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1. INTRODUCTION

Let 4=[*1 , *2 , ...] be a sequence of positive integers satisfying 1�*1

�*2�*3� } } } and *n �+�. There is an extensive literature on the asymp-
totics of the number of partitions of n into parts *j (see Andrews [1] and the
references therein). In contrast, considerably fewer results have appeared in
the literature on the limiting distribution of the number of summands (or
parts) in random restricted (no part being repeated) or unrestricted partitions
(repetition allowed). This paper is concerned with this aspect of the theory
of partitions.

Erdo� s and Lehner [7] were the first to give a systematic study along
this line in the case 4=Z+. They showed that the number of summands
(counted with multiplicities) in a random unrestricted partition of n follows
asymptotically (as n � �) an extreme-value distribution, a local version
being later derived by Auluck et al. in [2]. Haselgrove and Temperley
[15] extended, by a powerful analytic method, the result of Auluck et al.
to more general 4-partitions, their conditions on the given sequence being
further extended, in some respects, only recently by Richmond [31].
Weaker results (convergence in distribution) under different analytic set-
tings were derived by Lee [23] by the method of moments. A detailed
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study on the moments can be found in Richmond [28, 30]. It should be
noted that the limiting distributions in these problems are all non-
Gaussian. For many other extensions of the original problems, see for
example [8, 9, 16, 24] and the references therein.

When each part is allowed to appear at most once, Erdo� s and Lehner
[7] derived the asymptotic normality of the number of summands in the
case 4=Z+ (see also [9, 36, 37]). No extension of this result has appeared
in the literature. In this paper, we consider a general analytic scheme essen-
tially due to Meinardus (see [25] or [1, Ch. 6]) under which central and
local limit theorems will be derived, thus extending Erdo� s and Lehner's
result. The analytic conditions under which we are developing our
arguments are weaker than those of Meinardus. Our analytic method can
also be applied to the problem left open in [24, p. 311] concerning the
common summands in restricted partitions. It turns out that the limiting
law is Gaussian for a large class of partitions.

There is another way of counting the number of summands in unrestricted
partitions, namely, if the multiplicity of each part is counted only once.
Unlike the corresponding counting function (i.e. the |(n) function) in the
theory of primes (see [38]), this problem is rarely discussed in the theory of
partitions. It was first briefly mentioned in [7] in the case 4=Z+. Wilf [40]
introduced the study of distinct components (or sizes of components) in general
combinatorial structures. Then Goh and Schmutz [14] derived a central limit
theorem for the number of summands for 4=Z+. The latter result was then
extended by Schmutz [34] to multivariate cases under Meinardus's scheme.
We further improve and extend their results by establishing the corresponding
local limit theorem (in univariate case) under weaker conditions.

A distinctive feature of integer partitions is that the limiting distribution
of the number of summands is non-Gaussian in almost all cases if the mul-
tiplicity of each summand is taken into account (see [15, 23, 31]), in con-
trast to the ubiquitous normal law in a large class of combinatorial struc-
tures (see [12, 18]). Intuitively, the former phenomenon may be ascribed
to the predominance of small summands when the number of summands
becomes large, say, larger than the mean value. However, Gaussian limit-
ing distribution appears if the parts are counted without multiplicity, this
being intuitively clear since no single part can contribute preponderantly to
the corresponding counting function, in accordance with the classical law
of errors. Our results show that the same phenomenon still persists if each
part is allowed to occur at most once.

For completeness, we add that a formal approach was introduced in
Knessel and Keller [21] for characterizing the asymptotic behaviors of
many quantities in partition problems satisfying suitable recurrences.
Another recent reference on related problems is Fristedt [13], the methods
employed there being probabilistic.
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We state the main results of this paper in Section 2. The proof of these
results is divided into two parts: central (Sect. 3) and local (Sect. 4) limit
theorems. In each section, we first derive some necessary estimates and
then prove the result in question. Since our assumptions are weaker than
those used in [25, 34], some techniques are introduced to justify the
regularity conditions (in order to apply the saddle-point method).
Unrestricted partitions is treated in Section 5. Finally, we discuss some
examples in Section 6 and conclude with some remarks for further exten-
sions.

2. STATEMENT OF RESULTS

Throughout this paper, the symbols cj always denote absolute positive con-
stants. The symbol = represents always suitable small quantity whose value
may vary from one occurrence to another.

Given a sequence of positive integers 1�*1�*2�*3� } } } tending to
infinity, let 6(n)=64 (n) be the set of partitions of the positive integer n
into distinct parts *j (each *j occurring at most once), j=1, 2, ... (in the
case when there are more than one *i with the same value, one can think
of properly labeling these *i 's so that each is ``different'' from the other).
Let q(n)=|6(n)|, the cardinality of the set 6(n). It is more convenient to
work with ak , denoting the number of *j 's such that * j=k. The generating
function of q(n) satisfies

Q(z)=Q4 (z)=1+ :
n�1

q(n) zn= `
j�1

(1+z*j)= `
k�1

(1+zk)ak, (1)

for |z|<1.
To state our results, we first introduce an analytic scheme essentially due

to Meinardus [25] in which the sequence [ak] satisfies the following three
conditions.

(M1) The Dirichlet series D(s)=�k�1 ak k&s converges in the half-
plane Re s>:>0, and can be analytically continued into the half-plane
Re s�&:0 , for some :0>0. In Re s�&:0 , D is analytic except for a
simple pole at s=: with residue A1.

(M2) There exists an absolute constant c1 such that2 D(s)<<|t| c1

uniformly for Re s�&:0 as |t| � +�.
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(M3) Define g({)=�k�1 ake&k{, where {=r+iy with r>0 and
&?� y�?. There exists a positive constant c2 such that g(r)&Re g({)�
c2 (log(1�r))2+4�:2

uniformly for ?�2�| y|�? as r � 0+.

The assumption (M3) here is much weaker than those used in [25] and
[34], the essential difference being that we did not impose a similar
estimate for g(r)&Re g(r+iy) in the region r�| y|�?�2, which is estab-
lished by other assumptions, notably by the growth properties of the sum
function �k�X ak and by (M3).

Introducing a uniform probability measure on the set 6(n), we consider
the random variable |n , counting the number of summands in a random
partition of n. The bivariate generating function of |n satisfies

Q(u, z)=1+ :
n�1

q(n) E(u|n) zn= `
k�1

(1+uzk)ak, (1)

for finite u and |z|<1, where E(u|n) represents the probability generating
function of |n .

Set }=A1(:)(1&2&:) `(:+1),

+n=(}:)1�(:+1) (1&21&:) `(:)
:(1&2&:) `(:+1)

n:�(:+1),

_2
n=(}:)1�(:+1) \(1&22&:) `(:&1)

:(1&2&:) `(:+1)
&

(1&21&:)2 `(:)2

(:+1)(1&2&:)2 `(:+1)2+ n:�(:+1).

Here 1 is the Gamma-function, ` is Riemann's zeta function and the factor
(1&2&s) `(s+1) is defined to be log 2 when s=0. Note that _n>0 as can
be checked.

Theorem 1. Suppose that the sequence [ak] satisfies (M1), (M2), and
(M3). Set |n*=(|n&+n)�_n . Then the random variable |n is asymptotically
normally distributed with mean E(|n)t+n and variance Var(|n)t_2

n :

Pr[|n*<x]=
1

- 2? |
x

&�
e&t2�2 dt+o(1), (2)

uniformly for all x as n � +�. Moreover, for sufficiently large n, we have
the exponential bounds:

Pr[|n*�x]�{
e&x2�2 (1+O((log n)&1)),

if 0�x�n:�(6:+6)�log n,
e&n:�(6:+6) x�(2 log n) (1+O((log n)&1)),

if x�n:�(6:+6)�(log n),

(3)

and the same inequalities for Pr[|n*�&x].
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The method of proof consists of analytic and probabilistic parts: the
analytic part is based on Mellin transform and the saddle-point method;
and the probabilistic part utilizes Curtiss's theorem [4] for convergence of
moment generating functions. It turns out that Lerch's zeta function (see
[6, Sect. 1.11]) 8(z, s, v)=�n�0 zn (n+v)&s intervenes in a natural way in
our analysis. Our application of the saddle-point method differs from that
in [25] and [1, Ch. 6] and yields a better error term. We complete the
asymptotic normality of |n by its strong concentration property (1) using
a simple technique (see [27, Ch. III]) amended from the usual Chernoff
bound.

We can also derive a local limit theorem in the form of Crame� r-type
large deviations (see [20] [27]). It suffices to replace condition (M3) by
the following stronger one.

(M3') There exists a fixed constant c3>0 such that g(r)&Re ei%g(r+iy)
�c3 (log(1�r))2+4�:2

uniformly for ?�2�| y|�? and &?�%�?, as r � 0+.
Let Y(u, s) be the Mellin transform of the function log(1+ue&x):

Y(u, s)=|
�

0
xs&1 log(1+ue&x) dx for Re s>0. (4)

As we will see, Y is essentially Lerch's zeta function.

Theorem 2. Assume that the sequence [ak] satisfies (M1), (M2) and
(M3'). If m=+n+x_n # Z+, where x=o(n:�(2:+2)), then

Pr[|n=m]=
e&x2�2+!(x�_n) n:�(:+1)

- 2? _n
\1+O \ |x|

n:�(2:+2)+n&:2�(:+1)++ , (5)

uniformly in x, where :2=min[1, :0 , :] and !(w)=�j�3 !jw j is analytic in
a neighborhood of the origin whose Taylor coefficients satisfy

!k=
&1
k

[wk&2] U"(w) \U$(w)&U$(0)
U"(0) w +

&k

for k=3, 4, 5, ... (6)

with

U(w)=(:+1) :&:�(:+1)A1�(:+1) (Y(ew, :)1�(:+1)&Y(1, :)1�(:+1)).

Here the symbol [zn] f (z) denotes the coefficient of zn in the Taylor expan-
sion of f (z).
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Note that U is convex due to the same property of Y and that
+n=U$(0) n:�(:+1) and _2

n=U"(0) n:�(:+1). The first two terms of !k are
given by (see [20])

!3= 1
6 $$$(0) and !4= 1

24 \U (4) (0)&
U$$$(0)2

U"(0) + .

As an interesting consequence, we state the following

Corollary 1. If m=+n+x_n # Z+, where x=o(n:�(6:+6)), then

Pr[|n=m]=
e&x2�2

- 2? _n
\1+O \ |x|+|x| 3

n:�(2:+2) +n&:2�(:+1)++ , (7)

uniformly in x.

The proof of this theorem utilizes essentially the two-dimensional saddle-
point method and is technically more involved. As is usual in the applica-
tion of the saddle-point method, it is the verification of the regularity con-
ditions to which much of our analysis is devoted. Actually, we prove more
(see Proposition 2 below) but content ourselves with the statement of the
theorem.

Our methods can also be applied to the number of distinct parts in
unrestricted partitions (repetition allowed) under the same assumptions
(M1)�(M3) as in Theorem 1.

Let 6� (n) represent the set of unrestricted partitions of n and let p(n) be
its cardinality. Let |n be the number of distinct parts (i.e., counted without
multiplicities) in a random partition of n, where all p(n) partitions of n are
equally likely. The bivariate generating function of |n satisfies

P(u, z)=1+ :
n�1

p(n) E(u|n) zn= `
k�1

\1+
uzk

1&zk+
ak

, (8)

for |z|<1.
Set }1=A1(:) `(:+1),

+~ n=A1(:)(}1 :)&:�(:+1) n:�(:+1)=
(}1:)1�(:+1)

:`(:+1)
n:�(:+1),

_~ 2
n=

(}1:)1�(:+1)

:`(:+1) \1&2&:&
:

(:+1) `(:+1)+ n:�(:+1).
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Define

Z(u, s)=|
�

0
log \1+

u
ex&1+ xs&1 dx for Re s>0 and |arg u|<?.

It is obvious, by (1), that Z(u, s)=1(s) `(s+1)+Y(u&1, s).

Theorem 3. Under the assumptions (M1), (M2), and (M3), the random
variable |n satisfies asymptotically E(|n)t+~ n , Var(|n)t_~ 2

n , and

Pr[|n=+~ n+x_~ n]=
e&x2�2+'(x�_~ n) n:�(:+1)

- 2? _~ n

_\1+O \ |x|
n:�(2:+2)+n&:2 �(:+1)++ ,

uniformly for all x=o(n:�(2:+2)) such that +~ n+x_~ n # Z+. Here :2 is as in
Theorem 2 and '(w)=�j�3 'j w j is analytic at the origin with coefficients
given by

'k=
&1
k

[wk&2] V"(w) \V$(w)&V$(0)
V"(0) w +

&k

for k=3, 4, 5, ...,

where

V(w)=(:+1) :&:�(:+1)A1�(:+1) (Z(ew, :)1�(:+1)&Z(1, :)1�(:+1)).

As the proof of this theorem parallels that of Theorems 1 and 2, only the
necessary regularity conditions is worked out in Section 5.

That the assumptions needed for the local limit theorem of |n are
weaker than those for |n is seen by the following example. Take *j=2j&1.
Then it is obvious that the span of the random variable |n is 2 whereas
that of |n is 1. More precisely, E(u|n) contains only odd (respectively even)
powers of u for odd (respectively even) n. In this case, local limit theorem
of |n depends on the parity of n.

3. CENTRAL LIMIT THEOREM

3.1. Lemmas

In this section, we establish some estimates for the function Q(u, e&{)
(defined in (1)) as { � 0. We write consistently the complex variable { in
the form {=r+iy with &?� y�? and r>0. These estimates are slightly
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more general than our need for the proof of Theorem 1 since some of them
will be required when establishing the corresponding local limit theorem.

Let f (u, {)=log Q(u, e&{):

f (u, {)= :
k�1

ak log(1+ue&k{).

The sum on the right-hand side being a harmonic sum (see [10]), we have
available the Mellin inversion formula

f (u, {)=
1

2?i |
:+1+i�

:+1&i�
D(s) Y(u, s) {&s ds, (9)

for Re {>0, where Y(u, s) is the Mellin transform of the function
log(1+ue&x); see (1). Note that, for |u|�1 and Re s>0, Y(u, s) satisfies

Y(u, s)=1(s) :
j�1

(&1) j&1

j s+1 u j, (10)

a representation no longer useful when |u|>1. In particular,

Y(1, s)=(1&2&s) `(s+1) 1(s),

so that }=AY(1, :). Now by integration by parts, we see that Y(u, s) is
related to the Lerch zeta function 8(z, s, v) by

Y(u, s)=u1(s) 8(&u, s+1, 1),

with 8 defined by (see [6])

8(z, s, v)= :
k�0

zk

(k+v)s for |z|<1, s # C, and v{0, &1, &2, ... .

Analytic properties of Y(u, s) are summarized in the following lemma.

Lemma 1. For each fixed u lying in the cut-plane C"(&�, &1], the
Mellin transform Y(u, s) can be meromorphically continued into the whole
s-plane with simple poles at s=0, &1, &2, ... Moreover, Y(u, s) satisfies the
estimate

|Y(u, _+it)|<<e&(?�2&=) |t| for any =>0 as |t| � +�, (11)

uniformly for finite _ and u in the cut-plane.
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Proof. For completeness, we sketch here a self-contained proof. For
further properties, see Erde� lyi [6]. First, by integration by parts, we have

Y(u, s)=
u
s |

�

0

xs

ex+u
dx,

the right-hand side providing a meromorphic continuation of Y to the half-
plane Re s>&1. The first assertion of the lemma follows from repeating
the same process. As to (11), since log(1+ue&x) is an analytic function of
x in the half-plane Re x>0, we have by Cauchy's theorem

Y(u, s)=|
ei.�

0
log(1+ue&x) xs&1 dx for any |.|�?�2&=.

Thus a change of variable yields

Y(u, s)=ei.s |
�

0
log(1+ue&ei.t) ts&1 dt,

from which (11) follows. K

Remark 1. Since for xt0

log(1+ue&x)=log(1+u)+ :
h�1

uxh

h!(1+u)h :
0� j<h

A(h&1, j )(&1)h&1& j u j,

the A(h, j ) being Eulerian numbers (see [3, Sect. 6.5]), the residue of
Y(u, s) at the simple pole s=&h is equal to log(1+u) if h=0; and to

u
h! (1+u)h :

0� j<h

A(h&1, j )(&1)h&1& j u j

if h=1, 2, 3, ...

Lemma 2. If u lies in the sector |arg (u+1)|�?&=, then the function
Q(u, e&{) satisfies

Q(u, e&{)=(1+u)D(0) eAY(u, :) {&:
(1+O( |{|:1)), (12)

uniformly as { � 0 in the Stolz angle |arg {|�?�4, where :1=min[:0 , 1].

Proof. Starting with the integral representation (9), we proceed by
shifting the path of integration to the vertical line Re s=&:0 (using the
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estimate of D and of Y ) and by collecting the residues of the poles encoun-
tered,

f (u, {)=AY(u, :) {&:+uD(0) |
�

0

dt
et+u

+O( |{|:1),

as { � 0 in |arg {|�?�4. Note that if :0>1 then Y has a simple pole at
s=&1 (provided that D(&1){0), and that if :0=1 then the integration
path need to be suitably deformed. Using the remark before the lemma, we
obtain formula (12). K

As is typical in the use of the saddle-point method, we need a uniform
estimate for the ratio |Q(u, e&{)�Q(u, e&r)|. For that purpose, we first state
a result on the growth order of the sum function �1�k�X klak as X gets
large. Besides later applications, the result and the methods are of some
independent interest per se.

Lemma 3. Under (M1) the sequence ak satisfies

:
1�k�X

klak t
A

:+l
X :+l (l=0, 1, 2, ...), (13)

as X � +�. If we further assume (M2), then

:
1�k�X

klak=
A

:+l
X :+l (1+O(X&l&:�2L

(log X )L�2L
+X &(:+:0)�2L

)), (14)

where L=[c1]+1.

Proof. The first formula (7) is a consequence of our assumption on the
Dirichlet series D(s) and the Tauberian theorem of Ikehara (see [38,
p. 265]). Note that for the validity of (7), the analytic continuation of D
to the left of the line of convergence is not required when applying
Ikehara's Tauberian theorem. To prove (7), set F0 (X )=�1�k�X ak kl and

Fh (X)= :
1�k�X

ak kl \log
X
k +

h

=h |
X

1

Fh&1 (t)
t

dt (h=1, 2, 3, ..., X�1).

Then we have the integral representation (see [38, Ch. II.2])

FL (X)=
1

2?i |
:+l+1+i�

:+l+1&i�
:+l+1

X s

sL+1 D(s&l) ds.
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By (M2), D(_&l+it)<<|t| c1 uniformly in the half-plane Re s�l&:0 .
Thus the integral on the right member is absolutely convergent. By
Cauchy's theorem, we obtain

FL (X )=
AX :+l

(:+l)L+1+O(RL (X )), (15)

where

RL (X )=(log X )L+Xl&:0.

To describe the asymptotic behavior of F0 , we employ the following
differencing argument. Consider first FL&1 , which can be written as

FL&1 (X )=
FL(X+$X)&FL (X)

L log(1+$)
&

1
log(1+$) |

X+$X

X

FL&1 (t)&FL&1 (X)
t

dt,

for any $>0. Thus

}FL&1 (X)&
AX :+l

(:+l)L&1 }�E1+E2 ,

where

E1= }FL (X+$X)&FL (X)
L log(1+$)

&
AX:+l

(:+l)L&1 } ,
E2=

1
log(1+$) |

X+$X

X

FL&1 (t)&FL&1 (X )
t

dt.

Since FL&1 (t) is non-decreasing (the ak being �0), we have

E2�
1

log(1+$) |
X+$X

X

FL&1 (t)
t

dt&\log
1

1&$+
&1

|
X

X&$X

FL&1 (t)
t

dt

=
1
$

(FL (X+$X )&2FL (X )+FL (X&$X))

+ O(max[FL (X+$X)&FL (X ), FL (X )&FL(X&$X )]),

as $t0. From (7) and the estimates (1+$):+l&1=(:+l) $+O($2), as
$t0, it follows that

E1+E2<<$X:+l+
RL (X )

$
.
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Taking $=X&(:+l)�2RL(X )1�2 ( � 0+) so as to balance the two error terms
on the right-hand side, we obtain

FL&1 (X )=
AX :+l

(:+l)L&1+O(RL&1 (X )),

where

RL&1 (X )=X :�2 (log X )L�2+Xl+(:&:0)�2.

Repeating the same process, we see that for j=1, 2, 3, ..., L

FL& j (X )=
AX:+l

(:+l)L& j+O(RL& j (X )),

where

RL& j (X )=X (1&2&j ) :(log X )L�2 j
+Xl+(1&2&j ) :&:0�2

j
.

This completes the proof. K

According to (M2), the number c1 (and thus L) depends on the value of
:0 . One may choose a suitable :0 (if possible) so that the error terms in (7)
are minimized.

An interesting consequence of this lemma is the following

Corollary 8. As n � +�,

max |n t:&1 (:+1):�(:+1) A1�(:+1)n:�(:+1), (16)

where the max is taken over all distinct partitions of n.

Proof. For, by Lemma 3, if

n= :
1�k�X

kak t
A

:+1
X:+1,

then Xt((:+1) n�A)1�(:+1); consequently,

max |n= :
1�k�X

ak t
A
:

X:,

from which we obtain (16). K
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Lemma 4. Let u be a positive real number. There exists a constant c5>0
such that the inequality

|Q(u, e&r&iy)|
Q(u, e&r)

�exp \&
c5u

(1+u)2 (log(1�r))2+ (17)

holds uniformly for r1+3:�7�| y|�? as r � 0+.

Proof. To start with, we observe that

|Q(u, e&r&iy)|
Q(u, e&r)

= `
k�1

\1&
2ue&kr

(1+ue&kr)2 (1&cos ky)+
ak �2

�exp \&
u

(1+u)2 :
k�1

ake&kr (1&cos ky)+ . (18)

In view of the assumption (M3), it suffices to show that

G(r) :=g(r)&Re g(r+iy)�c6 (log(1�r))2, (19)

for r1+3:�7�| y|�?�2, as r � 0+. Consider first the case r�| y|�
(log(1�r))&2�:. Using the elementary inequality

1&cos t�
2
?2 t2 for |t|�?, (20)

we have

G(r)> :
1�k�1� | y|

ak e&kr (1&cos ky)�
2
?2 y2e&r� | y| :

1�k�1� | y|

k2ak

�\ 2Ae&1

?2 (:+2)
&=+ | y|&: � c6 (log(1�r))2 as r � 0+,

by (13). Next, if r1+3:�7�| y|�r, then

G(r)> :
1�k�1�r

ak e&kr (1&cos ky)�
2
?2 y2e&1 :

1�k�1�r

k2ak

�
Ae&1?:+2

?2 (:+2)
y2r&:&2�c7r&:�7�c6 (log(1�r))2 as r � 0+.
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Finally, if y lies in the range 0<| y|�?�2, then there exists an integer l

such that

?
2

�2l | y|�?. (21)

From the elementary inequality 1&cos %� 1
4 (1&cos 2%), we obtain by

induction 1&cos %�4&l (1&cos 2l%), and consequently

G(r)�4&l :
k�1

ake&kr (1&cos 2lky)

�c24&l \log
1
r+

3+4�:2

�
c2

?2 y2 \log
1
r+

3+4�:2

,

in virtue of (M3) and (21). Thus

G(r)�
c2

?2 \log
1
r+

2

,

for y satisfying (log(1�r))&2�:�| y|�?�2. Taking c5=min[c2 �?2, c6], (17)
follows. K

3.2. Proof of Theorem 1

Throughout this section, u is a positive real number which eventually
will be taken to be near 1.

Proposition 1. Let $>0 be any fixed number in the unit interval. Then
we have, uniformly for $�u�$&1,

Qn (u)=;(u) n&(1+:�2)�(:+1)e(1+1�:) K(u) n:�(:+1)
(1+O$ (n&:2 �(:+1))), (22)

the O-term holding uniformly in u, where :2=min[:, :0 , 1], K(u)=
(:AY (u, :))1�(:+1) and

;(u)=(1+u)D(0) (:AY (u, :))1�(2:+2)

- 2?(:+1)
=(1+u)D(0) � K(u)

2?(:+1)
.

Proof. By Cauchy's integral formula,

Qn (u)=
enr

2? |
?

&?
einyQ(u, e&r&iy) dy=enr (I1+I2), (23)
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where I1 and I2 represent the integrals (2?)&1 � | y| �r 1+3:�7 and (2?)&1

�r1+3:�7<| y|�? , respectively. Here r is chosen so that :AY (u, :) r&:&1=n,
or, equivalently,

r=\:AY (u, :)
n +

1�(:+1)

>0. (24)

We assume that n is sufficiently large so that r1+3:�7<?. Consider first I2 ,
which is bounded above by

I2<<Q(u, e&r) e&c9(log(1�r))2
<<eAY (u, :) r &:&c10 (log n)2

, (25)

in view of (17) and (24).
For I1 we have by (12) and a change of variables

I1=(1+u)D(0) r
2? |

r3:�7

&r 3:�7
einry+AY (u, :) r &:(1+iy)&:

(1+O(r:1)) dy

=I3+I4 ,

where

I3=(1+u)D(0) r
2? |

r3:�7

&r 3:�7
einry+AY (u, :) r &:(1+iy)&:

dy,

and

I4<<r1+:1 |
r 3:�7

&r3:�7
eAY (u, :) r &:(1+ y2)&:�2

dy.

Using the elementary inequality

(1+ y2)&:�2�1&(1&2&:�2) y2 for &1� y�1, (26)

we obtain

I4<<r1+:1eAY (u, :) r&: |
r&:�7

&r&:�7
e&(1&2&:�2) AY (u, :) r&:y2

dy

<<r1+:1+:�2eAY (u, :) r&:
. (27)

It remains to evaluate I3 . Setting B=- :(:+1) AY (u, :) and making the
change of variables v2=B2r&:y2, we obtain

I3=(1+u)D(0) r1+:�2eAY (u, :) r&:

2?B |
Br&:�7

&Br&:�7
e&v2�2Tr (v) dv,
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where

Tr (v)=exp \&
v2

:(:+1)
:

j�1
\:+ j+1

j+2 +\&iv
B +

j

r:j�2+
=1+

(:+2) iv3

6 - :(:+1) AY (u, :)
r:�2+O(v4r:),

from which we deduce that

I3=(1+u)D(0) r1+:�2eAY (u, :) r&:

- 2?:(:+1) AY (u, :)
(1+O(r:)). (28)

Collecting our results (23)�(28) yields

Qn (u)=
(1+u)D(0) r1+:�2enr+AY (u, :) r&:

- 2?:(:+1) AY (u, :)
(1+O(r:2)),

uniformly in u. The relation (22) follows from the above formula using
(24). K

Proof of Theorem 1. (Asymptotic normality) Let Mn (t)=E(e(|n&+n) t�_n),
where t is real. Then by (22)

Mn (t)=e&+nt�_n
Qn (et�_n)

Qn (1)

=\et�_n+1
2 +

D(0)

\Y (et�_n, :)
Y (1, :) +

1�(2:+2)

e,n(t) (1+O(n&:2 �(:+1))),

uniformly in t, where

,n (t)=&
+n t
_n

+(1+:&1)(K(et�_n)&K(1)) n:�(:+1)

=&
+n t
_n

+U(t�_n) n:�(:+1).

Observe that for Re s>0

Y (et�_n, s)=Y (1, s)+|
�

0
log \1+

et�_n&1
ex+1 + xs&1 dx,
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and that as n � +�

|
�

0
log \1+

et�_n&1
ex+1 + xs&1 dx=h1

t
_n

+h2

t2

_2
n

+O \ |t| 3

_3
n + ,

where, in general,

hk=
(&1)k&1

k |
�

0

xs&1

(ex+1)k dx.

Note that

hk=
1(s)

k!
:

1� j�k

s(k, j )(1&2 j&s) `(s+1& j ) for k=1, 2, 3, ..., (29)

where the s(k, j ) represent the (signed) Stirling numbers of the first kind
(see [3, Chap. 5]). Thus, we have

Mn (t)=e,n(t) (1+O(n&min[:�2, :0 , 1]�(:+1)+|t| n&:�(2:+2))),

and

K(et�_n)&K(1)=
K(1)

(:+1) Y (1, :)

_\h1 t
_n

+\2h2&
:h2

1

(:+1) Y (1, :)+
t2

2_2
n

+O( |t|3 _&3
n )+ .

Equivalently, this last relation can be written as

U \ t
_n+=U$(0)

t
_n

+
U"(0) t2

2_2
n

+O \ |t| 3

_3 + .

From these formulae and the relations (by (29))

+n n&:�(:+1)=
K(1) h1

:Y (1, :)

and

_2
n n&:�(:+1)=K(1) \ 2h2

:Y (1, :)
&

h2
1

(:+1) Y (1, :)2+ ,
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it follows that

Mn (t)=et 2�2 (1+O(n&:2�(:+1)+(|t|+|t| 3) n&:�(2:+2)))

=et2�2 (1+O(n&min[:�2, :0 , 1]�(:+1))), (30)

uniformly in t. By the theorem of Curtiss in [4], we conclude that the
distribution of the random variable |n is asymptotically Gaussian.

(Exponential tails) As to the exponential bounds (3), we observe
from the above derivations that (30) remains valid if |t| tends to infinity
slowly enough: t=o(n:�(6:+6)). We consider only the case when |n*�x in
the following, the other case &|n*�x being similar. From (10), we have
for x�0

Pr[|n*�x]=Pr[e|*n t�etx]�e&txMn (t)

=e&tx+t 2�2 (1+O(n&:2�(:+1)+(|t|+|t|3) n&:�(2:+2))). (31)

Let T be any positive quantity tending to infinity with n and satisfying
T=o(n:�(6:+6)). If 0�x�T then we take (see [27, Chap. III]) t=x in
(31) (so as to minimize &tx+t2�2) and we obtain

Pr[|n*�x]�e&x2�2 (1+O(n&:2 �(:+1)+|T |3 n&:�(2:+2)));

and if x�T we have by taking t=T:

Pr[|n*�x]�e&Tx�2 (1+O(n&:2 �(:+1)+|T |3 n&:�(2:+2))).

Now the estimates (1) follow from choosing T=n:�(6:+6)�log n.

(Mean and variance) We still have to prove that the mean and the
variance of |n are asymptotic to +n and _2

n , respectively, a result that is
not guaranteed by convergence in distribution. Although we may directly
evaluate Qu (1, z) and Q"uu (1, z) as in the proof of Proposition 1, the
asymptotic form of the variance depends on the values of : and :0 . The
following arguments are computationally simpler and are not subject to the
values of :.

Note that Fn (x), the distribution function of |n* , converges pointwise to
the standard normal distribution whose mean and variance are 0 and 1,
respectively. It suffices to show that E|n*=o(1) and Var(|n*)=1+o(1).
For the former we use the representation

E(|n*)=|
�

0
(1&Fn (x)&Fn (&x)) dx,
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the uniform bounds (3) and Lebesgue's dominated convergence theorem.
The latter follows from

E(|2
n*)=|

�

0
2x(1&Fn (x)&Fn (&x)) dx,

and similar considerations. K

Remark 2. A further refinement of the above arguments leads to the
better estimates:

E(|n)t+n+
D(0)

2
+

(1&21&:) `(:)
2(:+1)(1&2&:) `(:+1)

, (32)

Var(|n)t_2
n+

D(0)
4

+
`(:&1)(2:&4)

(:+1) `(:+1)(2:&1)

&
`(:)(2:&2)

(:+1) `(:+1)(2:&1)

&
`(:)2 (2:&2)2

(:+1) `(:+1)2 (2:&1)2 , (33)

where the convention that (1&2&s) `(s+1)=log 2 when s=0 is assumed.

4. LOCAL LIMIT THEOREM

4.1. Lemmas

The local behavior of Q(u, e&{) as { � 0 and u � 1 having been made
explicit in Lemma 2, we need only consider other ranges of u and {.

As in the last section, we write consistently

u=\ei%=e*+i% and z=e&{=e&r&iy,

where \, r>0, * # R, and &?�%, y�?. Define

G% (r)= g(r)&Re ei%g(r+iy)= :
k�1

ake&kr (1&cos(%&ky)),

so that G0 (r)=G(r). Then we have, by the derivations for (18),

|Q(\ei%, e&r&iy)|
Q(\, e&r)

�exp \&
\G% (r)
(1+\)2+ .
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Lemma 5. There exists a positive constant c13 such that the inequality

|Q(\ei%, e&r&iy)|
Q(\, e&r)

<exp \&
c13\

(1+\)2 \log
1
r+

2

+
holds uniformly for r1+3:�7�| y|�? and &?�%�?, as r � 0+.

Proof. Consider first the case when r�| y|�(log(1�r))&2�:. If |%|� 1
2

then

G% (r)> :
1� | y|�k�2� | y|

ak e&kr (1&cos(%&ky))

>\1&cos \1
2++ e&2 :

1� | y|�k�2� | y|

ak

>c14 | y|&: � c13 \log
1
r+

2

,

by (13) with l=0.
Next, if 1

2�|%|�? then

G% (r)> :
1�(8 | y| )�k�1�(4 | y| )

ake&kr (1&cos(%&ky))

>\1&cos \1
4++ e&1�4 :

1�(8 | y| )�k�1�(4 | y| )

ak

>c15 | y| &: � c13 \log
1
r+

2

,

again by Lemma 7.
Now consider the case r1+3:�7�| y|�r and &?�%�?. We have

G% (r)> :
1�r�k�2�r

ake&kr (1&cos(%&ky))

>(1&cos(r3:�7)) e&2 :
1�r�k�2�r

ak

>c16r&:�7 > c13 \log
1
r+

2

,

by the inequality (20) and Lemma 3.
For the remaining ranges (log(1�r))&2�:�| y|�?, it suffices, by (M3'), to

consider the case (log(1�r))&2�:�| y|<?�2 for which we use the same argu-
ment as in the proof of Lemma 9. For 0<| y|<?�2 there exists an integer
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l such that ?�2�2l | y|�?. Using the inequality 1&cos t�4&l (1&cos t),
we obtain

G% (r)>4&l :
k�1

ake&kr (1&cos(2l%&2lky)).

Choose integer k such that 2l%=2k?+%$ where &?�%$�?. Thus by
(M3')

G% (r)�4&lc3(log(1�r))2+4�: 2
�

c3

?2 y2(log(1�r))2+4�:2

�
c3

?2 (log(1�r))2,

for (log(1�r))&2�:�| y|<?�2. This completes the proof. K

Lemma 6. For r3:�7�|%|�? and | y|�r1+3:�7, the estimate

|Q(\ei%, e&r&iy)|
Q(\, e&r)

<exp \&
c17 \

(1+\)2 r&:�7+
holds uniformly in % and y as r � 0+.

Proof. We have

G% (r)> :
1�(3r)�k�1�(2r)

ak e&kr(1&cos(%&ky))

>(1&cos( 1
2 r3:�7)) e&1�2 :

1�(3r)�k�1�(2r)

ak

>c18 r&:�7,

by the inequality (20) and Lemma 3. K

We also need the asymptotic behaviors of Y(u, :) as u � � and u � 0,
which are described by the following lemma.

Lemma 7. The function Y(u, :) satisfies

Y(u, :) =
(log u):+1

:(:+1)
(1+O((log u)&2)), (34)

Y$u(u, :)=
(log u):

:u
(1+O((log u)&2)), (35)

as |u| � +� in the sector |arg u|�?&=.
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Proof. By the integral representation

Y(u, :)=
u
: |

�

0

x:

ex+u
dx,

and the Mellin inversion formula

1
1+x

=
1

2?i |
1�2+i�

1�2&i�

?
sin ?w

x&w dw ( |arg x|�?&=),

we obtain

Y(u, :)=u1(:)
1

2?i |
1�2+i�

1�2&i�

?u&w

(1&w):+1 sin ?w
dw.

Deforming the path of integration into a suitable Hankel-type contour in
the style of [11], we deduce the result (34). The formula (35) is derived
either in a completely analogous manner or by (34) using Ritt's theorem
(see [26, pp. 9�11]). K

Corollary 3. The function U(w) satisfies

U$(w)={:&1(:+1):�(:+1) A1�(:+1)(1+(w&2)),
:&:�(:+1)(A1(:))1�(:+1) ew�(:+1)(1+O(ew)),

as w � +�;
as w � &�.

(36)

Proof. These formulae follow from (35), (10) and the definition of U.
K

The limiting value of U$(w) as w � +� is a natural one in view of
Corollary 2 and the next lemma.

We next consider the solution to the system

{n=:AY(e*, :) r&:&1

m=Ae*Y$u(e*, :) r&:,
(37)

which will be needed when applying the two-dimensional saddle-point
method.

For convenience, set

M0=:&1(:+1):�(:+1) A1�(:+1) and M1=:&:�(:+1)(A1(:))1�(:+1).

110 HSIEN-KUEI HWANG



Lemma 8. For m lying in the range

1�m�(M0&=) n:�(:+1), (38)

there exists a unique solution (*, r) to the system (37) such that r>0 and * # R.

Proof. The solution to the first equation of (37) exists for all finite (and
real) * and satisfies

r=\:AY(e*, :)
n +

1�(:+1)

>0.

Substituting this expression into the second equation of (37) yields

m=Ae*Y$u(e*, :)(:AY(e*, :))&:�(:+1) n:�(:+1)=U$(*) n:�(:+1). (39)

Thus there exists a unique real solution to (37) whenever m lies in the
range (38). Moreover, if = � 0+ then by (36)

* �� =&1�2 � +� and r=* \ A
(:+1) n+

1�(:+1)

(1+O(*&2)).

On the other hand, if m=o(n:�(:+1)) then by (36)

*=(:+1) log
m

M1 n:�(:+1) \1+O \ m
n:�(:+1)++ ,

r=
:m
n \1+O \ m

n:�(:+1)++ .

In this case, we have * � &� and r � 0. K

Corollary 4. If m=+n+x_n , where x=o(_n), then the solution (*, r)
satisfies

*= :
j�1

*j \ x
_n+

j

and

(40)

r=(:A)1�(:+1) n&1�(:+1) \Y(1, :)1�(:+1)+ :
j�1

rj \ x
_n+

j

+ ,
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with

*m=
1
m

[wm&1] \U$(w)&U$(0)
U"(0) w +

&m

,

rm=
1

m(:+1)
[wm&1] ewY$u(ew, :) Y(ew, :)&:�(:+1) \U$(w)&U$(0)

U"(0) w +
&m

,

for m=1, 2, 3, ... The series are convergent.

Proof. The relation

m=+n+x_n=U$(0) n:�(:+1)+x - U"(0) n:�(:+1) (x=o(_n))

can be written into the more convenient form

U$(*)&U$(0)
U"(0)

=
x
_n

,

in view of (39). Thus the solution (*, r) satisfies (40) by the Lagrange
inversion formula. K

4.2. The Proof of Theorem 2

Let q(n, m) denote the number of restricted partitions of n having exactly
m parts: q(n, m)=[umzn] Q(u, z).

Proposition 2. If m lies in the range

m �� n:�(:+1) and m�(M0&=) n:�(:+1),

then q(n, m) satisfies

q(n, m)=
(1+e*)D(0)

2?Bb
r1+:e&m*+nr+AY(e*, :) r&:

(1+O(r:2)), (41)

where (*, r) is the unique real solution to the system (37), B=
- :(:+1) AY(e*, :) and

b=�Ae*Y$u(e*, :)+Ae2*Y"uu(e*, :)&
:Ae2*

(:+1) Y(e*, :)
Y$u(e*, :)2.
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Proof. We use Cauchy's integral formula

q(n, m)=
1

(2?i )2 q(n) �
|u|=\

�
|z|=e&r

u&m&1z&n&1Q(u, z) dz du

=
e&m*+nr

4?2q(n) |
?

&?
|

?

&?
e&im%+inyQ(e*+i%, e&r&iy) dy d%,

where (*, r) is chosen to satisfy the system (37). Set r0=r3:�7. The ranges
of integration are split into three parts:

(I) |%|�r0 , | y|�rr0

(II) r0<|%|�?, | y|�rr0

(III) |%|�?, rr0<| y|�?.

By Lemmas 5 and 6, we have

||
(II)

+||
(III)

<<exp \&
c19 e*

(1+e*)2 \log
1
r+

2

+ (c19=min[c13 , c17]).

(42)

It remains to evaluate the integral ��(I) . By Lemma 2 and a change of
variables (:1=min[1, :0])

J :=
re&m*+nr

4?2 |
r0

&r0
|

r0

&r0

(1+e*+i%)D(0)

_e&im%+inry+AY(e*+i%, :)(1+iy)&: r&:
(1+O(r:1)) dy d%

=: J1+J2 ,

say, where J1 corresponds to the main term in the integrand and

J2<<e&m*+nrr1+:1 |
r0

&r0
|

r0

&r0

eA |Y(e *+i%, :)| |1+iy|&: r&:
dy d%

� e&m*+nrr1+:1 |
r0

&r0
|

r0

&r0

eA |Y(e*+i%, :)| (1&(1&2&:�2) y2) r&:
dy d%,

where the inequality (26) was used. By the choice of r0 , we have r2
0r&: � +�.

Thus

J2<<e&m*+nrr1+:1+:�2 |
r0

&r0

eA |Y(e*+i%, :)| r&:
d%.
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From the local expansion

Y(e*+i%, :)=Y(e*, :)+i% |
�

0

e*x:&1

ex+e* dx&
%2

2 |
�

0

e*+xx:&1

(ex+e*)2 dx+O( |%| 3),

as %t0, we deduce that |Y(e*+i%, :)|�Y(e*, :)&c20%2 as r � 0+. It
follows that

J2<<e&m*+nrr1+:1+:eAY(e *, :) r&:
. (43)

We now concentrate on the principal part J1 for which we introduce the
following abbreviations:

Y%=Y(e*+i%, :), Y0=Y(e*, :), Y$0=Y$u(e*, :),

Y"0=Y"uu(e*, :), Y0$$$=Y$$$uuu(e*, :).

Consider first the inner integral of J1 :

J3=
eAY%r&:

2? |
r0

&r0

e inry+AY%((1+iy)&:&1) r&:
dy.

Setting B=- :(:+1) AY0 and carrying out the change of variables y=r:�2v�B,
we obtain

J3=
r:�2eAY%r&:

2?B |
Br&:�7

&Br&:�7
exp \(iv&

Y%v2

2Y0

+
(:+2) Y%

6BY0

iv3r:�2+O(r:v4)+ dv,

where (=:Ar&:�2(Y0&Y%)�B. Since v3r:�2, v4r: � 0 in the range of integra-
tion, we have

exp \(iv&
Y% v2

2Y0

+
(:+2) Y%

6BY0

iv3r:�2+O(r:v4)+=e(iv&v 2 �2(1+R1),

where

R1=&
Y$0

2Y0

e*i%v2+
(:+2) Y%

6BY0

iv3r:�2+O(%2v2+%2v4).

Substituting this estimate into J3 , we obtain

J3=
r:�2eAY%r&:

2?B |
Br&:�7

&Br&:�7
e(iv&v 2�2(1+R1) dv

=
r:�2eAY%r&:

2?B |
�

&�
e(iv&v 2 �2(1+R1) dv+O(r9:�14eAr&: Re Y%&(1�2) B 2r&2:�7

).
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The integral on the right-hand side can be evaluated by Cauchy's theorem:

1
2? |

�

&�
e(iv&v 2 �2vL dv=

e&(2 �2

- 2?
:

0�2l�L \
L
2l+

(2l)!
2l l!

(i()L&2l,

for any L=0, 1, 2, ... Thus

J3=
r:�2eAY%r&:&(2 �2

- 2? B
(1+R2)+O(R3),

where

R2=
Y$0e*

2Y0

i%((2&1)+
(:+2) Y%

6BY0

((3&3( ) r:�2,

R3=%2r:�2( |(| 2+|(|4) eAr&: Re Y%&Re ( 2 �2+r9:�14eAr&: Re Y%&B2r&2:�7 �2,

the error term being meaningful as long as

(=
:A
B

r&:�2(Y0&Y%) �� r&:�2 |%|<<r&:�7,

which is obviously satisfied when |%|�r0 .
Returning to J1 , we have

J1=
r1+:�2e&m*+nr

2? - 2? B

_|
r0

&r0

(1+e*+i%)D(0) (eim%+AY%r&:&(2 �2(1+R2)+O(R3)) d%.

Using the expansion

eim%+AY% r&:&( 2 �2=eAY0r&:&b%2 r&:�2(1+R4),

where

R4=&
iAe*%3

6
r&: \Y$0+3e*Y"0+e2*Y0$$$

&
3:2A

B2 e*Y0$
2&

3:2A
B2 e2*Y$0Y"0++O(r&:%4),
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we deduce, as the evaluations of J2 and J3 , that

J1=
(1+e*)D(0) r1+:

2?Bb
e&m*+nr+AY0r&:

(1+O(r:)). (44)

The formula (41) now follows from (42)�(44). K

Proof of Theorem 2. Suppose that m=+n+x_n # Z+, where x=o(_n).
From Proposition 1, we have

q(n)=
2D(0)(:AY(1, :))1�(2:+2)

- 2?:(:+1)
n&(1+:�2)�(:+1)eU(0) n:�(:+1)

(1+O(n&:2 �(:+1))).

It follows, by (41), that

Pr[|n=m]=
q(n, m)

q(n)
=Ln(*) eHn (*)(1+O(n&:2)),

where

Ln(*)=
(1+e*)D(0)

- :+1

2D(0)
- 2? Bb(:AY(1, :))1�(2:+2)

r1+:n(1+:�2)�(:+1),

and

Hn(*)=&m*+nr+AY(e*, :) r&:&
:+1

:
(:AY(1, :))1�(:+1) n:�(:+1)

=n:�(:+1)(U(*)&U(0)&*U$(*)).

By Lagrange inversion formula, we have

U(*)&U(0)&*U$(*)=&
U"(0)

2_2
n

x2+!(x�_n).

The desired result (5) now follows from expanding Ln(*) at *=0,

Ln(*)=
(:AY(1, :))&:�(2:+2) n&:�(2:+2)

�2? \AY$u(1, :)+AY"uu(1, :)&
:A

(:+1) Y(1, :)
Y$u(1, :)2+

(1+O(*))

=
1

- 2? _n
\1+O \ |x|

_n ++ ,
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since

U"(0)=A(:AY(1, :))&:�(:+1)

_\AY$u(1, :)+AY"uu(1, :)&
:A

(:+1) Y(1, :)
Y$u(1, :)2+ .

This completes the proof of Theorem 2. K

5. UNRESTRICTED PARTITIONS

Recall that each of the p(n) unrestricted partitions of n (into parts *j) is
assumed to be equally likely, and that the random variable |n represents
the number of distinct parts in a random partition of n. The bivariate
generating function of |n satisfies (8). By the equation

`
j�1

\1+
uz j

1&z j+
aj

= `
j�1

\1+(u&1) z j

1&z j +
aj

,

we obtain the relation for the generating polynomials Pn(u) :=p(n) E(u|n )
and Qn(u)=q(n) E(u|n):

Pn(u)= :
0� j�n

p( j ) Qn& j (u&1) for n=1, 2, 3, ...

To prove Theorem 3, we proceed along the same line of arguments as
in the last section. The analytic properties we need are summarized in
Propositions 3 and 4 below. The remaining analysis being parallel to the
proof of Theorem 2, we omit the details.

Recall that Z(u, s)=1(s) `(s+1)+Y(u&1, s).

Proposition 3. Let u # C, |arg u|�?&=, where =>0 being arbitrarily
small but fixed number. If { � 0 in the sector |arg {|�?�4, then

P(u, e&{)=eD$(0)uD(0){&D(0)eAZ(u, :) {&:
(1+O( |{| :1 )), (45)

uniformly in { and u, where :1=min[1, :0].

Proof. (Sketch) We have

log P(u, e&{)= :
k�1

ak log \1+
u

ek{&1+=
1

2?i |
:+1+i�

:+1&i�
D(s) Z(u, s) {&s ds.
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The expansion (45) is obtained by shifting the path of integration to the
line Re s=&:0 and by computing the residues of the poles encountered
(see [1, 25, 34]). K

To derive uniform estimates for the ratio |P(\ei%, e&r&iy)|�P(\, e&r), we
use the the following inequalities.

Lemma 9. Let u=\ei%, where \>0 and |%|�?. Then the inequalities

|P(\ei%, e&r&iy)|
P(\, e&r)

�e&c21T(r) (46)

and

|P(\ei%, e&r&iy)|
P(\, e&r)

<e&c22G(3r) (47)

hold for | y|�? and r>0, where c21=min[\, \&1], c22= 1&e&4

4 min[1, \2],
G(r)=G0(r) and

T(r)= :
k�1

ak e&kr (1&e&kr)2 (1&cos(%&ky)).

Proof. First, we have

} 1+
\ei%

ekr+iky&1 }
2

�1+2 Re
\ei%

ekr+iky+
2 |\ei%|

|ekr+iky(ekr+iky&1)|
+ } \ei%

ekr+iky&1 }
2

�1&
2\
ekr (1&cos(%&ky))+

2\
ekr&1

+
e2\

(ekr&1)2

=\1+
\

ekr&1+
2

\1&
2\(1&cos(%&ky))
ekr (1+\�(ekr&1))2+ .

Thus

|P(\ei%, e&r&iy)|
P(\, e&r)

� `
k�1 \1&

2\(1&cos(%&ky))
ekr (1+\�(ekr&1))2+

ak �2

�exp \&\ :
k�1

ake&kr \1+
\

ekr&1+
&2

(1&cos(%&ky))+ .
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From the inequalities

\1+
\

ekr&1+
&2

�{(1&e&kr)2,
\&2(1&e&kr)2,

if 0<\�1;
if \�1,

the result (46) follows.
Next, we have

} 1+
\ei%

ekr+iky&1 }
2

�\1+
\

|ekr+iky&1|+
2

<\1+
\

ekr&1+
2

&\ \2

(ekr&1)2&
\2

|ekr+iky&1|2+
=\1+

\
ekr&1+

2

\1&
\2

(ekr+\&1)2 \1&
(ekr&1)2

|ekr+iky&1|2++ .

Using the inequalities (see [17, Eq. (3.14)])

\1+
4vX

(X&1)2+
&1

�e&4v�X (0�v�1<X ),

2e&kr (1&cos ky)�4 (r>0, k=1, 2, 3, ...),

1&e&w�
1
4

(1&e&4) w (0�w�4),

we obtain

1&
(ekr&1)2

|ekr+iky&1|2=1&\1+
2ekr

(ekr&1)2 (1&cos ky)+
&1

�1&exp(&2e&kr (1&cos ky))

�
1
2

(1&e&4) e&kr (1&cos ky).

Thus

}1+
\ei%

ekr+iky&1 }
2

<\1+
\

ekr&1+
2

\1&
(1&e&4) \2e&kr

2(ekr+\&1)2 (1&cos ky)+
�\1+

\
ekr&1+

2

_\1&
(1&e&4) min[1, \2]

2
e&3kr (1&cos ky)+ ,
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in virtue of the inequalities

(ekr+\&1)2�{e2kr,
\2e2kr,

if 0<\�1;
if \�1.

It follows that

|P(\ei%, e&r&iy)|
P(\, e&r)

< `
k�1

(1&2c22e&3kr (1&cos ky))ak �2,

from which we derive (47). K

Proposition 4. As r � 0+, the inequality

|P(\ei%, e&r&iy)|
P(\, e&r)

<exp \&c23 \log
1
r+

2

+
holds for (i) r1+3:�7�| y|�? and &?�%�?; and (ii) r3:�7�|%|�? and
| y|�r1+3:�7. Here c23 can be taken as

c23=min[c21 c18(1&e&1�3)2, 1
2 c22 min[c2 , c6]].

Proof. The result in the range (i) is a direct consequence of (19), (47)
and Lemma 4 if we assume (M1) and (M3). For the second range we argue
as the proof of Lemma 6. We have for % and y in range (ii)

T(r)> :
1�(3r)�k�1�(2r)

ak e&kr (1&e&kr)2 (1&cos(%&ky))

>\1&cos \1
2

r3:�7++ e&1�2(1&e&1�3)2 :
1�(3r)�k�1�(2r)

ak

>c24r&:�7>c24 \log
1
r+

2

,

by the inequality (20) and Lemma 3, where c24=c18(1&e&1�3)2. From
(46), we obtain the required inequality. K

Finally, the asymptotic behaviors of V$(w) depend more on the values of
: as described in the following result.

Lemma 10. If w � +� then V$(w) satisfies

V$(w)=:&1(:+1):�(:+1) A1�(:+1)(1+O(w&2+w&:&1));

120 HSIEN-KUEI HWANG



and if w � &� then

V$(w)={\
A?

sin ?:+
1�(:+1)

e:w�(:+1)(1+O(e (1&:) w)), if 0<:<1;

&A1�2w(1&w)&1�2 ew�2(1+O(ew)), if :=1;

:&:�(:+1)(A1(:) `(:))1�(:+1)

_ew�(:+1)(1+O(ew+e(:&1) w)), if :>1.

Proof. These follow from the definition of Z and properties of 8(z, s, v)
(see [6, Sect. 1.11]). K

Note that U$(w)tV$(w) as w � +�, this being intuitively clear in view
of (16) and the relation max |n tmax |n .

6. EXAMPLES

In general, it is the condition (M3) or (M3') that is more difficult to
check. A sufficient condition for the validity of these two is the following
condition of Haselgrove and Temperley (see [15, 31]): there exists a
positive constant �<1 such that

| g(r+iy)|<�g(r) for r�| y|�?, (48)

as r � 0+. This condition is satisfied, for example, when *j= j l (see [15]),
where l is a positive integer. However, as remarked by Richmond [31],
(48) is, in general, a difficult condition to work with. Sometimes it is easier
to check the following condition:

If the abscissa of convergence :. of the Dirichlet series D.(s)=
�k�1 ak eik.k&s is <: for each ?�2�|.|�?, then (M3') (and a fortiori
(M3)) is satisfied.

For, by Mellin inversion formula, we deduce g(r+iy)<<r&:+= for
?�2�| y|�?, where :y<:&=<:. Thus g(r)&| g(r+iy)|>>r&:.

(a) Let *j= j l for j=1, 2, 3, ..., where l is a fixed positive integer. All
our theorems apply. Further computations show that the mean and
variance of |n satisfy

E(|n)=+n+c25+O(n&1�(l+1)) and Var(|n)=_2
n+c26+O(n&1�(l+1)),

where expressions for the two constants c25 and c26 are given in (32) and
(33) (with : there replaced by 1�l). In particular, if l=1 we have
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E(|n)=
2 - 3 log 2

?
- n+

3 log 2
?2 &

1
4

+O(n&1�2),

Var(|n)=\- 3
?

&
12 - 3

?3 (log 2)2+ - n+
3

2?2&
1
8

&
36(log 2)2

?4 &
3 log 2

?2 +O(n&1�2),

which improve an old result of Erdo� s and Lehner in [7].
Likewise, we have

E(|n)=+~ n+c27+O(n&1�(l+1)) and Var(|n)=_~ 2
n+c28+O(n&1�(l+1)),

where

c27=&
1
2

+
l

(l+1) `(1+1�l)
and

c28=
l

(l+1) `(1+1�l)
(1&2&1�l&`(1+1�l)&1).

(b) Let *j= j l&1, l being a fixed integer �2 and j=2, 3, 4, ... We
have (see [10, p. 45])

D(s)= :
j�2

( j l&1)&s= :
j�0

\s+ j&1
j + (`(ls+lj )&1),

the last expression providing a meromorphic continuation of D into the
whole s-plane with polynomial growth order at _\i�. To check (M3), we
argue as in [23, Example (c), pp. 39�40]. For r>0 and 0<| y|�1

g(r)&Re g(r+2?iy)� :

cos 2?( j l&1) y�0
j�2

e&( jl&1) r�e&1�2 :

cos 2?( jl&1) y�0
2� j�r&1�l

1.

(49)

By the Weyl criterion (see [22, p. 7]) the sequence (( j l&1) y) j�2 is uniformly
distributed mod 1 for irrational y. Thus for any =>0 the number of summands
in the rightmost summation is at least ( 1

2&=) r&1�l for sufficiently small r.
It follows that

g(r)&Re g(r+2?iy)� 1
3 e&1�2r&1�l,

for irrational y as r � 0+. But g(r+2?iy) is a continuous function of y
(actually infinitely differentiable). Thus condition (M3) holds for y in the
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interval 1
4� y� 3

4 . Theorem 1 applies. Similarly, it can be verified that other
results are also applicable.

(c) Let *j=[ j;], where ;>1 is not an integer. We have

D(s)= :
j�1

[ j;]&s=`(;s)+ :
m�1

\s+m&1
m + `m(s),

where `m(s)=� j�1 [ j;]m j&;(s+m) for Re s>;&1&m. Here [t] denotes
the fractional part of t. Thus D admits meromorphic continuation into the
half-plane Re s>;&1&1> &1 with a simple pole at s=1�;. Further
analytic properties of D can be derived through those of `m(s). Conditions
(M3) and (M3') can be checked as in the last example, the uniform distri-
bution modulo 1 being, for example, a consequence of Weyl's metric
theorem (see [22, p. 32]) and the uniform continuity of g.

(d) Let *j=h+ jd with (h, d )=1, h, d being positive integers, d�2
and 1�h<d. This is an interesting case where the condition (M3) holds
(see [25]) but (M3') is violated. Thus Theorems 1 and 3 apply but Theorem
2 does not. This example describes an interesting ``period-hereditary'' property
of the sequence [*j] on |n , namely, if the sequence [*j] is periodic3, then |n

is of maximum span >1. On the other hand, the random variables |n are less
sensitive to such a property.

(e) *j+l (l&1)�2=l, j=1, ..., l, namely, ak=k and D(s)=`(s&1). All
our theorems again apply.

7. EXTENSIONS

The results in this paper are susceptible of many different extensions. We
only discuss two typical cases in this section.

First, let *j=2 j&1. It is easy to show the relation

`
j�0

(1+uz2 j
)=1+ :

k�1

u&(k)zk,

where &(k) denotes the number of 1's in the binary representation of k.
In this case D(s)=(1&2&s)&1 with a simple pole at s=0. Despite this
degenerate case, it might be possible to extend our results to the case :=0,
as suggested by the example D(s)=1+2&s�(1&2&s)2. On the other hand,
a limiting Gaussian law for |n can be established using the methods of this
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paper, the regularity conditions requiring somewhat different arguments
(see [5]). For further information on Mahler-type partitions, see [29, 35].
Note that if

Pn(u)=[zn] `
j�0

\1+
uz2 j

1&z2 j+ (n=0, 1, 2, ...),

then

{P2m(u)=P2m&1(u)+Pm(u)
P2m+1(u)=P2m&1(u)+uPm(u)

(m=1, 2, 3, ...),

with P0(u)=1 and P1(u)=u. These relations are useful from a computa-
tional point of view.

A natural question suggested by the above examples is that between the
degenerate limiting behavior of |n and the limiting Gaussian behavior of
|n , from which point on will the ``phase change'' (from a discrete limiting
law to a continuous one) occur? More precisely, let ql(n) denote the
number of partitions into parts 2 j&1 in which each part is allowed to
appear at most l-times. Define |[l]

n by

1+ :
n�1

znql(n) (u| n
[l]

)= `
j�0

(1+u(z2 j
+z2 } 2 j

+ } } } +zl } 2 j
)).

The question is for what values of l will the distribution of |[l]
n be

asymptotically normal, an intuition being that the asymptotic normality of
|[l]

n would imply the same property for |[l+1]
n ?

Next, take D(s)=� p prime p&s. Numerical evidence suggests again that
the limiting distributions of |n and of |n will still be Gaussian. For results
on the total number of partitions and the moments of the summands, see
Roth and Szekeres [33] and Richmond [30].

As mentioned in the Introduction, the limiting distributions of the
number of summands (counted with multiplicities) in unrestricted parti-
tions are non-Gaussian for almost all partitions. However, it was predicted
by Haselgrove and Temperley [15] that Gaussian law would appear if
:�2, although a formal proof is still lacking. A concrete example is the
generating function

`
j�1

(1&uz j)& j,

enumerating the number of plane partitions of n with a given sum of the
diagonal parts or with a given trace (see [1, Chap. 11]).

124 HSIEN-KUEI HWANG



REFERENCES

1. G. E. Andrews, ``The Theory of Partitions'' (G.-C. Rota, Ed.), Encyclopedia of Mathematics
and Its Applications, Vol. 2, Addison�Wesley, Reading, MA, 1976.

2. F. C. Auluck, S. Chowla, and H. Gupta, On the maximum value of the number of partitions
of n into k parts, J. Indian Math. Soc. 6 (1942), 105�112.

3. L. Comtet, ``Advanced Combinatorics, the Art of Finite and Infinite Expansions'' (revised
and enlarged edition), Reidel, Dordrecht, 1974.

4. J. Curtiss, A note on the theory of moment generating functions, Ann. Math. Statist. 13
(1942), 430�433.

5. N. G. de Bruijn, On Mahler's partition problem, Indag. Math. 10 (1948), 531�546.
6. A. Erde� lyi, ``Higher Transcendental Functions,'' Vol. I, Krieger, Malabar, FL, 1953.
7. P. Erdo� s and J. Lehner, The distribution of the number of summands in the partitions of

a positive integer, Duke Math. J. 8 (1941), 335�345.
8. P. Erdo� s and M. Szalay, On the statistical theory of partitions, in ``Colloquiua Mathematica

Societatis Ja� nos Bolyai,'' Topics in Classical Number Theory, Vol. 34, pp. 397�450, Budapest,
1981.

9. P. Erdo� s and P. Tura� n, On some general problems in the theory of partitions, I, Acta
Arithmetica 18 (1971), 53�62.

10. P. Flajolet, X. Gourdon, and P. Dumas, Mellin transforms and asymptotics: harmonic
sums, Theoret. Comput. Sci. 144 (1995), 3�58.

11. P. Flajolet and A. M. Odlyzko, Singularity analysis of generating functions, SIAM J.
Discrete Math. 3 (1990), 216�240.

12. P. Flajolet and M. Soria, Gaussian limiting distributions for the number of components
in combinatorial structures, J. Combin. Theory Ser. A 53 (1990), 165�182.

13. B. Fristedt, The structure of random partitions of large integers, Trans. Amer. Math. Soc.
337 (1993), 703�735.

14. W. M. Y. Goh and E. Schmutz, The number of distinct part sizes in a random integer
partitions, J. Combin. Theory Ser. A 69 (1995), 149�158.

15. C. B. Haselgrove and H. N. V. Temperley, Asymptotic formulae in the theory of partitions,
Proc. Cambridge Philos. Soc. 50 (1954), 225�241.

16. J. Herzog, Weak asymptotic formulas for partitions free of small summands, II, Acta
Math. Hungarica 62 (1993), 173�188.

17. A. Hildebrand and G. Tenenbaum, On integers free of large prime factors, Trans. Amer.
Math. Soc. 296 (1986), 265�290.

18. H.-K. Hwang, Large deviations for combinatorial distributions. I. Central limit theorems,
Ann. Appl. Probab. 6 (1996), 297�319.

19. H.-K. Hwang, Distribution of integer partitions with large number of summands, Acta
Arithmetica 78 (1997), 351�365.

20. H.-K. Hwang, Large deviations of combinatorial distributions. II. Local limit theorems,
Ann. Appl. Probab. 8 (1998), 163�181.

21. C. Knessel and J. B. Keller, Partition asymptotics from recursion equations, SIAM J.
Appl. Math. 50 (1990), 323�338.

22. L. Kuipers and H. Niederreiter, ``Uniform Distribution of Sequences,'' Wiley, New York,
1974.

23. D. V. Lee, The asymptotic distribution of the number of summands in unrestricted
4-partitions, Acta Arithmetica 65 (1993), 29�43.

24. J. H. Loxton and H.-F. Yeung, Common summands in partitions, Acta Arithmetica 55
(1992), 308�320.

25. G. Meinardus, Asymptotische Aussagen u� ber Partitionen, Math. Z. 59 (1954), 388�398.

125LIMIT THEOREMS FOR PARTITIONS



26. F. W. J. Olver, ``Asymptotics and Special Functions,'' Academic Press, New York, 1974.
27. V. V. Petrov, ``Sums of Independent Random Variables,'' Springer-Verlag, Berlin�Heidelberg�

New York, 1975. [Translated from the Russian by A. A. Brown]
28. L. B. Richmond, The moments of partitions, I, Acta Arithmetica 26 (1975), 411�425.
29. L. B. Richmond, Mahler's partition problem, Ars Combin. 2 (1976), 169�189.
30. L. B. Richmond, The moments of partitions, II, Acta Arith. 28 (1976), 229�243.
31. L. B. Richmond, Some general problems on the number of parts in partitions, Acta

Arithmetica 64 (1994), 297�313.
32. L. B. Richmond and A. Knopfmacher, Compositions with distinct parts, Aequationes

Math. 49 (1995), 86�97.
33. K. F. Roth and G. Szekeres, Some asymptotic formulae in the theory of partitions, Quart.

J. Math. Oxford Ser. (2) 5 (1954), 241�259.
34. E. Schmutz, Part sizes of random integer partitions, Indian J. Pure Appl. Math. 25 (1994),

567�575.
35. W. Schwarz, Einige Anwendungen Tauberscher Sa� tze in der Zahlentheorie, C. Mahler's

Partitionsproblem, J. Reine Angew. Math. 229 (1967), 182�188.
36. G. Szekeres, An asymptotic formula in the theory of partitions, II, Quart. J. Math. Oxford

Ser. (2) 4 (1953), 96�111.
37. G. Szekeres, Asymptotic distributions of the number and size of parts in unequal partitions,

Bull. Australian Math. Soc. 36 (1987), 89�97.
38. G. Tenenbaum, ``Introduction a� la the� orie analytique et probabiliste des nombres,''

Institut Elie Cartan, Universite� de Nancy I, Nancy, France, 1990.
39. E. C. Titchmarsh, ``The Theory of the Riemann Zeta-Function,'' 2nd ed., (revised by

D. R. Heath-Brown), Clarendon Press, Oxford, 1986.
40. H. Wilf, Three problems in combinatorial asymptotics, J. Combin. Theory Ser. A 35

(1983), 199�207.

126 HSIEN-KUEI HWANG


	1. INTRODUCTION 
	2. STATEMENT OF RESULTS 
	3. CENTRAL LIMIT THEOREM 
	4. LOCAL LIMIT THEOREM 
	5. UNRESTRICTED PARTITIONS 
	6. EXAMPLES 
	7. EXTENSIONS 
	REFERENCES 

