine.
XXX need details.

Datasets: We used three datasets in our experimental study.
(1) Dataset 1 is a growing-only, co-authorship network extracted
from the DBLP dataset, with 2M edges in all. The network starts
empty and grows over a period of seven decades. The nodes (au-
thors) and edges (co-author relationships) are added to the network,
and no nodes or edges are dropped. At the end, the total number
of unique nodes present in the graph is around 330,000, and the
number of edges with unique end points is 1.04M . Each node was
assigned 10 attribute key-value pairs, generated at random.
(2) Dataset 2 is a randomly generated historical trace with Dataset
1 as the starting snapshot, followed by 2M events where 1M edges
added and 1M edges are deleted over time.
(3) Dataset 3 is a randomly generated historical trace with a start-
ing snapshot containing 10 million (10M ) edges and 3M nodes
(from a patent citation network), followed by 50M events, 25M
edge additions and 25M edge deletions.

Experiments with Dataset 3: We created a partitioned index for
Dataset 0 and deployed a parallel framework for Page Rank exe-
cution using 5 machines, each running a single core and approx-
imately 1.4 GB of available memory. Each DeltaGraph partition
was approximately 1.7 GB. On an average, it takes 22 seconds to
calculate PageRank for a graph snapshot, including snapshot re-
trieval time.

Comparison with other storage approaches: We begin with com-
paring our approach with in-memory interval trees, and the Copy+Log
approach. Both of those were integrated into our system such that
any of the approaches could be used to fetch the historical snap-
shots into the GraphPool, and we report the time taken to do so.

Figure ?? shows the results of our comparison between Copy+Log
and DeltaGraph approaches for time taken to execute 25 uniformly
spaced queries on Datasets 1 and 2. The leaf-eventlist sizes were
chosen so that the disk storage space consumed by both the ap-
proaches was about the same. For similar disk space constraints

Figure 5: GraphPool consisting of overlaid graphs at times
tcurrent, t1 and t2.

Bit GraphID Graph Dep
2,3 34 Hist. Graph -
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icant optimization opportunity. Even if a historical graph differs
from the current graph or one of the materialized graphs in only a
few elements, we would still have to set the corresponding bit ap-
propriately for all the elements in the graph. We can use the bit
pair, {2i, 2i + 1}, to eliminate this step. We mark the historical
graph as being dependent on a materialized graph (or the current
graph) in such a case. For example, in Table ??, historical snapshot
35 is dependent on materialized graph 4. If Bit 2i is true, then the
membership of an element in the historical graph is identical to its
membership in the materialized graph (i.e., if present in one, then
present in another). On the other hand, if Bit 2i is false, then Bit
2i + 1 tells us whether the element is contained in the historical
graph or not (independent of the materialized graph).

When a graph is pulled into the memory either in response to
a query or for materialization, it is overlaid onto the current in-
memory graph, edge by edge and node by node. The number of
graphs that can be overlaid simultaneously depends primarily on
the amount of memory required to contain the union of all the
graphs. The bitmap size is dynamically adjusted to accommo-
date more graphs if needed, and overall does not occupy significant
space. The determination of whether to store a graph as being de-
pendent on a materialized graph is made at the query time. During
the query plan construction, we count the total number of events
that need to be applied to the materialized graph, and if it is small
relative to the size of the graph, then the fetched graph is marked
as being dependent on the materialized graph.

Updates to the Current graph: As the current graph is being up-
dated, the DeltaGraph index is continuously updated. All the new
events are recorded in a recent eventlist. When the eventlist reaches
sufficient size (i.e., L), the eventlist is inserted into the index and
the index is updated by adding appropriate edges and deltas. We
omit further details because of lack of space.

Clean-up of a graph from memory: When a historical graph is
no longer needed, it needs to be cleaned. Cleaning up a graph

is logically a reverse process of fetching it in to the memory. The
naive way would be to go through all the elements in the graph,
and reset the appropriate bit(s), and delete the element if no bits
are set. However the cost of doing this can be quite high. We in-
stead perform clean-up in a lazy fashion, periodically scanning the
GraphPool in the absence of query load, to reset the bits, and to see
if any elements should be deleted. Also, in case the system is run-
ning low on memory and there are one or more unneeded graphs,
the Cleaner thread is invoked and not interrupted until the desired
amount of memory is liberated.

7. EMPIRICAL EVALUATION
In this section, we present the results of a comprehensive exper-

imental evaluation conducted to evaluate the performance of our
prototype system, implemented in Java using the Kyoto Cabinet
key-value store as the underlying persistent storage. The system
provides a programmatic API including the API discussed in Sec-
tion 3.2.1; in addition, we have implemented a Pregel-like itera-
tive framework for distributed processing, and the subgraph pattern
matching index presented in Section 4.7.

Datasets: We used three datasets in our experimental study.
(1) Dataset 1 is a growing-only, co-authorship network extracted
from the DBLP dataset, with 2M edges in all. The network starts
empty and grows over a period of seven decades. The nodes (au-
thors) and edges (co-author relationships) are added to the network,
and no nodes or edges are dropped. At the end, the total number
of unique nodes present in the graph is around 330,000, and the
number of edges with unique end points is 1.04M . Each node was
assigned 10 attribute key-value pairs, generated at random.
(2) Dataset 2 is a randomly generated historical trace with Dataset
1 as the starting snapshot, followed by 2M events where 1M edges
added and 1M edges are deleted over time.
(3) Dataset 3 is a randomly generated historical trace with a start-
ing snapshot containing 10 million (10M ) edges and 3M nodes
(from a patent citation network), followed by 50M events, 25M
edge additions and 25M edge deletions.

Experimental Setup: We created a partitioned index for Dataset
3 and deployed a parallel framework for PageRank computation
using 5 machines, each running a single Amazon EC2 core with
approximately 1.4GB of available memory. Each DeltaGraph par-
tition was approximately 1.7GB. Note that the index is stored in
a compressed fashion (using built-in compression in Kyoto Cabi-
net). On average, it took us 22 seconds to calculate PageRank for a
specific graph snapshot, including the snapshot retrieval time. This
experiment illustrates the effectiveness of our framework at easily
handling very large graphs.

For the rest of the experimental study, we report results for Datasets
1 and 2; the techniques we compare against are centralized, and
further the cost of constructing the index makes it hard to run ex-
periments that evaluate the effect of the construction parameters.
Unless otherwise specified, the experiments were run on a single
Amazon EC2 core (with 1.4GB memory).

Comparison with other storage approaches: We begin with com-
paring our approach with in-memory interval trees, and the Copy+Log
approach. Both of those were integrated into our system such that
any of the approaches could be used to fetch the historical snap-
shots into the GraphPool, and we report the time taken to do so.

Figure 6 shows the results of our comparison between Copy+Log
and DeltaGraph approaches for time taken to execute 25 uniformly
spaced queries on Datasets 1 and 2. The leaf-eventlist sizes were
chosen so that the disk storage space consumed by both the ap-

Table 3: GraphId-Bit Mapping Table
Bit GraphID Graph Dep
2,3 34 Hist. Graph -
4 4 Mat. Graph -
5 41 Mat. Graph -
6,7 35 Hist. Graph 4

ble attribute values, are associated with a bitmap string (called BM
henceforth), used to decide which of the active graphs contain that
component or attribute. A GraphID-Bit mapping table is used to
maintain the mapping of bits to different graphs. Table 6 shows an
example of such a mapping. Each historical graph that has been
fetched is assigned two consecutive Bits, {2i, 2i + 1}, i ≥ 1. Ma-
terialized graphs, on the other hand, are only assigned one Bit.

Bits 0 and 1 are reserved for the current graph membership.
Specifically, Bit 0 tells us whether the element belongs to the cur-
rent graph or not. Bit 1, on the other hand, is used for elements that
may have been recently deleted, but are not part of the DeltaGraph
index yet. A Bit associated with a materialized graph is interpreted
in a straightforward manner.

Using a single bit for a historical graph misses out on a signif-
icant optimization opportunity. Even if a historical graph differs
from the current graph or one of the materialized graphs in only a
few elements, we would still have to set the corresponding bit ap-
propriately for all the elements in the graph. We can use the bit
pair, {2i, 2i + 1}, to eliminate this step. We mark the historical
graph as being dependent on a materialized graph (or the current
graph) in such a case. For example, in Table 6, historical snapshot
35 is dependent on materialized graph 4. If Bit 2i is true, then the
membership of an element in the historical graph is identical to its
membership in the materialized graph (i.e., if present in one, then
present in another). On the other hand, if Bit 2i is false, then Bit
2i + 1 tells us whether the element is contained in the historical
graph or not (independent of the materialized graph).

When a graph is pulled into the memory either in response to
a query or for materialization, it is overlaid onto the current in-
memory graph, edge by edge and node by node. The number of
graphs that can be overlaid simultaneously depends primarily on
the amount of memory required to contain the union of all the
graphs. The bitmap size is dynamically adjusted to accommo-
date more graphs if needed, and overall does not occupy significant
space. The determination of whether to store a graph as being de-
pendent on a materialized graph is made at the query time. During
the query plan construction, we count the total number of events
that need to be applied to the materialized graph, and if it is small
relative to the size of the graph, then the fetched graph is marked
as being dependent on the materialized graph.

Updates to the Current graph: As the current graph is being up-
dated, the DeltaGraph index is continuously updated. All the new
events are recorded in a recent eventlist. When the eventlist reaches
sufficient size (i.e., L), the eventlist is inserted into the index and
the index is updated by adding appropriate edges and deltas. We
omit further details because of lack of space.

Clean-up of a graph from memory: When a historical graph is
no longer needed, it needs to be cleaned. Cleaning up a graph
is logically a reverse process of fetching it in to the memory. The
naive way would be to go through all the elements in the graph,
and reset the appropriate bit(s), and delete the element if no bits
are set. However the cost of doing this can be quite high. We in-
stead perform clean-up in a lazy fashion, periodically scanning the

GraphPool in the absence of query load, to reset the bits, and to see
if any elements should be deleted. Also, in case the system is run-
ning low on memory and there are one or more unneeded graphs,
the Cleaner thread is invoked and not interrupted until the desired
amount of memory is liberated.

7. EMPIRICAL EVALUATION
In this section, we present the results of a comprehensive exper-

imental evaluation conducted to evaluate the performance of our
prototype system, implemented in Java using the Kyoto Cabinet
key-value store as the underlying persistent storage. The system
provides a programmatic API including the API discussed in Sec-
tion 3.2.1; in addition, we have implemented a Pregel-like itera-
tive framework for distributed processing, and the subgraph pattern
matching index presented in Section 4.7.

Datasets: We used three datasets in our experimental study.
(1) Dataset 1 is a growing-only, co-authorship network extracted
from the DBLP dataset, with 2M edges in all. The network starts
empty and grows over a period of seven decades. The nodes (au-
thors) and edges (co-author relationships) are added to the network,
and no nodes or edges are dropped. At the end, the total number
of unique nodes present in the graph is around 330,000, and the
number of edges with unique end points is 1.04M . Each node was
assigned 10 attribute key-value pairs, generated at random.
(2) Dataset 2 is a randomly generated historical trace with Dataset
1 as the starting snapshot, followed by 2M events where 1M edges
added and 1M edges are deleted over time.
(3) Dataset 3 is a randomly generated historical trace with a start-
ing snapshot containing 10 million (10M ) edges and 3M nodes
(from a patent citation network), followed by 50M events, 25M
edge additions and 25M edge deletions.

Experimental Setup: We created a partitioned index for Dataset
3 and deployed a parallel framework for PageRank computation
using 5 machines, each running a single Amazon EC2 core with
approximately 1.4GB of available memory. Each DeltaGraph par-
tition was approximately 1.7GB. Note that the index is stored in
a compressed fashion (using built-in compression in Kyoto Cabi-
net). On average, it took us 22 seconds to calculate PageRank for a
specific graph snapshot, including the snapshot retrieval time. This
experiment illustrates the effectiveness of our framework at easily
handling very large graphs.

For the rest of the experimental study, we report results for Datasets
1 and 2; the techniques we compare against are centralized, and
further the cost of constructing the index makes it hard to run ex-
periments that evaluate the effect of the construction parameters.
Unless otherwise specified, the experiments were run on a single
Amazon EC2 core (with 1.4GB memory).

Comparison with other storage approaches: We begin with com-
paring our approach with in-memory interval trees, and the Copy+Log
approach. Both of those were integrated into our system such that
any of the approaches could be used to fetch the historical snap-
shots into the GraphPool, and we report the time taken to do so.

Figure 6 shows the results of our comparison between Copy+Log
and DeltaGraph approaches for time taken to execute 25 uniformly
spaced queries on Datasets 1 and 2. The leaf-eventlist sizes were
chosen so that the disk storage space consumed by both the ap-
proaches was about the same. For similar disk space constraints
(450MB and 950MB for Dataset 1 and 2, respectively), the Delt-
aGraph could afford a smaller size of L and hence higher number
of snapshots than the Copy+Log approach. As we can see, the best
DeltaGraph variation outperformed the Copy+Log approach by a

Fig. 5. (a) Graphs at times tcurrent, t1, and t2; (b) GraphPool consisting
of overlaid graphs; (c) GraphID-Bit Mapping Table

current graph or not. Bit 1, on the other hand, is used for
elements that may have been recently deleted, but are not
part of the DeltaGraph index yet. A Bit associated with a
materialized graph is interpreted in a straightforward manner.

Using a single bit for a historical graph misses out on a
significant optimization opportunity. Even if a historical graph
differs from the current graph or one of the materialized
graphs in only a few elements, we would still have to set
the corresponding bit appropriately for all the elements in the
graph. We can use the bit pair, {2i, 2i+ 1}, to eliminate this
step. We mark the historical graph as being dependent on a
materialized graph (or the current graph) in such a case. For
example, in Figure 5(c), historical snapshot 35 is dependent on
materialized graph 4. If Bit 2i is true, then the membership of
an element in the historical graph is identical to its membership
in the materialized graph (i.e., if present in one, then present
in another). On the other hand, if Bit 2i is false, then Bit 2i+1
tells us whether the element is contained in the historical graph
or not (independent of the materialized graph).

When a graph is pulled into the memory either in response
to a query or for materialization, it is overlaid onto the current
in-memory graph, edge by edge and node by node. The
number of graphs that can be overlaid simultaneously depends
primarily on the amount of memory required to contain the
union of all the graphs. The BM size is dynamically adjusted
to accommodate more graphs if needed, and overall does not
occupy significant space. The determination of whether to
store a graph as being dependent on a materialized graph is
made at the query time. During the query plan construction,
we count the total number of events that need to be applied to
the materialized graph, and if it is small relative to the size of
the graph, then the fetched graph is marked as being dependent
on the materialized graph.

Clean-up of a graph from memory: When a historical
graph is no longer needed, it needs to be cleaned. Cleaning
up a graph is logically a reverse process of fetching it into
the memory. The naive way would be to go through all the

elements in the graph, and reset the appropriate bit(s), and
delete the element if no bits are set. However the cost of doing
this can be quite high. We instead perform clean-up in a lazy
fashion, periodically scanning the GraphPool in the absence
of query load, to reset the bits, and to see if any elements
should be deleted. Also, in case the system is running low
on memory and there are one or more unneeded graphs, the
Cleaner thread is invoked and not interrupted until the desired
amount of memory is liberated.

VII. EMPIRICAL EVALUATION

We present the results of a comprehensive experimental
evaluation conducted to evaluate the performance of our pro-
totype system, implemented in Java using the Kyoto Cabinet
key-value store as the underlying persistent storage. The sys-
tem provides a programmatic API including the API discussed
in Section III-B1; in addition, we have implemented a Pregel-
like iterative framework for distributed processing, and the
subgraph pattern matching index presented in Section IV-G.

Datasets: We used three datasets in our experimental study.
(1) Dataset 1 is a growing-only co-authorship network ex-
tracted from the DBLP dataset, with 2M edges in all. The net-
work starts empty and grows over a period of seven decades.
The nodes (authors) and edges (co-author relationships) are
added to the network, and no nodes or edges are dropped. At
the end, the total number of unique nodes present in the graph
is around 330,000, and the number of edges with unique end
points is 1.04M . Each node was assigned 10 attribute key-
value pairs, generated at random.
(2) Dataset 2 is a randomly generated historical trace with the
final graph of Dataset 1 as the starting snapshot, followed by
2M events where 1M edges added and 1M edges are deleted
over time.
(3) Dataset 3 is a randomly generated historical trace with a
starting snapshot containing 10 million (10M ) edges and 3M
nodes (from a patent citation network), followed by 100M
events, 50M edge additions and 50M edge deletions.

Experimental Setup: We created a partitioned index for
Dataset 3 and deployed a parallel framework for PageRank
computation using 7 machines, each with a single Amazon
EC2 core and approximately 1.4GB of available memory.
Each DeltaGraph partition was approximately 2.2GB. Note
that the index is stored in a compressed fashion (using built-
in compression in Kyoto Cabinet). On average, it took us 23.8
seconds to calculate PageRank for a specific graph snapshot,
including the snapshot retrieval time. This experiment illus-
trates the effectiveness of our framework at scalably handling
large historical graphs.

For the rest of the experimental study, we report results
for Datasets 1 and 2; the techniques we compare against are
centralized, and further the cost of constructing the index
makes it hard to run experiments that evaluate the effect of the
construction parameters. Unless otherwise specified, we used
a single Amazon EC2 core (with 1.4GB memory).
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Fig. 6. Comparing DeltaGraph and Copy+Log. Int and Bal denote the
Intersection and Balanced functions respectively.

Comparison with other storage approaches: We begin
with comparing our approach with in-memory interval
trees, and Copy+Log approach. Both of those were integrated
into our system such that any of the approaches could be
used to fetch the historical snapshots into the GraphPool, and
we report the time taken to do so.

Figure 6 shows the results of our comparison between
Copy+Log and DeltaGraph approaches for time taken to
execute 25 uniformly spaced queries on Datasets 1 and 2.
The leaf-eventlist sizes were chosen so that the disk storage
space consumed by both the approaches was about the same.
For similar disk space constraints (450MB and 950MB for
Dataset 1 and 2, respectively), the DeltaGraph could afford a
smaller size of L and hence higher number of snapshots than
the Copy+Log approach. As we can see, the best DeltaGraph
variation outperformed the Copy+Log approach by a factor of
at least 4, and orders of magnitude in several cases.

Figure 7 compares an in-memory interval tree and two
DeltaGraph variations: (1) with low materialization, (2) with
all leaf nodes materialized. We compared these configurations
for time taken to execute 25 queries on Dataset 2, using
k = 4 and L = 30000. We can see that both the DeltaGraph
approaches outperform the interval tree approach, while using
significantly less memory than the interval tree (even with total
materialization). The largely disk-resident DeltaGraph with
root’s grandchildren materialized is more than four times as
fast as the regular approach, whereas the total materialization
approach, a more fair comparison, is much faster.

We also evaluated a naive approach similar to the Log
technique, with raw events being read from input files directly
(not shown in the above plots). The average retrieval times
were worse than DeltaGraph by factors of 20 and 23 for
Datasets 1 and 2 respectively.

Materialization: Figure 8 shows the benefits of materializa-
tion for a DeltaGraph and the associated cost in terms of
memory, for Dataset 2 with arity = 4 and using the Intersection
differential function. We compared four different situations: (a)
no materialization, (b) root materialized, (c) both children of
the root materialized, and (d) all four grandchildren of the root
materialized. The results are as expected – we can significantly
reduce the query latencies (up to a factor of 8) at the expense
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Fig. 8. Effect of materialization

of higher memory consumption.

GraphPool memory consumption: Figure 9(a) shows the
total (cumulative) memory consumption of the GraphPool
when a sequence of 100 singlepoint snapshot retrieval queries,
uniformly spaced over the life span of the network, is executed
against Datasets 1 and 2. By exploiting the overlap between
these snapshots, the GraphPool is able to maintain a large
number of snapshots in memory. For Dataset 2, if the 100
graphs were to be stored disjointly, the total memory consumed
would be 50GB, whereas the GraphPool only requires about
600MB. The plot of Dataset 1 is almost a constant because, for
this dataset, any historical snapshot is a subset of the current
graph. The minor increase toward the end is due to the increase
in the BM size, required to accommodate new queries.

Multicore Parallelism: Figure 9(b) shows the advantage of
concurrent query processing on a multi-core processor using
a partitioned DeltaGraph approach, where we retrieve the
graph parallely using multiple threads. We observe near-linear
speedups further validating our parallel design.

Multipoint queries: Figure 9(c) shows the time taken to
retrieve multiple graphs using our multipoint query retrieval al-
gorithm, and multiple invocations of the single query retrieval
algorithm on Dataset 1. The x-axis represents the number of
snapshot queries, which were chosen to be 1 month apart.
As we can see, the advantages of multipoint query retrieval
are quite significant because of the high overlap between the
retrieved snapshots.

Advantages of columnar storage: Figure 9(d) shows the
performance benefits of our columnar storage approach for
Dataset 1. As we can see, if we are only interested in the
network structure, our approach can improve query latencies
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Fig. 9. (a) Cumulative GraphPool memory consumption; (b) Multi-core
parallelism (Dataset 2); (c) Multipoint query execution vs multiple singlepoint
queries; (d) Retrieval with and without attributes (Dataset 2)

by more than a factor of 3.

BM penalty: We compared the penalty of using the BM
filtering procedure in GraphPool, by doing a PageRank com-
putation without and with use of BMs. We observed that the
execution time increases by 7%, from 1890ms to 2014ms.

Additional experiments: We have also run additional exper-
iments that illustrate the effects of different DeltaGraph
construction parameters like the arity (k), leaf-eventlist sizes
(L), and differential functions (f ). Due to space constraints,
we refer the reader to the extended version of the paper [13].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented techniques for managing his-
torical data for large information networks, and for executing
snapshot retrieval queries on them. We presented DeltaGraph,
a distributed hierarchical structure that enables compact stor-
age of the historical trace of a network, and GraphPool,
an in-memory data structure that allows us to maintain and
operate upon a large number of snapshots simultaneously. Our
experimental evaluation shows that the choice of DeltaGraph
is superior to the existing alternatives. We showed both ana-
lytically and empirically that the flexibility and tunability of
DeltaGraph helps control the distribution of query access times
through appropriate parameter choices at construction time,
and memory materialization at runtime. Our experimental eval-
uation demonstrated the impact of many of our optimizations,
including multi-query optimization and columnar storage. Our
work so far has also opened up many opportunities for further
work, including developing techniques for processing different
types of temporal queries over the historical trace, that we are
planning to pursue in future work. We are also studying how
sketch-based techniques [2] may be used for more efficient,
albeit approximate, query processing over historical graphs.
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