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The application of the conventional saddle-point approximation to condensed Bose gases is
thwarted by the approach of the saddle-point to the ground-state singularity of the grand
canonical partition function. We develop and test a variant of the saddle-point method which
takes proper care of this complication, and provides accurate, flexible, and computationally
efficient access to both canonical and microcanonical statistics. Remarkably, the error com-
mitted when naively employing the conventional approximation in the condensate regime
turns out to be universal, that is, independent of the system's single-particle spectrum. The
new scheme is able to cover all temperatures, including the critical temperature interval that
marks the onset of Bose�Einstein condensation, and reveals in analytical detail how this onset
leads to sharp features in gases with a fixed number of particles. In particular, within the
canonical ensemble the crossover from the high-temperature asymptotics to the condensate
regime occurs in an error-function-like manner; this error function reduces to a step function
when the particle number becomes large. Our saddle-point formulas for occupation numbers
and their fluctuations, verified by numerical calculations, clearly bring out the special role
played by the ground state. � 1999 Academic Press

1. INTRODUCTION

The saddle-point method is one of the most essential tools in statistical
physics [1, 2]. When comparing different statistical ensembles, it is used with over-
whelming success in both fundamental theoretical considerations and practical
calculations [3, 4]. Yet, the conventional form of this usually easy-to-handle
approximation fails in the case of condensed ideal Bose gases [5�7]; for instance,
it does not yield the correct fluctuation of the number of condensate par-
ticles [8, 9].

To elucidate the reason for this failure we consider an ideal Bose gas with single-
particle energies =& , with &=0, 1, 2, ... labeling the individual energy eigenvalues.
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Since the grand canonical partition function 5(;, z) generates the canonical
partition functions ZN(;) by means of the expansion

5(;, z)= `
�

&=0

1
1&z exp(&;=&)

= :
�

N=0

zNZN(;), (1)

each N-particle partition function ZN(;) can be represented, according to Cauchy's
theorem, by a contour integral in the complex z-plane,

ZN(;)=
1

2?i � dz
5(;, z)
zN+1 , (2)

where the path of integration encircles the origin counter-clockwise. As usual,
;=1�(kBT ) is the inverse temperature. Denoting the negative logarithm of the
integrand as F� (z), i.e., writing

1
zN+1 `

�

&=0

1
1&z exp(&;=&)

#exp(&F� (z)) (3)

or

F� (z)=(N+1) ln z+ :
�

&=0

ln(1&ze&;=&), (4)

the saddle-point z0 is determined by the requirement that this function becomes
stationary,

�F� (z)
�z } z=z0

=0, (5)

giving

N+1= :
�

&=0

1
z&1

0 e ;=&&1
. (6)

Apart from the appearance of one extra particle on the left hand side, this is just
the grand canonical relation between particle number N and fugacity z0 .

Proceeding according to folk wisdom, one then expands the logarithm F� (z)
quadratically around z0 and leads the path of integration parallel to the imaginary
axis over the saddle, relying on the fact that for large N the main contribution to
the integral (2) is collected in the immediate vicinity of the saddle-point [2], so
that the quadratic expansion should prove sufficient. Doing the remaining Gaussian
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integral, one arrives at the standard saddle-point approximation Z� (s.p.)
N to the

canonical partition functions,

Z� (s.p.)
N (;)=

1
2?i |

z0+i�

z0&i�
dz exp \&F� (0)&

1
2

F� (2)(z&z0)2+
=

1
2?

exp(&F� (0)) |
+�

&�
du exp \+

1
2

F� (2)u2+
=

exp(&F� (0))

- &2?F� (2)
. (7)

Here and in the following we write f (n) for the n th derivative of a function f at a
saddle-point; we have used F� (2)<0. Hence, one finds

ln Z� (s.p.)
N (;)=&

1
2

ln 2?&(N+1) ln z0& :
�

&=0

ln(1&z0 e&;=&)

&
1
2

ln :
�

&=0

z&1
0 e&;=&

(1&z0 e&;=&)2 , (8)

from which the canonical occupation number (n:) cn of the state : is obtained by
differentiating once with respect to (&;=:),

(n:) cn=
� ln Z� (s.p.)

N

�(&;=:)
+

� ln Z� (s.p.)
N

�z0

�z0

�(&;=:)
. (9)

As long as the gas is not condensed, the fourth term in the approximation (8)
remains small in comparison to the third, and therefore may be neglected. Then the
partial derivative � ln Z� (s.p.)

N ��z0 vanishes as a consequence of the saddle-point
equation (6), and one is left with

(n:) cn=
� ln Z� (s.p.)

N

�(&;=:)

=
1

z&1
0 e ;=:&1

, (10)

so that within these approximations the canonical occupation numbers equal their
grand canonical counterparts.

However, this reasoning breaks down for temperatures below the onset of
Bose�Einstein condensation, where Eq. (6) requires that z&1

0 e ;=0&1 be on the order
of 1�N, so that the third and the fourth terms on the right hand side of Eq. (8) are
of comparable magnitude, namely of the order O(ln N ). Hence, the argument that
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led to the familiar formula (10) becomes invalid. Moreover, inspecting the higher
derivatives of F� (z) at the saddle-point,

F� (n)=&
(n&1)!

zn
0 _(&1)n (N+1)+ :

�

&=0
\ 1

z&1
0 e;=&&1+

n

& , (11)

one finds that in the condensate regime these derivatives grow dramatically with
increasing n, F� (n)=O(Nn), casting doubt on the validity of the saddle-point
approximation even if higher-order terms are included [5]. However, for the
derivation of an asymptotic series the convergence properties of the formal Taylor
series of F� (z) are irrelevant [10]; what actually endangers the approximation
scheme (7) in the condensate regime is the narrow approach of the saddle-point to
the ground-state singularity z=e ;=0 of the grand canonical partition function (1).
Namely, the Gaussian integral (7) can well represent the exact expression (2) only
if the function F� (z) is free of singularities at least in those intervals where the
Gaussian is still large, i.e., where &F� (2)(z&z0)2�2 is on the order of unity. Since
F� (2)=O(N2), this observation translates into the requirement that the function F� (z)
should be regular at least in an interval of order O(1�N ) around z0 . On the other
hand, in the condensate regime the singularity at z=e ;=0 falls within a distance of
order O(1�N ) from the saddle-point z0 , again as a consequence of Eq. (6). It is this
conflict, not the poor behavior of the Taylor expansion of F� (z), which necessitates
an approach to the contour integral (2) that is essentially more careful than the
standard scheme (7). Interestingly, though, the dilemma does not appear to be
overly severe��the magnitude of both conflicting intervals being of the same order
O(1�N )��and one might wonder already at this point whether the usual procedure
can be saved by simple means.

The failure of the saddle-point approximation (7) for condensed Bose gases
has been the subject of a long debate in the literature [5�7], with notable early
contributions by Dingle [11] and Fraser [12]. Various schemes have been
designed for computing the number of condensate particles, and its fluctuation, for
gases with a fixed number N of particles, without resorting to the saddle-point
method. Quite recently, Navez et al. have suggested a statistical ensemble within
which one regards the condensate as an infinite particle reservoir for the excited-
states subsystem [13], thus putting into shape an idea already expressed by
Fierz [14]. In a mathematical setting, each excited single-particle level =: then
becomes formally equivalent to a harmonic oscillator with frequency (=:&=0)��,
which allows one to derive elegant integral representations for canonical and
microcanonical expectation values: Setting =0=0 for convenience, restricting oneself
to temperatures below the onset of condensation, and introducing the spectral Zeta
function

Z(;, t)= :
�

&=1

1
(;=&)

t , (12)
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with the sum running over the excited states only, the canonical number of conden-
sate particles can be written as [15]

(n0) cn=N&
1

2?i |
{+i�

{&i�
dt 1(t) Z(;, t) `(t), (13)

where `(t) is the Riemann Zeta function. The path of integration up the complex
t-plane lies to the right of all poles of the integrand, so that the residues of these
poles, taken from right to left, yield a systematic expansion of the integral [15].
Similarly, the canonical mean-square fluctuation of the number of condensate
particles takes the form

($2n0) cn=
1

2?i |
{+i�

{&i�
dt 1(t) Z(;, t) `(t&1), (14)

and the difference between canonical and microcanonical fluctuations is given by

($2n0) cn&($2n0) mc=
[1�2?i �{+i�

{&i� dt 1(t) Z(;, t&1) `(t&1)]2

1�2?i �{+i�
{&i� dt 1(t) Z(;, t&2) `(t&1)

. (15)

Yet, there are at least two reasons not to be content with this state of affairs.
Firstly, since Eqs. (13), (14), and (15) rely on the presence of a reservoir of conden-
sate particles, they are blind to the onset of Bose�Einstein condensation, that is, to
the sudden appearance of this reservoir; as a consequence of this underlying
``oscillator approximation,'' they do not allow one to discuss just how such a sharp
feature can emerge in a Bose gas with a large, fixed number of particles. Second,
for a given single-particle spectrum the integrals may not always be straightforward
to evaluate; already the treatment of an anisotropic harmonic oscillator potential,
in which case Z(;, t) is related to Zeta functions of the Barnes type [15], requires
quite some analytical skills. Therefore, one desires a tool that works, in principle,
for all temperatures, and is easy to use in practical calculations.

The development of such a tool is the objective of the present paper. Following
a trail pioneered by Dingle [10], we work out and test a variant of the saddle-point
method that fulfills the above two requirements. Our guiding maxim is the same
which already governed London's classic analysis [16] of the condensation
phenomenon: If the ground state is causing trouble, single it out and give it a spe-
cial treatment��which, in our case, means to exempt the ground-state factor of the
grand canonical partition function (1) from the quadratic expansion performed in
the usual scheme (7), and to treat that factor exactly. As will be demonstrated
in detail, this natural strategy leads to an approach to the canonical and the
microcanonical statistics of condensed Bose gases which is both extremely accurate
and unsurpassed in computational ease.

We proceed as follows: In the next section we will first explain why and how this
proper saddle-point approximation works for the calculation of the canonical parti-
tion functions, and how known limiting cases are recovered, concentrating key
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technical details in Appendices A and B. We then apply the method to computing
canonical occupation numbers and their fluctuations, illustrating the analytical
results by numerical calculations for an ideal Bose gas confined by an isotropic
harmonic potential. In Section III we turn to the microcanonical ensemble and
show how the very same refined saddle-point approach allows one to obtain the
interesting quantities almost without further effort. The final Section IV summarizes
the most important findings.

Although our discussion is led along the lines of the ideal Bose gas, and although
some interesting physical insights will turn up��in particular, it will become clear
why the canonical occupation numbers are well described by the expression (10),
and thus essentially equal to their grand canonical analogues, even for temperatures
below the onset of condensation, where the previous argument had failed��this is
not primarily a work on the ideal Bose gas as such. Rather, major emphasis lies on
the mathematics of saddle-point integrals with a singular integrand, of which
condensed Bose gases provide perhaps the most prominent examples; we hope
that the detailed exposition presented here will prove fruitful also in other areas of
mathematical physics where similar problems arise.

II. THE CANONICAL ENSEMBLE

A. The Canonical Partition Function

Since the conventional approximation (7) is thwarted by the fact that the saddle-
point z0 , i.e., the solution to Eq. (6), approaches the ground-state singularity
z=e ;=0 of the integrand (3) within order O(1�N ) in the condensate regime, we now
exclude the ground-state contribution from the quadratic expansion of the
logarithm (4). That is, we define

F(z)=F� (z)&ln(1&ze&;=0)

=(N+1) ln z+ :
�

&=1

ln(1&ze&;=&), (16)

and write the canonical N-particle partition function as

ZN(;)=
1

2?i � dz
exp(&F(z))
1&ze&;=0

. (17)

The key idea for treating integrals of this kind, due to Dingle [10], is to let the
potentially dangerous denominator stand as it is, and to expand only the tempered
function F(z) around the saddle-point z0 . The resulting approximation to ZN(;)
will then be valid for all temperatures: For high T, when the saddle-point moves
away from the singularity, it is of no concern whether or not the denominator is
included in the Gaussian approximation; in the condensate regime its exclusion is
crucial.
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Let us first check the behavior of the derivatives F (n). When omitting the ground-
state term (&=0) from the sum in Eq. (11), the behavior of the remaining sum is
governed in the condensate regime by the following terms (&=1, 2, 3, ...), each of
them being about proportional to the n th power of temperature. Hence,

_ :
�

&=1
\ 1

z&1
0 e ;=&&1+

n

&
1�n

B kBT, (18)

with approximate T-proportionality holding the better, the larger n, since large n
emphasize the low-lying states. Now we focus on systems with single-particle
energies of the form [17]

=[&i]
==0+=1 :

d

i=1

ci &s
i , (19)

where &i=0, 1, 2, ... are integer quantum numbers. The dimensionless anisotropy
coefficients ci should be of comparable magnitude, the lowest of them equaling
unity. This class of systems contains, e.g., a gas of N ideal Bose particles confined
by a d-dimensional harmonic oscillator potential (s=1), or by a d-dimensional
hard box (s=2). For d�s>1 and large N there is a sharp onset of Bose�Einstein
condensation, with

kBT B (Nex) s�d
cn (20)

in the condensate regime; (Nex) cn #N&(n0) cn is the total number of excited par-
ticles [18, 19]. Thus, for largish n the Eqs. (18) and (20) give

Sn # :
�

&=1
\ 1

z&1
0 e ;=&&1+

n

B(Nex) ns�d
cn for d�s>1, (21)

resulting, by virtue of Eq. (11), in

F (n)=O(N!(n)) with !(n)=max[1, ns�d ], (22)

as long as, besides (n0) cn=O(N ), also (Nex) cn=O(N ). To confirm this relation,
the case n=2 of which will be of particular interest later, Fig. 1 shows the numeri-
cally computed quantities

rn #
ln Sn

n ln (Nex) cn

(23)

(which, in the general case, should approach s�d for large n) for a gas of N=106

ideal Bose particles kept at temperature T=0.5 T (3)
0 in a three-dimensional

isotropic harmonic oscillator potential, with

T (3)
0 =

�|
kB \

N
`(3)+

1�3

(24)
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FIG. 1. Circles: ratios rn , as defined by Eqs. (21) and (23), for a gas of N=106 ideal Bose particles
with temperature T=0.5 T (3)

0 which is confined by an isotropic three-dimensional harmonic oscillator
potential. According to Eq. (21), one expects rn r1�3 for largish n. The diamonds indicate the corres-
ponding data for a gas with same number of particles kept at T=0.5 T (1)

0 in a one-dimensional harmonic
trap.

denoting the condensation temperature in the large-N-limit [17]; | is the oscillator
frequency. As expected, rn approaches the value 1�3 fairly rapidly with n. For com-
parison, Fig. 1 also shows the corresponding data for a gas with the same number
of particles which is stored in a one-dimensional harmonic potential. Its tem-
perature is T=0.5 T (1)

0 , where

T (1)
0 =

�|
kB

N
ln N

. (25)

This is a borderline case: For d=s=1 there is no sharp onset of Bose�Einstein
condensation, so that T (1)

0 merely plays the role of a characteristic temperature
below which the ground-state population becomes significant. There are logarithmic
corrections [15] which keep the ratios rn below the value s�d=1 also for large n,
but, as seen in the figure, even now rn rapidly approaches a constant not too far
from unity. We conclude that for systems of the type (19), with d�s>1, the O(Nn)-
growth of F� (n) in the condensate regime is replaced by the somewhat milder
O(Nns�d)-growth of F (n) when going from F� (z) to its ground-state-amputated
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descendant F(z), so that also the formal Taylor expansion of F(z) around the
saddle-point z0 is ill-behaved.

But as already indicated, the properties of the Taylor series of F(z) are only of
secondary importance. What really matters is that this function does not share the
ground-state singularity; the singular point to be watched now is the one at z=e ;=1.
Since z0<e ;=0, the saddle-point remains separated from that singularity by at least
the N-independent gap e ;=1&e ;=0r(=1&=0)�kBT. This guarantees that when quad-
ratically expanding the amputated function F(z), rather than F� (z), around z0 , an
interval of the required order O(1�- &F (2))=O(N&!(2)�2) becomes singularity-free
for sufficiently large N; the higher the temperature (while remaining in the conden-
sate regime), the smaller the gap, and the larger the particle number has to be.
Then the Gaussian approximation to exp(&F(z)) is safe. As shown in detail in
Appendix A, the subsequently emerging saddle-point integral for the canonical par-
tition function (17) can be done exactly, yielding (cf. Eq. (A14) with _=1)

Z (s.p.)
N (;)=

1

- 2?
exp \;=0&F (0)&1+

1

2
'2&

1

4
'� 2+ D&1('� ), (26)

where

'=(e ;=0&z0) - &F (2), (27)

'� ='&
1
'

, (28)

and D&1('� ) is a parabolic cylinder function, employing Whittaker's nota-
tion [20, 21]. For discussing this unfamiliar-looking expression (26), which, as
already remarked above, is valid for all temperatures, we observe [21] that D&1 is
related to the complementary error function erfc,

D&1('� )=exp \1

4
'� 2+ �?

2
erfc \ '�

- 2+ ; (29)

hence

Z (s.p.)
N (;)=exp \;=0&F (0)&1+

1
2

'2+ 1
2

erfc \ '�

- 2+ . (30)

For high temperatures, well above the condensation point, z0 approaches zero, so
that the parameter ', and as a consequence also '� , grows without bound when N
becomes large. Then we may replace the complementary error function by the
leading term of its asymptotic expansion for large positive arguments [22],

erfc \ '�

- 2+t�2

?

exp(&'� 2�2)

'�
. (31)
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This is a special case of the approximation (B1) introduced in Appendix B, and
implies, together with the further approximations (B2)�(B5), that the general
expression (26) correctly approaches the standard saddle-point result (7) outside
the condensate phase,

Z (s.p.)
N (;)tZ� (s.p.)

N (;) for high T. (32)

This was to be expected, since when the denominator in the integrand (17) does not
become small, it doesn't matter whether it is included in the quadratic approxima-
tion, as in the scheme (7), or treated exactly, as in the derivation of Eq. (26).

In the condensate regime, where e ;=0&z0=O(1�N ) and F (2)=O(N!(2)) as
specified by Eq. (22), the definition (27) of the parameter ' implies either
'=O(N&1�2) or '=O(N s�d&1), whichever is larger. Since we require d�s>1, we
conclude that in either case ' approaches zero for large N, so that now '� ='&'&1

is a large negative number. Therefore, we may safely use the approximation
erfc('� �- 2)r2, and arrive at

FIG. 2. Complementary error function erfc('� �- 2), with the temperature-dependent parameter '�
defined by Eqs. (27) and (28), for a gas of N=103 ideal Bose particles in a three-dimensional isotropic
harmonic oscillator potential (full line; here the reference temperature T0 equals T (3)

0 as given by
Eq. (24)), and in a one-dimensional harmonic potential (dashed line; with T0=T (1)

0 as in Eq. (25)).
When erfc('� �- 2) approaches zero, the standard high-temperature result (7) holds; when it approaches
two, Eq. (33) provides the correct partition function.
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Z (s.p.)
N (;)texp(;=0&F (0)&1)

=
e ;=0&1

zN+1
0

`
�

&=1

1
1&z0 exp(&;=&)

. (33)

Even when the particle number N is merely moderately large, the decrease of the
parameter '� with temperature from large positive to large negative values can be
fairly rapid, so that the complementary error function in the canonical N-particle
partition function (30) acts as a switch, meaning that the transition from the high-
temperature asymptotics (7) to the condensate asymptotics (33) becomes quite
sharp. This is confirmed by Fig. 2, which depicts erfc('� �- 2) as function of tem-
perature for a gas of N=103 ideal Bosons in a three-dimensional isotropic har-
monic potential. In the borderline case of the one-dimensional harmonic potential,
also indicated in the figure, there is no such sharp transition.

It is worthwhile to discuss the condensate partition function (33) a little further.
Anticipating that, despite the incorrect reasoning, the expression (10) for the
canonical occupation numbers will remain valid approximately even in the conden-
sate regime, we have

z&1
0 e ;=0=1+(n0) &1

cn . (34)

Hence, we may eliminate the saddle-point z0 by setting

\ 1
z0+

N+1

=e&(N+1);=0 (1+(n0) &1
cn )N+1

te&(N+1);=0eN�(n0)cn, (35)

yielding

Z(s.p.)
N (;)texp(N�(n0) cn&1&N;=0) `

�

&=1

1
1&exp(;[=0&=&])

. (36)

The infinite product on the right hand side, describing the excited-states subsystem,
equals the canonical partition function of a collection of infinitely many, dis-
tinguishable harmonic oscillators with frequencies (=&&=0)�� (where &=1, 2, 3, ...),
thus leading back to the ``oscillator approximation'' which has been the starting
point for the derivation of the integral representations (13), (14), and (15) in
Ref. [15]. In contrast, the value of the present approximation (36) lies in the fact
that it is not restricted to the excited states, but also contains the ground state
explicitly.
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Taking the derivatives with respect to &;=: , with :{0, one then finds occupa-
tion numbers

(n:) cn=
� ln Z (s.p.)

N

�(&;=:)

=
1

e ;(=:&=0)&1
(37)

and mean-square fluctuations

($2n:) cn=
�2 ln Z (s.p.)

N

�(&;=:)2

=(n:) cn ((n:) cn+1) (38)

of the excited states, while differentiating the logarithm of Eq. (36) with respect to
&;=0 produces first the obvious identity

(n0) cn=N& :
�

&=1

(n&) cn (39)

and then the important equation

($2n0) cn= :
�

&=1

($2n&) cn ; (40)

stating that, in the condensate regime and subject to the above approximations,
within the canonical ensemble the occupation numbers of the excited states are
uncorrelated stochastic variables [11, 12, 15].

Remarkably, the error one would have committed had one naively employed the
standard approximation (7) in the condensate regime, and which can be quantified
only now, is not devastating. As explained in Appendix B (cf. Eq. (B11)), in the low-
temperature, large-N-regime the incorrect partition function Z� (s.p.)

N (;) exceeds the
correct partition function by merely the temperature-independent factor 1�R1 r

1.08444, regardless of the single-particle spectrum, that is, regardless of the trapping
potential��implying that the error might even go unnoticed when carelessly taking
derivatives of ln Z� (s.p.)

N (;). This finding is illustrated in Fig. 3, again for an ideal
Bose gas with N=1000 particles in a three-dimensional isotropic harmonic poten-
tial. The figure shows the ratios of Z� (s.p.)

N (;), computed according to the scheme (7),
of the correct approximation (26), and of its condensate descendant (33), to the
exact canonical partition function, the latter having been obtained from the
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one-particle partition function Z1(;) by means of the familiar recursion formula
[19, 23�26]

ZN(;)=
1
N

:
N

k=1

Z1(k;) ZN&k(;), Z0(;)#1. (41)

As witnessed by Fig. 3, the quality of the proper approximation (26) is outstanding
for all temperatures, its low-temperature variant (33) performs bravely where it is
expected to, and the standard approximation (7) is good at high temperatures, but
fails by the predicted factor 1�R1 in the condensate regime. For comparison, Fig. 4
shows the corresponding data for the one-dimensional case; here the exact
N-particle partition function is known in closed form [27, 28]. We find features
that are qualitatively similar to those in the preceding figure, although, with
N=1000, the approximation (26) is not quite as good at intermediate T. The
standard scheme (7) again is off by the same, universal factor 1�R1 at low tem-
peratures.

FIG. 3. Ratio of the standard saddle-point result (7) (solid line approaching the value 1�R1 r

1.08444 at low temperatures), of the proper approximation (26) (solid line everywhere close to unity),
and of its low-temperature descendant (33) (dashed line), to the exact canonical partition function
ZN (;), for a gas of N=1000 ideal Bose particles in a three-dimensional isotropic harmonic potential.
The reference temperature T0 is given by Eq. (24). Note the impressive overall performance of the
approximation (26).
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FIG. 4. The same as Fig. 3, now for a gas of N=1000 ideal Bose particles in a one-dimensional har-
monic potential. The reference temperature T0 is given by Eq. (25). Note that for T�T0 � 0 the ratio of
the standard approximation (7) and the exact data approaches the same value 1�R1 r1.08444 as met in
the three-dimensional case.

B. Canonical Occupation Numbers
The derivation of the expressions (37) and (39) from the condensate approxima-

tion (33) to the canonical partition function serves to render that partition function
plausible, but it is not the best one can do, since we have simply assumed
the validity of Eq. (34). An accurate and fully consistent computation of these
occupation numbers starts from the identity

(n:) cn=
�

�(&;=:)
ln ZN(;)

=
1

ZN(;)
1

2?i � dz
1
zN `

�

&=0

1
1&z exp(&;=&)

exp(&;=:)
1&z exp(&;=:)

#
1

ZN(;)
1

2?i � dz exp(&G� (z)), (42)

with

G� (z)=N ln z+ :
�

&=0

ln(1&ze&;=&)+ln(1&ze&;=:)+;=: . (43)
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The equation that determines the saddle-point z1 for the new contour integral (42),
namely

N= :
�

&=0

1
z&1

1 e ;=&&1
+

1
z&1

1 e ;=:&1
, (44)

formally looks like the grand canonical relation between particle number N and
fugacity z1 for a system with an extra energy level =: . Now we have to distinguish
two cases.

If :{0, we merely have to copy the steps made in the derivation of the proper
canonical partition function (26). That is, we separate the ground-state contribution
from the exponent G� (z) by defining the tempered function

G(z)=G� (z)&ln(1&ze&;=0), (45)

and obtain

�
�(&;=:)

ZN(;)=
1

2?i � dz
exp(&G(z))

1&ze&;=0

texp(;=0&G(0)&1), (46)

proceeding at once to temperatures below the onset of condensation. Then Eq. (42),
together with the previous result (33) for ZN(;), yields the expression

(n:) cn=exp(F(z0)&G(z1)) (:{0) (47)

for the canonical occupation numbers of the excited states in the condensate regime.
This accurate result is well approximated by the previous formula (37): Since the
level that has artificially been doubled differs from the ground state, we may set
z0 rz1 re ;=0 in Eq. (47), and obtain

(n:) cnrexp(ln z0&ln(1&z0e&;=:)&;=:)

r
1

e ;(=:&=0)&1
, (48)

using the definitions (16) and (45) of the functions F and G.
If, however, :=0, the exponent G� (z) in Eq. (42) corresponds to a system with a

doubled ground state. Hence, we have to temper this function accordingly, and
define

G(z)=G� (z)&ln(e ;=0[1&ze&;=0]2). (49)
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This leads to

�
�(&;=0)

ZN(;)=
1

2?i � dz
exp(&G(z)&;=0)

(1&ze&;=0)2

t
2

e ;=0&z1

exp(;=0&G (0)&2), (50)

where we have employed the condensate approximation (B9) to the general saddle-
point formula (A14), with _=2. Thus, in the condensate regime the canonical
ground-state occupation number is given by

(n0) cn=
2

z&1
1 e ;=0&1

exp(F(z0)&G(z1)&1&ln z1). (51)

For showing that this cumbersome expression actually is consistent with the
familiar grand-canonical result in the large-N-limit, we now have to carefully keep
track of the two different parameters z0 and z1 . That is, we may set

1
z&1

0 e ;=0&1
r(n0) cn , (52)

whereas

1
z&1

1 e ;=0&1
r

(n0) cn

2
, (53)

reflecting the double appearance of the ground state in Eq. (44). Hence, the argu-
ment of the exponential in the ground-state occupation formula (51) should be
approximately equal to zero. This follows by observing

F(z0)&G(z1)&1&ln z1

=(N+1) ln
z0

z1

&1+ :
�

&=1

ln \1&z0 e&;=&

1&z1e&;=&+
r(N+1) ln

z0

z1

&1&\1&
z1

z0+ :
�

&=1

1
z&1

0 e ;=0&1

=(N+1) ln
z0

z1

&1&\1&
z1

z0+ (N+1&(n0) cn), (54)

which, upon inserting

z0

z1

r1+
1

(n0) cn

(55)
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as obtained from Eqs. (52) and (53), indeed gives the required relation

F(z0)&G(z1)&1&ln z1 r0. (56)

For demonstrating the accuracy of the canonical formulas (47) and (51), we
resort once more to a gas of N=1000 ideal Bose particles in a three-dimensional
harmonic oscillator potential. Figure 5 shows the occupation number (n1) cn as a
function of temperature, computed according to Eq. (47), and compares these data
to those that are obtained if ZN(;) and �ZN(;)��(&;=1) are naively calculated
from the standard saddle-point formula. The inset quantifies the ratios of these
approximate occupation numbers to the exact ones, which have again been
computed recursively. In the condensate regime, the naive approximation to both
ZN(;) and �ZN(;)��(&;=1) is off by the same universal factor 1�R1 derived in
Appendix B, so that this error cancels when forming their ratio: The standard
saddle-point scheme accidentally yields the correct canonical occupation numbers
of the excited states both above and below the onset of condensation. On the other

FIG. 5. Canonical occupation number (n1) cn as obtained from Eq. (47) (full line), and from the
ratio of �ZN(;)��(&;=1) to ZN(;), both computed from the standard saddle-point formula (dashed
line), for N=1000 ideal Bose particles in an isotropic three-dimensional harmonic potential. The inset
shows the respective ratios of these approximate occupation numbers to the exact ones. The energy level
=1 is three-fold degenerate; the data shown here correspond to an individual state. In this and all
following figures, the reference temperature T0 is given by Eq. (24).
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hand, if one uses even at high temperatures the approximations (33) and (46), each
of which is correct in the condensate regime only, it follows from Eq. (B14) that the
ratio of the individual errors is given by the square root of G� (2)�F� (2). Since this ratio
approaches unity in the large-N, high-T-regime, Eq. (47) actually is correct also at
high temperatures.

This accidental correctness is no longer met in the case of the ground-state
occupation number (n0) cn , depicted in Fig. 6. Now the error introduced when
computing �ZN(;)��(&;=0) at low temperatures within the standard scheme is
given by the factor 1�R2 (see Appendix B), so that the resulting value of (n0) cn is
too small by the constant factor R1�R2 r0.96106 in the condensate regime, whereas
Eq. (51) yields the correct data. Outside the condensate regime the standard approxi-
mation becomes correct, whereas Eq. (B14) reveals that the condensate approxima-
tion (51) is wrong by the factor M2 �M1 tR2�(R1 - 2)r0.73576. Needless to say,
if one deduces the canonical occupation numbers directly from the ratios of the
saddle-point approximations (A14) to the respective contour integrals, instead of
invoking their high- and low-temperature limits (B6) and (B9), one obtains expres-
sions that are valid for all temperatures.

FIG. 6. Canonical occupation number (n0) cn as obtained from Eq. (51) (full line), and from the
ratio of �ZN (;)��(&;=0) to ZN (;), both computed from the standard saddle-point formula (dashed
line), for the same system as considered in Fig. 5. The inset shows the respective ratios of these
approximate occupation numbers to the exact ones. The error of the standard approximation in the
condensate regime is determined by the ratio R1 �R2 r0.96106; the error of the condensate
approximation (51) in the high-temperature regime is given by the factor R2 �(R1 - 2)r0.73576.
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C. Canonical Fluctuations

The calculation of the canonical mean-square fluctuations ($2n:) cn of the
occupation numbers now directly parallels that of the occupation numbers
themselves: Starting from the identity

($2n:) cn=
�2 ln ZN

�(&;=:)2

=
1

ZN

�ZN

�(&;=:)
&\ 1

ZN

�ZN

�(&;=:)+
2

+
2

ZN

1
2?i � dz exp(&H� (z)), (57)

we are left with the task to evaluate the further contour integral

1
2?i � dz exp(&H� (z))#

1
2?i � dz

1
zN&1 `

�

&=0

1
1&z exp(&;=&)

exp(&2;=:)
[1&z exp(&;=:)]2 ,

(58)

where

H� (z)=(N&1) ln z+ :
�

&=0

ln(1&ze&;=&)+2 ln(1&ze&;=:)+2;=: . (59)

As a consequence of the second derivative performed in Eq. (57), the state with
energy =: now has formally been tripled, giving the equation

N&1= :
�

&=0

1
z&1

2 e ;=&&1
+

2
z&1

2 e ;=:&1
(60)

for the new saddle-point z2 . Thus, for :{0 the tempered version of the function
H� (z) becomes

H(z)=H� (z)&ln(1&ze&;=0), (61)

implying

1
2?i � dz exp(&H� (z))=

1
2?i � dz

exp(&H(z))
1&ze&;=0

texp(;=0&H (0)&1) (62)

in the condensate regime; hence

($2n:) cn=(n:) cn&(n:) 2
cn+2exp(F(z0)&H(z2)) (:{0). (63)
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Setting z0 rz2 re ;=0, similar to the reasoning underlying Eq. (48), it can be seen
that the third term on the right hand side is close to 2(n:) 2

cn , so that this expres-
sion (63) properly reduces to the familiar Eq. (38).

If :=0, we disentangle the three-fold ground-state contribution from H� (z) by
defining

H(z)=H� (z)&ln(e2;=0[1&ze&;=0]3), (64)

and get

1
2?i � dz exp(&H� (z))=

1
2?i � dz

exp(&H(z)&2;=0)
(1&ze&;=0)3

t
1
2 \

3
e ;=0&z2+

2

exp(;=0&H (0)&3), (65)

employing the condensate approximation (B9) with _=3. Therefore, the canonical
fluctuation of the number of condensate particles now takes the form

($2n0) cn=(n0) cn&(n0) 2
cn+

9
(e ;=0&z2)2 exp(F(z0)&H(z2)&2). (66)

We check the results (63) and (66) again for N=1000 ideal Bosons in an
isotropic harmonic oscillator potential. Figure 7 shows the root-mean-square
fluctuation ($n1) cn #($2n1) 1�2

cn as obtained from Eq. (63), and from the standard
saddle-point approximations to the three individual terms on the right hand side of
the identity (57). For each term we have the same accidental correctness of the
standard saddle-point result in the condensate regime, and of the condensate
approximation at high temperatures, as already described for the occupation
numbers of the excited states; the inset, which depicts the ratios of the two
approximations to the recursively calculated exact fluctuation, confirms that either
approximation is correct at both high and low temperatures.

In the case of the condensate fluctuation, however, the situation is quite different.
As witnessed by the inset in Fig. 8, our formula (66) gives the correct fluctuation of
the number of ground-state particles in the condensate regime. Since the canonical
mean-square fluctuation ($2n0) cn has to vanish for zero temperature, when all
N particles occupy the ground state, the third term on the right hand side of
Eq. (66) approaches N2&N for T � 0. When naively using the standard saddle-
point scheme, the results for the individual terms in Eq. (57) are incorrect by factors
R1 �R2 , (R1 �R2)2, and R1 �R3 , respectively, with the universal numbers R_ deter-
mined in Appendix B. Hence, the naive scheme yields spurious mean-square
ground-state fluctuations

($2n0) spur
cn =[R1 �R3&(R1 �R2)2]N2+[R1 �R2&R1 �R3]N

r0.02438 N2+0.01304 N (67)
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FIG. 7. Canonical r.m.s.-fluctuation ($n1) cn as obtained from Eq. (63) (full line), and from the
standard saddle-point approximations to the individual terms in Eq. (57) (dashed line), for the same
system as considered in Fig. 5. The inset shows the respective ratios of these approximate fluctuations
to the recursively computed exact one. As in Fig. 5, the data refer to only one of the three states with
energy =1 .

for T � 0, giving, for instance, the incorrect r.m.s.-fluctuation ($n0) spur
cn r156 for

N=1000, in precise agreement with what is observed in Fig. 8. In the opposite
regime, that is, for high temperatures, the standard scheme becomes correct. Then,
since (n0) cn<<1, the condensate approximation (66) is off by roughly the same
factor R2 �(R1 - 2)r0.73576 that also determines the error of (n0) cn itself.

It is now also illuminating to compare the saddle-point scheme developed here
to the oscillator approximation that has led in Ref. [15] to the integral representa-
tions (13)�(15). This latter approximation cannot cope with the Bose�Einstein
transition, that is, its validity remains restricted to the condensate regime, since it
rests on the fiction of an infinite reservoir of condensate particles [13]. This very
feature, however, is what allows one to derive closed expressions for the condensate
fluctuations, provided the pole structure of the spectral Zeta function (12) in the
complex t-plane is known. For an ideal Bose gas in a three-dimensional iso-
tropic harmonic potential, this function can be written in terms of Riemann Zeta
functions,

Z(;, t)=(;�|)&t[ 1
2`(t&2)+ 3

2 `(t&1)+`(t)], (68)
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FIG. 8. Canonical r.m.s.-fluctuation ($n0) cn as obtained from Eq. (66) (full line), and from the
standard saddle-point approximations to the individual terms in Eq. (57) (dashed line), for the same
system as considered in Fig. 5. The inset shows the respective ratios of these approximate fluctuations
to the recursively computed exact one. The error of the standard scheme for T � 0 is determined by
Eq. (67), whereas the error of the condensate approximation for high temperatures is given by the factor
(R2 �(R1 - 2))1�2

r0.85776.

having shifted the ground-state energy to =0=0. Taking into account the three
rightmost poles of the product 1(t) Z(;, t) `(t&1), located at t=3, t=2, and t=1,
Eq. (14) then gives

($2n0) cn=\kBT
�| +

3

`(2)

+\kBT
�| +

2

_3
2

ln \kBT
�| ++

3
2

#+
5
4

+`(2)&
+

kBT
�| \&

1
2+ (69)

for kBT�(�|)>>1, where #r0.57722 is Euler's constant. In contrast, the saddle-
point approach requires the numerical determination of the three saddle-point
parameters z0 , z1 , and z2 from Eqs. (6), (44), and (60), respectively, but this effort
is rewarded by the possibility to monitor the fluctuations for all temperatures,
including the transition regime. As detailed in Fig. 9, sufficiently below the onset of
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FIG. 9. Canonical r.m.s-fluctuation ($n0) cn for the same system as considered in Fig. 5. The exact,
recursively computed fluctuation (long-dashed line) is compared to the data obtained from the saddle-
point formula (66) (heavy full line), to the approximation provided by the leading, T 3-proportional term
in Eq. (69) (short-dashed line), and to the prediction made by the oscillator approximation (69) with
terms up to order T (thin line). The inset emphasizes the outstanding accuracy of both the proper
saddle-point method and the oscillator approximation.

condensation both the saddle-point approximation (66) and the oscillator approxi-
mation (69) yield excellent agreement with the exact condensate fluctuation, even
for particle numbers as low as N=1000.

III. THE MICROCANONICAL ENSEMBLE

A. The Microcanonical Partition Function

For extending the techniques developed in the previous section to the
microcanonical ensemble, we write the grand canonical partition function (1) as

`
�

&=0

1
1&z exp(&;=&)

= :
�

N=0

zN :
E

e&;E 0� (E, N), (70)

where the microcanonical partition functions 0� (E, N) denote the number of
microstates accessible to a thermally isolated N-particle system with total excitation
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energy E. Setting the ground-state energy equal to zero, we now assume that all
single-particle energies =& , and hence also all possible excitation energies, can be
represented reasonably well as integer multiples of a basic quantum �|. Introducing
the variable

x=e&;�| (71)

and writing E�(�|)=m, Eq. (70) takes the form of a double power series,

`
�

&=0

1
(1&zx&) g&

= :
�

N=0

zN :
�

m=0

xm 0(m, N )

#5(x, z), (72)

with g& indicating the degree of degeneracy of the single-particle energy level &�|,
and 0(m, N)#0� (m�|, N). With the help of two suitable contours which encircle
the origin of the complex x- and z-plane, respectively, the desired partition func-
tions can be isolated from this series by means of the identity

0(m, N )=
1

(2?i)2 � dx � dz
1

xm+1zN+1 `
�

&=0

1
(1&zx&) g&

#
1

(2?i)2 � dx � dz exp(&F� (x, z)), (73)

where

F� (x, z)=(m+1) ln x+(N+1) ln z+ :
�

&=0

g& ln(1&zx&). (74)

The saddle-point (x0 , z0) for the double contour integral (73) now is determined by
the simultaneous solution of the two equations

�F� (x, z)
�x } x=x0 , z=z0

=0,
�F� (x, z)

�z } x=x0 , z=z0

=0, (75)

reading explicitly

m+1= :
�

&=0

g&
&

z&1
0 x&&

0 &1

N+1= :
�

&=0

g&
1

z&1
0 x&&

0 &1
. (76)
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As long as the gas is not condensed, we may safely use the standard approximation
scheme [8]. That is, we may expand the function (74) quadratically around the
saddle-point,

F� (x, z)rF� (x0 , z0)+ 1
2F� (2, 0)(x&x0)2+F� (1, 1)(x&x0)(z&z0)+ 1

2F� (0, 2)(z&z0)2

(77)

with

F� (r, s)#
�r+sF� (x, z)

�xr �zs } x=x0 , z=z0

,

substitute x&x0=iw and z&z0=iu, and get

0(m, N )t
1

(2?)2 exp(&F� (x0 , z0))

_|
+�

&�
dw |

+�

&�
du exp \1

2
F� (2, 0)w2+F� (1, 1)wu+

1
2

F� (0, 2)u2+
=

1

2?- D
exp(&F� (x0 , z0)), (78)

where D is the functional determinant

D=det \F� (2, 0) F� (1, 1)

F� (1, 1) F� (0, 2)+=F� (2, 0)F� (0, 2)&(F� (1, 1))2. (79)

For temperatures below the onset of condensation, however, this procedure is
invalid, because then the second of the saddle-point equations (76) dictates that z0

differs from the ground-state singularity z=1 of the grand canonical partition func-
tion (72) merely by a quantity of order O(1�N ), exactly as in the canonical case.
Hence, we have to proceed according to the insight accumulated there for comput-
ing 0(m, N ) in the condensate regime, and have to exempt the ground-state factor
from the the quadratic expansion: Defining

F(x, z)=F� (x, z)&ln(1&z), (80)

we have to start from the representation

0(m, N )=
1

(2?i)2 � dx � dz
exp(&F(x, z))

1&z
. (81)
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The expansion of the tempered function F(x, z) around (x0 , z0) then yields

F(x, z)rF(x0 , z0)+ 1
2F (2, 0)(x&x0)2

+[F (0, 1)+F (1, 1)(x&x0)](z&z0)+ 1
2F (0, 2)(z&z0)2, (82)

where we have used

F (1, 0)=0. (83)

It is now of key interest to compare the magnitude of the two terms in the square
brackets of Eq. (82), which constitute the coefficient of (z&z0). On the one hand,
we have

F (0, 1)=&
�
�z

ln(1&z)| z=z0
=

1
1&z0

; (84)

hence F (0, 1)=O(N ) in the condensate regime. On the other hand, relevant
contributions to the integral over x are collected from an interval of order
O(1�- &F (2, 0)) around x0 . Thus, the relevant F (1, 1)(x&x0) are on the order of
F (1, 1)�- &F (2, 0), with

F (1, 1)=& :
�

&=1

g&
&x&&1

0

(1&z0 x&
0)2 ,

F (2, 0)=& :
�

&=1

g&
&2z0 x&&2

0

(1&z0x&
0)2 . (85)

If we focus again on systems of the type (19)��i.e., if both the quantum �| and the
weights g& have been adjusted accordingly��we may repeat the reasoning that has
led to the canonical estimate (21), and conclude that both F (1, 1) and F (2, 0) are of
the order O(N 2s�d). Therefore, F (1, 1)(x&x0)=O(N s�d) for relevant x. To be honest,
this can be taken as a rather crude guideline only, in the same sense as the quan-
tities rn displayed in Fig. 1 have not yet approached the expected value 1�3 for n=2.
In fact, numerical calculations for the three-dimensional isotropic harmonic oscil-
lator potential reveal that for reasonably large N the expression F (1, 1)�- &F (2, 0) is
about proportional to (Nex) 1�2

mc , the square root of the total number of excited
particles in a microcanonical setting, instead of being proportional to (Nex) 1�3

mc .
Nonetheless, the above estimate indicates that for d�s>1 and large N we may
neglect F (1, 1)(x&x0) against F (0, 1). This implies a drastic simplification of the
analysis, because then the remaining saddle-point integral factorizes: Leading both
contours parallel to the respective imaginary axis over the saddle, we are left with
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0(m, N )t
exp(&F(x0 , z0))

2?i |
x0+i�

x0&i�
dx exp \&

1
2

F (2, 0)(x&x0)2+
_

1
2?i |

z0+i�

z0&i�
dz

exp(&F (0, 1)(z&z0)& 1
2 F (0, 2)(z&z0)2)

1&z
. (86)

The first of these integrals is standard, the second is precisely of the type worked
out in Appendices A and B. Thus, without any further labor we obtain

0(m, N )t
exp(&F(x0 , z0)&1)

- &2?F (2, 0)
, (87)

the saddle-point approximation to the microcanonical partition functions in the
condensate regime.

B. Microcanonical Occupation Numbers and Their Fluctuations

The computation of microcanonical occupation numbers (n:) mc in the conden-
sate regime is a matter of routine by now, so we merely need to sketch the main
steps. Denoting the number of microstates of an isolated N-particle system with
total excitation energy m�| and with exactly n: particles occupying a given single-
particle state with energy :�| as 1:(n: ; m, N ), we have

:
N

n:=0

1:(n: ; m, N )=0(m, N ) (88)

and

(n:) mc=
�N

n:=0 n:1:(n: ; m, N )

0(m, N )
. (89)

Introducing the symbol �� ��(x:), where the overbar is meant to indicate that the
partial derivative acts on only one of the g: -fold degenerate states with energy :�|,
the first microcanonical moments are generated from the grand canonical partition
function (72) by means of the identity

x: ��
�(x:)

5(x, z)= :
�

N=0

zN :
�

m=0

xm \ :
N

n:=0

n:1:(n: ; m, N )+ . (90)

Hence,

:
N

n:=0

n:1:(n: ; m, N )=
1

(2?i)2 � dx � dz
x:

xm+1zN+1

��
�(x:)

5(x, z)

#
1

(2?i)2 � dx � dz exp(&G� (x, z)), (91)
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where

G� (x, z)=(m+1&:) ln x+N ln z+ :
�

&=0

g& ln(1&zx&)+ln(1&zx:). (92)

The evaluation of the integral (91) first requires the knowledge of its saddle-point
(x1 , z1), obtained by simultaneously solving the two equations

m+1&:= :
�

&=0

g&
&

z&1
1 x&&

1 &1
+

:
z&1

1 x&:
1 &1

,

N= :
�

&=0

g&
1

z&1
1 x&&

1 &1
+

1
z&1

1 x&:
1 &1

. (93)

If then :{0, we define the tempered function

G(x, z)=G� (x, z)&ln(1&z), (94)

yielding

:
N

n:=0

n:1:(n: ; m, N )=
1

(2?i)2 � dx � dz
exp(&G(x, z))

1&z

t
exp(&G(x1 , z1)&1)

- &2?G (2, 0)
(95)

in direct analogy to Eq. (87), with

G (2, 0)=& :
�

&=1

g&
&2z1 x&&2

1

(1&z1 x&
1)2&

:2z1 x:&2
1

(1&z1x:
1)2 . (96)

If, however, :=0, we have to account for ground-state doubling. In this case we
define

G(x, z)=G� (x, z)&2 ln(1&z) (97)

and invoke Eq. (B9) with _=2, resulting in

:
N

n0=0

n0 10(n0 ; m, N )=
1

(2?i)2 � dx � dz
exp(&G(x, z))

(1&z)2

t
2

1&z1

exp(&G(x1 , z1)&2)

- &2?G (2, 0)
. (98)

To give at least one application of these formulas, Fig. 10 shows the microcanonical
ground-state occupation number (n0)mc as a function of the microcanonical
temperature for N=1000 ideal Bose particles in an isotropic harmonic oscil-
lator potential, as computed from Eqs. (87) and (98) according to Eq. (89). The
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FIG. 10. Microcanonical ground-state occupation number (n0) mc for a gas of N=1000 ideal
Bosons in a three-dimensional isotropic harmonic oscillator potential, as computed from the saddle-
point approximations (87) and (98). The inset shows the ratio (n0) cn �(n0) gc of the canonical to the
grand canonical occupation numbers (short dashes; with exact, recursively computed canonical data),
and the ratio (n0) mc �(n0) gc of the microcanonical to the grand canonical values (long dashes).

microcanonical temperature does not differ significantly from the canonical
one [8]; the inset quantifies the ratio of canonical to grand canonical, and of
microcanonical to grand canonical occupation numbers. As expected, the relative
differences between the ground-state occupation numbers in the three ensembles are
on the order of 1�N.

For calculating the corresponding microcanonical mean-square fluctuations
($2n:) mc within the saddle-point approximation, we exploit the identity

\x: ��
�(x:)+

2

5(x, z)=x: ��
�(x:)

5(x, z)+x2: �� 2

�(x:)2 5(x, z)

= :
�

N=0

zN :
�

m=0

xm \ :
N

n:=0

n2
: 1:(n: ; m, N )+ (99)

which immediately leads to the analogue of Eq. (57), namely

($2n:) mc=(n:) mc&(n:) 2
mc+

2
0(m, N )

1
(2?i)2 � dx � dz exp(&H� (x, z)). (100)
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The newly appearing integral is defined by

1
(2?i)2 � dx � dz exp(&H� (x, z))

#
1

(2?i)2 � dx � dz
(1�2) x2:

xm+1zN+1

�� 2

�(x:)2 5(x, z), (101)

giving

H� (x, z)=(m+1&2:) ln x+(N&1) ln z+ :
�

&=0

g& ln(1&zx&)+2 ln(1&zx:). (102)

Hence, its saddle-point (x2 , z2) is found by simultaneously solving the two
equations

m+1&2:= :
�

&=0

g&
&

z&1
2 x&&

2 &1
+

2:
z&1

2 x&:
2 &1

,

N&1= :
�

&=0

g&
1

z&1
2 x&&

2 &1
+

2
z&1

2 x&:
2 &1

. (103)

The usual distinction follows: If :{0, extracting the ground-state contribution
from the function (102) means introducing

H(x, z)=H� (x, z)&ln(1&z), (104)

resulting in

1

(2?i)2 � dx � dz
exp(&H(x, z))

1&z
t

exp(&H(x2 , z2)&1)

- &2?H (2, 0)
(105)

with

H (2, 0)=& :
�

&=1

g&
&2z2x&&2

2

(1&z2x&
2)2&2

:2z2x:&2
2

(1&z2x:
2)2 . (106)

If :=0, we define instead

H(x, z)=H� (x, z)&3 ln(1&z), (107)

and invoke Eq. (B9) once more, now for _=3, to arrive at

1
(2?i)2 � dx � dz

exp(&H(x, z))
(1&z)3

t
1

2

9

(1&z2)2

exp(&H(x2 , z2)&3)

- &2?H (2, 0)
. (108)

350 HOLTHAUS AND KALINOWSKI



File: 595J 595031 . By:XX . Date:23:08:99 . Time:14:21 LOP8M. V8.B. Page 01:01
Codes: 2177 Signs: 1267 . Length: 46 pic 0 pts, 194 mm

FIG. 11. Microcanonical r.m.s.-condensate fluctuation ($n0)mc for a gas of N=106 ideal Bosons in
a three-dimensional isotropic harmonic potential, as computed from the saddle-point approximation
(full line). The dashed line corresponds to only the leading term of the oscillator approximation,
cf. Eq. (110); the thin line, visible only in the upper right corner, also takes the next-to-leading term into
account. Even in the inset, the result of the saddle-point calculation is indistinguishable from this
oscillator approximation.

Collecting the results (87), (95), and (105) for :{0, or (87), (98), and (108) for
:=0, Eq. (100) then allows one to determine the fluctuations. An example for such
a calculation is depicted in Fig. 11: The heavy solid line is the root-mean-square
fluctuation ($n0) mc #($2n0) 1�2

mc as obtained from the above saddle-point scheme
for a gas of 106 ideal Bosons in the usual isotropic oscillator potential. For com-
parison, when evaluating for the same system the formula (15) for the difference
($2n0) cn&($2n0) mc up to terms of the order kBT�(�|), one finds

($2n0) cn&($2n0) mc

=\kBT
�| +

3 3
4

`2(3)
`(4)

+\kBT
�| +

2

_3
2

`(2) `(3)
`(4)

&
9

16
`3(3)
`2(4)&

+
kBT
�|

`(3)
2 `(4) _ln \kBT

�| ++#+
5

24
+

27
32

`3(3)
`2(4)

&
5
2

`(2) `(3)
`(4)

+
3
2

`2(2)
`(3) & . (109)
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This, together with Eq. (69), yields a closed expression for the microcanonical con-
densate fluctuations of an ideal Bose gas in a three-dimensional isotropic harmonic
trap in the oscillator approximation, that is, under the assumption of an infinite
reservoir of condensate particles:

($2n0) mc r0.64366 \kBT
�| +

3

+_1.5 ln \kBT
�| ++1.85443&\kBT

�| +
2

&_0.55531 ln \kBT
�| ++0.96969& kBT

�|
. (110)

The dashed line in Fig. 11 corresponds to the leading term of this approxima-
tion [13], whereas the thin line also takes the next-to-leading order into account.
Even for 106 particles, finite-size effects are still visible in the condensate fluctuation;
the leading-order term of Eq. (110) alone yields only modest agreement with the
saddle-point result. After accounting for the dominant corrections, the agreement
becomes close to perfect: Even on the scale of the inset, the saddle-point result is
indistinguishable from the oscillator approximation (110).

IV. DISCUSSION

The necessity to abandon the usual saddle-point scheme when exploring canoni-
cal or microcanonical statistics of condensed Bose gases with N particles is brought
about by a characteristic dilemma. On the one hand, the approach of the saddle-
point to the ground-state singularity at z=e ;=0 of the grand canonical partition
function within order O(1�N ) may be taken as the very hallmark of Bose�Einstein
condensation; on the other hand, the customary Gaussian approximation requires
that intervals of order O(1�N ) around the saddle-point stay clear of singularities.
The solution to this problem almost suggests itself: If one exempts the ground-state
factor of the grand canonical partition function from the Gaussian expansion and
treats that factor exactly, but proceeds as usual otherwise, then the singular point
that now decides the fate of the approximation is the one produced by the first
excited state at z=e ;=1. Since the saddle-point remains pinned below e ;=0, it remains
separated from the decisive singularity at z=e ;=1 by an N-independent gap. This
gap is wide enough to get the approximation going if the particle number is suf-
ficiently large, because the required interval of regularity shrinks with increasing N.
The representation (17) of the canonical partition functions can be viewed as the
prototype integral expressing this strategy; the other canonical and microcanonical
quantities computed in this work constitute nothing but variations of the same
mathematical theme.

The success of this amended saddle-point method hinges on the fact that the
emerging integrals with singular integrands can be done exactly; as explained in
Appendix A, they lead directly to parabolic cylinder functions. Thus, we have
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accomplished the two goals set in the Introduction: The results (A14) are easy to
use and provide bona fide approximations to partition functions, occupation num-
bers, and their fluctuations which are valid at all temperatures��not only in the
high-temperature limit or in the condensate regime, but also in the critical tem-
perature range that witnesses the onset of condensation. In particular, the sharpness
of the drop of the complementary error function contained in the canonical parti-
tion function (30) allows one to precisely assess the sharpness of this onset in a
Bose gas with a finite, fixed number of particles.

The observation that the interval of regularity claimed by the Gaussian expan-
sion around the saddle-point is of the same order O(1�N ) as the distance of the sad-
dle-point from the ground-state singularity, meaning that the original conflict is not
too large, reflects itself in the noteworthy fact that the error of the conventional
scheme in the condensate regime is merely a temperature- and system-independent
multiplicative constant. The discovery, made in Appendix B, that this constant
approaches unity when the multiplicity of the ground-state pole is increased fits in
nicely: Increasing that multiplicity amounts to considering a Bose gas with a
multiple-degenerate ground state and thus drives the saddle-point away from
the ground-state singularity��the occupation number of each individual of the
degenerate states is lowered��thereby lessening the error of the naive approach.

It is also of interest to compare the workload implied by the proper saddle-point
method to that required by other techniques aiming at canonical or microcanonical
statistics. Exact recursion relations like Eq. (41) or their microcanonical analogues
are invaluable for treating relatively small samples with not substantially more than
about 1000 particles [19, 26], but the computation of, e.g., microcanonical conden-
sate fluctuations by such means for a gas with 106 Bosons, as presented in Fig. 11,
is entirely out of the question. The integral representations (13)�(15), on the other
hand, immediately yield analytical expressions for condensate occupation numbers
and fluctuations, provided the pole structure of the spectral Zeta function (12) is
known, but they do not allow one to monitor the system at the onset of condensa-
tion. In contrast, saddle-point techniques always require one numerical step��
finding the saddle-point as the root of the respective saddle-point equation��, but
once this has been done, the formalism yields all quantities of interest, by means of
the ever-same formulas, without further hardship. Therefore, we may conclude that
despite all reservations [6, 7] piled up in more than half a century since Schubert's
incisive comments [5], it really is the saddle-point method which, if executed
properly, provides the most powerful approach to the statistical mechanics of
isolated, condensed ideal Bose gases.

Having an instrument that reliable and flexible at one's disposal is certainly not
merely of mathematical value, but may also have some bearing on experiments with
Bose�Einstein condensates of dilute atomic vapors which are now becoming
routine. These experiments are mainly done in isolated harmonic traps, in the
regime of vapor densities where the atomic interactions, quantified by the s-wave
scattering length a, can be considered as weak: Denoting the atom mass as m
and the characteristic trap frequency as |, and defining the oscillator length
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L=- ��(m|) which quantifies the extension of the trap's ground state, one has
N(a�L)3<<1 under typical conditions. For example, a=5.4 nm for 87Rb [29],
giving N(a�L)3=8 } 10&3 for a sample of N=106 condensate atoms in a shallow
trap with |=100 s&1, while Na�L=2 } 103. These two relations place the system in
the Bogoliubov regime, traditionally associated with the notion of a weakly interac-
ting Bose gas. However, it is feasible to prepare even more weakly interacting
samples, either by tuning the scattering length with the help of external magnetic
fields [30], or by working with spin-polarized atomic hydrogen [31], which
features the unusually low triplet scattering length a=0.0648 nm [32]. Thus,
a�L=2.6 } 10&6 in a harmonic trap with |=100 s&1, so that even for Nr400 000
hydrogen atoms one finds Na�Lr1, indicating the crossover regime from the ideal
to the Bogoliubov gas. This crossover should manifest itself, in a non-trivial man-
ner, in the behavior of the condensate fluctuations [33], which also determine what
one may aptly term ``the minimum linewidth of an atom laser'' [34, 35]. It would
therefore be of substantial importance to study condensate fluctuations of very
weakly interacting Bose gases, that is, of systems intermediate between the ideal gas
and the Bogoliubov gas, and to probe whether the difference (109) between the
canonical and the microcanonical ensemble remains visible there; in general, this
difference should show a pronounced dependence on the trap type [15]. In this
way, an old, apparently purely academic issue��the non-equivalence of statistical
ensembles in the condensate regime��suddenly pops up at the forefront of topical
research, in the theory of the atom laser. Seen from the experimental angle, such an
enterprise is on the verge of becoming possible; on the theoretical side, the first
requirement is a tool for routinely computing ideal condensate fluctuations within
the different ensembles, for traps with various geometries. This tool is available now.

APPENDIX A

Accurate Saddle-Point Approximations for Bose-Type Integrals

In Section II we have met contour integrals of the form

I_ #
1

2?i � dz
exp(&f (z)&(_&1) ;=0)

(1&ze&;=0)_ , (A1)

with positive integer _, and a saddle-point lying too close to the singularity at
z=e ;=0 for the standard approximation (7) to be viable. In this appendix we derive
the proper saddle-point approximation to these integrals, following a suggestion by
Dingle [10].

Writing, in accordance with our previous notation, the negative logarithm of the
full integrand as f� (z),

f� (z)= f (z)+(_&1) ;=0+_ ln(1&ze&;=0), (A2)
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the saddle-point z
*

is determined by the equation

df� (z)
dz } z=z

*

=0. (A3)

In the large-N-limit, this equation corresponds to the grand canonical relation
between particle number N and fugacity z

*
for a system with a _-fold degenerate

ground state.
Substituting z=z

*
+u, so that the saddle-point is found at u=0, and writing the

difference between the singular point and the saddle-point as

u0 #e ;=0&z
*

, (A4)

we have

f� (z
*

+u)= f (z
*

+u)&;=0+_ ln(u0&u) (A5)

and

I_=
e ;=0

2?i � du
exp(& f (z

*
+u))

(u0&u)_ . (A6)

Defining f (n)#f (n)(z
*

), Eqs. (A3) and (A5) immediately yield

f (1)=&_
d
du

ln(u0&u)|u=0

=
_
u0

; (A7)

moreover, we require f (2)<<0. Expanding f (z
*

+u) up to second order around the
saddle-point��with a first derivative f (1) which does not, as in the conventional
approximation (7), vanish, but instead becomes large when u0 is small, as in the
condensate regime��then leading the path of integration over the saddle at u=0,
we obtain the approximation

2?i I (s.p.)
_ =(&1)_ exp(;=0& f (0))

_|
+i�

&i�
du exp \&

_u
u0

&
1
2

f (2)u2+ (u&u0)&_, (A8)

which, upon substituting

u=i
v

- & f (2)
+u0 , (A9)
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becomes

2?i I (s.p.)
_ =(&1)_ exp \;=0& f (0)&_+

1
2

'2+\- & f (2)

i +_&1

_|
+�+i'

&�+i'
dv exp(i'� v&

1
2

v2) v&_, (A10)

with

'#u0- & f (2) (A11)

'� #'&
_
'

. (A12)

The integral occurring here is closely related to Whittaker's parabolic cylinder
function D&_('� ), namely1

|
C

dv exp (i'� v& 1
2v2) v&_=- 2? i&_e&(1�4) '� 2D&_('� ), (A13)

where C runs from &� to +�, passing v=0 from above. Thus, the saddle-point
approximation to the integrals (A1) finally takes the form

I (s.p.)
_ =

1

- 2?
(- & f (2) )_&1

_exp \;=0& f (0)&_+
1
2

'2&
1
4

'� 2+ D&_('� ). (A14)

APPENDIX B

High- and Low-Temperature Approximations for Bose-Type Integrals

The approximation (A14) is valid regardless whether or not the saddle-point z
*

lies close to e ;=0, that is, for all temperatures. Therefore, it should adopt a more
simple form in the condensate regime, where z

*
&1 e ;=0&1 is of the order O(_�N ),

and should merge into the standard saddle-point formula in the high-temperature
limit, where z

*
approaches zero.

In the case of high temperatures, the saddle-point moves away from the ground-
state singularity; the distance u0 defined in Eq. (A4) approaches unity, u0 � 1.
Hence, both parameters ' and '� ='&_�' introduced in Eqs. (A11) and (A12)
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adopt large positive values. Then the asymptotic expansion of the parabolic
cylinder functions gives [20]

D&_('� )t
exp(&'� 2�4)

'� _ ; (B1)

moreover, we have

1
2 '2& 1

2 '� 2
t_. (B2)

Observing that, as a consequence of u0 � 1,

'� t't- & f (2), (B3)

f� (0)
tf (0)&;=0 , (B4)

f� (2)= f (2)&_u&2
0 tf (2), (B5)

we find

I (s.p.)
_ t

1

- &2?f (2)
exp(;=0& f (0))

t
exp(& f� (0))

- &2?f� (2)
. (B6)

This is just the expected result: For high temperatures, i.e., when z
*

stays suf-
ficiently far away from e ;=0, we recover the formula provided by the usual
approximation scheme (7).

In the opposite limit, that is, in the condensate regime, we infer - & f (2)=
O(N!(2)�2) from Eq. (22), whereas u0 is of order O(_�N). Since !(2)�2=
max[1�2, s�d ] for systems of the type (19), and we have required s�d<1, we find
that u0 goes to zero faster than - & f (2) increases when N becomes large. Hence,
'=u0- & f (2) approaches zero for large N. This, in turn, implies that the argu-
ment '� of the parabolic cylinder functions now is a large negative number, so
that [20]

D&_('� )t
- 2?

(_&1)!
(&'� )_&1 exp('� 2�4). (B7)

Since

&'� t
_

u0- & f (2)
, (B8)
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the low-temperature limit of the approximation (A14) becomes

I (s.p.)
_ t

1
(_&1)! \

_
u0+

_&1

exp(;=0& f (0)&_), (B9)

which has been used heavily in Sections II and III.
It is of interest to recast this expression (B9) into a form which lends itself to a

direct comparison with the now incorrect standard saddle-point formula. To this
end we exploit that, since u0 � 0, the second derivative of the full function f� at the
saddle-point will be dominated by the singular ground-state contribution, giving

f� (2)
t&

_
u2

0

. (B10)

With this additional approximation, and utilizing the identity f� (0)= f (0)&;=0+
_ ln u0 , Eq. (B9) yields

I (s.p.)
_ t

__&1

(_&1)!
u0 exp(& f� (0)&_)

t
__&1e&_

(_&1)!
- 2?_

exp(& f� (0))

- &2?f� (2)

#R_
exp(& f� (0))

- &2?f� (2)
. (B11)

This is a most intriguing observation: In the large-N, low-temperature limit, i.e., in
the condensate regime, the result of the properly executed saddle-point approxima-
tion to the Bose-type integral (A1) differs from the standard saddle-point formula
by a temperature- and system-independent factor R_ , namely

R_=- 2?_
__&1e&_

(_&1)!
; (B12)

some numerical values of R_ are listed in the following table.

_ R_

1 0.92214
2 0.95950
3 0.97270
5 0.98349

10 0.99170

Recalling Stirling's formula for (_&1)!, one immediately realizes that these
universal renormalization factors R_ approach unity when the singularity index _
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is increased. This finding, which might appear paradoxical at first, has a simple
explanation: In a system with a _-fold degenerate ground state, each individual of
these states takes only 1�_ th of the particles that a non-degenerate ground state
would have to carry. Therefore, z

*
&1e ;=0&1 is of the order O(_�N): The larger _,

the farther away is the saddle-point z
*

from the singularity at z=e ;=0, and the
better is the standard procedure.

On the other hand, in the high-temperature regime, where u0 � 1, the left hand
side of Eq. (B9) can be written as

__&1e&_

(_&1)!
exp(& f� (0))#M_

exp(& f� (0))

- &2?f� (2)
. (B13)

Thus, when using the low-temperature approximation (B9) in the high-temperature
regime, the result is incorrect by the factor

M_=R_- & f� (2)�_. (B14)
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