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Abstract. We elaborate on a general method that we recently introduced for characterizing the “natural”
structures in complex physical systems via multi-scale network analysis. The method is based on “com-
munity detection” wherein interacting particles are partitioned into an “ideal gas” of optimally decoupled
groups of particles. Specifically, we construct a set of network representations (“replicas”) of the physical
system based on interatomic potentials and apply a multiscale clustering (“multiresolution community
detection”) analysis using information-based correlations among the replicas. Replicas may i) be differ-
ent representations of an identical static system, ii) embody dynamics by considering replicas to be time
separated snapshots of the system (with a tunable time separation), or iii) encode general correlations
when different replicas correspond to different representations of the entire history of the system as it
evolves in space-time. Inputs for our method are the inter-particle potentials or experimentally measured
two (or higher order) particle correlations. We apply our method to computer simulations of a binary Kob-
Andersen Lennard-Jones system in a mixture ratio of A80B20, a ternary model system with components
“A”, “B”, and “C” in ratios of A88B7C5 (as in Al88Y7Fe5), and to atomic coordinates in a Zr80Pt20 system
as gleaned by reverse Monte Carlo analysis of experimentally determined structure factors. We identify the
dominant structures (disjoint or overlapping) and general length scales by analyzing extrema of the infor-
mation theory measures. We speculate on possible links between i) physical transitions or crossovers and
ii) changes in structures found by this method as well as phase transitions associated with the computa-
tional complexity of the community detection problem. We also briefly consider continuum approaches and
discuss rigidity and the shear penetration depth in amorphous systems; this latter length scale increases
as the system becomes progressively rigid.

1 Introduction

This article constitutes a longer companion work to an
earlier summary [1]. In this article, we elaborate on the
details of our graph theoretical based method for the anal-
ysis of complex physical systems. We begin by briefly re-
viewing a special class of complex physical systems that
is of great fundamental and technological importance —
that of amorphous materials. From a practical stand-
point, amorphous materials often have industrial process-
ing and preparation advantages [2,3] relative to crystalline
systems enabling, e.g., greater solubility of pharmaceuti-
cals [4] and many other advantages [2,5]. Below, we list
several specific complex amorphous systems. i) Metallic
glasses can be stronger than their respective crystalline
structure and exhibit interesting electrical, chemical, and
magnetic properties [3]. ii) Phosphate glasses are of great
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use in biomedical applications and chalcogenide glasses are
of vital importance in optical recording media such as Blu
Ray technology [6]. iii) Far more recent and exotic chal-
lenges involve incommensurate complex electronic struc-
tures found in systems such as the high-temperature su-
perconductors [7,8]. Understanding the character of non-
trivial structures in the above and many other systems is
a problem of considerable interest in disparate arenas.

In perfect crystals, the natural system scales are evi-
dent by the regular ordering of the lattice. The fundamen-
tal unit cells of a crystal typically involve several atoms
that are replicated in a simple pattern to span the entire
system. There are no intermediate scale structures within
the system from the atomic scale of the lattice up to the
complete single crystal. Identifying the basic periodic unit
cells is vital to the understanding of all crystalline solids.
This simplistic structure enables an understanding of crys-
talline solids in great detail. Early on, the existence of spe-
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cific unit cell structures was postulated to exist in crystals
based on the sharp facets and other macroscopic proper-
ties of large crystals.

In more complex systems, new structures appear on
additional intermediate scales between the atomic scale
and the macro scale of the system. In recent years, sci-
entific exploration has endeavored to understand a vast
array of such complex materials that do not have a simple
theoretical starting point.

As alluded to above, some of the best known complex
materials are glasses. Liquids that are rapidly cooled (“su-
percooled”) below their melting temperature avoid crys-
tallization and instead become quenched into an amor-
phous state. On supercooling, liquids may veer towards
local low energy structures (that cannot, on their own,
be globally replicated to fill space without the inclusion
of other structures) before being quenched into an amor-
phous state. Local low energy structures such as those
formed by icosahedral packings [9] are indeed observed in
metallic liquids [10,11]. Due to the lack of a simple crys-
talline reference, the structures of liquids and glasses are
extremely hard to quantify beyond local scales.

Many glass theories rely on the hypothesis of natural
structures in the glass [12–15]. However, actually finding
such structures in a general way has been more elusive.
How, then, may we detect and best characterize the most
notable structures in amorphous systems? In the current
work, we introduce a general framework to address this
question. We illustrate the rudiments of our method by
applying it to the analysis of glass formers.

The outline of the remainder of this article is as fol-
lows. We present some background information concern-
ing the pursuit of characterizing structures in glasses and
the basic features of our method in sect. 2. Details of the
primary simulated systems are presented in sect. 3. The
community detection and multi-scale community detec-
tions methods are explained in sect. 4. Our multiresolu-
tion method is applied to physical models in sect. 5. We
summarize our findings in sect. 6. Details regarding the
applied information measures are given in appendix A.
Appendix B highlights the simple (yet often overlooked)
fact that prepeaks in the structure factor do not constitute
a necessary condition for medium range order.

In appendix C, we explain how our method allows for
and treats overlapping nodes —nodes that are common to
one or more “communities” within the community detec-
tion methods that we employ. In appendices D–L elab-
orate on additional test cases and various facets of our
method. We conclude by discussing structures in space-
time and their general properties. We discuss the detection
of multi-scale structure in space-time in appendix M. In
appendix N, we consider continuum approaches and dis-
cuss the divergence of a general length scale —the “shear
penetration depth” (λshear)— as a supercooled liquid be-
comes quenched into a rigid glass. At length scales smaller
than λshear, the system may support shear and exhibit
solid-like behavior. At larger length scales, the system ex-
hibits liquid like behavior and shear stress is screened.

2 Background

2.1 Brief summary of numerous current approaches

Existing work in the pursuit of understanding the glass
transition is vast. It spans many decades and is of im-
portance across many fields of science and engineering.
Glass formers exhibit several unique common features [16].
Glasses demonstrate short range order (SRO) and medium
range order (MRO) structures, but no easily discernible
static long range order exists. A striking property of glass
formers (especially of the so-called “fragile” glass form-
ers) is that their relaxation times (as measured, by, e.g.,
their viscosity) can increase by many orders of magnitude
over a relatively narrow temperature range. This dramatic
slowing down is not associated with the usual distinguish-
ing measures of conventional thermodynamic phase tran-
sitions. These systems have rich energy landscapes with an
exceptionally high number of metastable states [17–23].

Given the broad appearance of glass-related states, dif-
ferent frameworks have been explored to work towards a
“universal” characterization of the glass transition. Many
theoretical approaches, e.g., [15,14,16,24–28] have been
developed over the years. The notable theory of random
first order transitions (RFOT) investigates mosaics of lo-
cal configurations [16,24]. RFOT is related [15] to theories
of locally preferred structures [12–15,29]. Other theories
seek similar measures of structure. Among many others,
these approaches include spin glass type analysis [25], the-
ories of topological defects and kinetic constraints [14,15,
30–32], and numerous ingenious approaches summarized
in excellent reviews, e.g., [20,33,34]. Formally, as demon-
strated in [35], a growing static length scale is associated
with the diverging relaxation times in supercooled liquids.
Some works indeed found indications of increasing corre-
lation lengths (static and those describing dynamic in-
homogeneities) as the temperature was lowered [36–39].
Static correlation lengths were amongst other approaches,
notably, examined in terms of i) “point-to-set” correla-
tions [40,41] as well as ii) pattern repetition [42]. We
briefly discuss these measures later on.

In metallic glasses, early work to ascertain local struc-
tures used a dense random packing model [43]. It was later
established that such structures are better represented by
an efficient cluster packing (ECP) model [44–46]. SRO
features were thought to pivot on the existence of local
icosahedral structures centered around solute atoms. Var-
ious idealized SRO configurations were presented in [47].
Schenk et al. and Kelton et al. [10,11] experimentally ver-
ified icosahedral short range order (ISRO) in undercooled
liquids. Later work established the importance of ISRO in
glasses [48–50].

Many structural characterizations are oriented toward
static viewpoint of the system, but some dynamical fea-
tures have also been examined. Analysis of “free volume”
(unoccupied space between atoms) fluctuations [46] has
been advanced. Several shear stress calculations explored
dynamical processes in glass forming materials [22,51].
Dynamical heterogeneities (spatially non-uniform motion)
in supercooled liquids have been investigated [52–56].
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Viable characterizations of SRO and MRO structures
were advanced for low [57] and high [50] solute concentra-
tions, binary [50,57], and multicomponent systems [45].

Some methods of characterizing local structures in-
clude Voronoi tesselation [32,57,58], Honeycutt-Andersen
indices [59], and bond orientational order parameters [60].
These specific measures center on local structures in the
vicinity of an atom or a given link. As such, these specific
measures (and correlations thereof) are restricted from de-
tecting diverse complex long range structures.

Experimental means to directly measure MRO struc-
tures are given in [61,62]. Some potential MRO clusters
were examined [23,50,57]. Several approaches to under-
stand MRO use pattern matching to idealized MRO struc-
tures often constructed as agglomerations of perfectly or-
dered SRO features.

A very useful, experimentally driven, approach for as-
certaining MRO looks for “prepeaks” in X-ray and neu-
tron scattering data (that is, peaks in the structure factor
S(q) that appear for wave numbers q, corresponding to the
inverse interatomic distances, which are lower in magni-
tude than that corresponding to the dominant S(q) peak).
We remark here that while this approach may capture gen-
eral MRO structures, it is possible to have such structures
without structure factor prepeaks (see appendix B).

2.2 Preliminaries concerning our method

Our unbiased structure characterization method extends
multiresolution ideas [63] that have generally been re-
served for network science applications (analyzing graphs
in myriad social and biological networks) to complex ma-
terials. The key notion underlying the current work is that
any complex physical system may be expressed as a net-
work composed of nodes that code basic units of inter-
est (e.g., atoms, electrons, etc.). Weighted links may cap-
ture the strength of the interactions between the different
nodes or experimentally determined correlations (e.g., co-
variance or partial correlation contributions to the struc-
ture factor). After casting the system as a network, we
then search for “communities” of nodes (e.g., clusters of
atoms) that are more tightly linked to each other (or
—in the case of the use of correlation functions as link
weights— are more strongly correlated with one another)
than to nodes in other clusters [64].

Our multiresolution method employs the notion of
“community detection”, (e.g., [65–76]), to quantitatively
identify the “best” scale (or scales) for a complex phys-
ical system. Our approach does not rely on intuition or
a knowledge of expected “important” features. Rather, it
quantitatively estimates the best scale(s) through infor-
mation-theory–based correlations, such as the variation
of information (VI) [77] or normalized mutual informa-
tion (NMI), among different solutions. (In appendix A,
we review these information theory measures.) In essence,
different copies of the community detection problem are
given to different solvers (“replicas”). If many of these
solvers strongly agree regarding certain features of the so-
lution, then these aspects are more likely to be correct.

Similarly, a large discrepancy may indicate large fluctu-
ations on a particular scale (or scales). Extrema in NMI
or VI among the results of these independent solvers then
indicate the best scales for the network.

Multiple extrema can therefore indicate the existence
of multiple relevant length/time scales. Although in most
physical instances there is only a single dominant corre-
lation length, there are many other cases in which more
than one length/time scale is present [78].

One distinction between our work and some other es-
tablished studies of local structures in glasses is that our
analysis is not looking strictly at the positional structure.
Rather, it evaluates structures in terms of the potential
energies (i.e., the internal binding energies of the clusters,
see also [23]). Our method can encapsulate weights that
represent general statistical (pair of higher order) stress
(or other) correlation functions, relative atomic displace-
ments, etc.

Our approach provides a perspective different from
the “point-to-set” [35,79,80] and other methods [42]. The
point-to-set method examines the overlap between config-
urations in a given volume (a “cavity”) in an equilibrated
system and compares those to configurations in the same
cavity of the equilibrated system in which the boundary of
the cavity was held fixed. Physically, it probes how prob-
able it is to have a particular configuration within a disk
or ball of a particular diameter given the boundary condi-
tions. If many small clusters exist inside a sphere of fixed
radius, then, a change in the boundary conditions will not
significantly alter the bulk cluster distribution within the
sphere. Conversely, if the sphere radius is smaller than
the natural correlation length, then the number of config-
urations compatible with the boundary will be small and
the overlap will be large. A different but perhaps related
approach, that of ref. [42], examines the distribution of
structures inside a given volume to identify the correlation
length. The method examines whether the distribution of
configurations inside the volume occurs with a random
frequency (when the linear scale of the volume is larger
than the correlation length) or not (when the linear scale
of the volume is smaller than the correlation length).

Our method does not search for overlap at different
scales for a multitude of configurations nor does it exam-
ine their frequency. Rather, the pertinent structures are
naturally revealed by the information theory extrema be-
tween different copies of the entire system. The approach
that we describe in this work does not require us to tabu-
late possible configurations and their occurrence frequen-
cies nor does it require us to study the system in restricted
volumes.

Furthermore, the basic structures that we find may
be used as the natural units in a renormalization-group–
type analysis or coarse-grained theories where clusters are
replaced by single nodes and an effective energy can be
written that entails interactions between the different clus-
ters alone. As emphasized earlier, finding pertinent struc-
tures in amorphous systems such as structural glasses and
numerous disordered systems is a non-trivial problem. In
these systems, there is generally no symmetry or any other
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Fig. 1. (Color online) A depiction of our simulated model glass
former with three components “A”, “B”, and “C” with mixture
ratios of 88%, 7%, and 5%, respectively. The N = 1600 atoms
are simulated via IMD [85] in a cube of approximately 31 Å in
size with periodic boundary conditions. The identities of the
atoms are C (red), A (silver), B (green) in order of increasing
diameters.

obvious natural key that may determine how to optimally
partition the system on different scales.

3 Simulations of model glasses

We examine a model glass former derived from a three-
component AlYFe metallic glass [81] which we designate
as “A”, “B”, and “C” in mixture ratios of 88%, 7%, and
5%, respectively. The presence of the different components
B and C assists in the formation of a glassy state [82], since
few pure compounds manifest a glassy state except under
extreme preparation conditions. We additionally study the
ubiquitous Kob-Andersen (KA) binary (80:20) Lennard-
Jones type liquid [83] which lies in the glass-forming mix-
ture region [84].

3.1 Ternary model glass former

In this section we discuss our study on the ternary system
mentioned above. As depicted in fig. 1, we use classical
molecular dynamics (MD) [85] to simulate the system dy-
namics. For this, we need accurate effective pair potentials
that portray the pair-wise interactions between the atoms
in the system. Our model potential energy function is [86]

φ(r) =
(a0

r

)a1

+
a2

ra5
cos (a3r + a4) , (1)

where r is the distance between the centers of two atoms.
This potential form incorporates a realistic weak long
range interaction. Table 1 summarizes the parameter val-
ues ai which depend on the specific types for a pair of

Table 1. Fit parameters for eq. (1) obtained from fitting con-
figuration forces and energies to ab initio data [86,87]. The
units of the parameters are such that, given r in Å, φ(r) is in
eV. (That is, the parameters a1, a4 and a5 are dimensionless,
a0 is in Å, a2 is in eVÅa5 and a3 is in Å−1.) The same-species
(*) data is replaced by a suggested potential derived from gen-
eralized pseudo-potential theory [88] (see also appendix C).

a0 a1 a2 a3 a4 a5

AA * * * * * *

AB 1.92 17.4 6.09 3.05 −4.68 3.48

AC 2.38 8.96 −14.9 3.11 −3.88 4.38

BB * * * * * *

BC 1.88 8.00 −3.42 2.53 −1.25 3.00

CC * * * * * *
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Fig. 2. The pair potentials for our three-component model
glass former (see fig. 1). We indicate the atomic types by “A”,
“B”, and “C” which are included with mixture ratios of 88%,
7%, and 5%, respectively. The units are given for a specific
candidate atomic realization (AlYFe) discussed in the text.
The same-species data uses a suggested potential derived from
generalized pseudo-potential theory [88] (see also appendix C).

interacting atoms, and fig. 2 shows the respective poten-
tial plots.

The interaction parameters {ai}5
i=1 were determined

[86] by fitting configuration forces and energies to ab ini-
tio data [87]. The same-species model interactions are fi-
nally replaced by that suggested by generalized pseudo-
potential theory (GPT) [88]. As illustrated in fig. 1, we
simulate N = 1600 atoms in a cubic system approxi-
mately 31 Å in size using periodic boundary conditions.
This width is approximately twice the size of any sus-
pected MRO structures.

The system is initialized at a temperature of T =
1500K and allowed to equilibrate for a long time using
a constant number of atoms (N), a constant volume (V ),
and a constant energy (E). That is, we work within the
NVE ensemble. After allowing for system equilibration,
we save s high temperature configurations separated by a
fixed period of simulation time. (We fixed the value of s
at 12 for all our simulations.) Prior to cooling, the length
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scales in the system are changed by 1% to account for the
increase in density as a result of cooling since we choose
to cool the system in an NVT ensemble to control the
temperature. This was done to keep a realistic density
difference between the high and low temperature configu-
rations. It should not have any important physical conse-
quences pertaining to local structure. The system is then
rapidly quenched to a temperature of T = 300K, and it is
allowed to equilibrate (in a mostly frozen state) in an NVE
ensemble. We again save s separate low temperature con-
figurations separated by a long period of simulation time.

3.2 Lennard-Jones glass

Here we discuss the application of our methods to simu-
lations of the Kob-Anderson mixture. The pair potentials
are given by

φαβ(r) = 4εαβ

[(σαβ

r

)12

−
(σαβ

r

)6
]

, (2)

where α or β designate one of two atomic types A and B.
Specifically, in accord with KA we set the dimensionless
units εAA = 1.0, εAB = 1.5, εBB = 0.5, σAA = 1.0, σAB =
0.80, and σBB = 0.88.

As in the ternary glassy system above, we use MD [85]
to simulate a LJ system of N = 2000 atoms. The system
is initialized at a temperature of T = 5 (using energy
units where the Boltzmann constant kB = 1) and allowed
to evolve for a long time. We save s high temperature
configurations separated by 10000 time steps. The time
step size is Δt = 0.0069 in LJ time units. Then, the system
is rapidly quenched to a temperature of T = 0.01 which is
well below the glass transition temperature of the KA-LJ
system. The system is evolved in this mostly frozen state,
and we save s low temperature configurations separated
by 10000 steps of simulation time.

4 Multiresolution clustering on amorphous
materials

Our idea is to apply, for the first time, multiresolution
network analysis methods to ascertain all pertinent struc-
tures in complex amorphous materials. A key subcompo-
nent of this analysis is the community detection method
itself. We first explain these ideas in network analysis and
their physical analogs.

4.1 Physical motivation

In an ideal decomposition of a large system into decoupled
subsystems (communities), there is no interaction between
different communities, and the system is effectively that
of an ideal gas of disjoint communities. In the simplest
setting in which the Hamiltonian would be block diago-
nal, the evolution of nodes (e.g., atoms) in each commu-
nity would be decoupled from all other nodes in other

communities. We next consider a fundamental Newtonian
many-particle setting. If the total force on a cluster is zero,
Fcluster = 0 (i.e., the cluster is decoupled from all others),
then the particles in that cluster will drift (on average) at
the center-of-mass velocity for that cluster. We note that
in viscous systems, particles which experience a similar
force will tend to move in unison [89].

In such instances, we may treat each community as a
different particle in an ideal gas of non-interacting such
particles. The general problem is to find (the time de-
pendent) permutation that renders the pair interaction
strengths and/or correlations between particles into the
best possible block diagonal form (on the time scale cho-
sen). Community detection emulates this for graphs. In
the atomic realization that we discuss in this article, this
emulates a partition of the system into optimally decou-
pled clusters such that the system may be viewed as an
“ideal gas” of decoupled communities.

Slow cooling of a liquid enables crystallization which
results in a first order or critical transition in the commu-
nity detection problem. A similar transition materializes
in many slowly cooled liquids as they crystallize to form
ordered solids. By contrast, in an extremely rapid cooling
of a liquid, the interactions between the particles are sim-
ilar to those in spin-glass systems (i.e., the particles are
not nicely organized and consequently the inter-particle
interactions harbor a large degree of randomness). It is
notable that a spin-glass transition appears in the com-
munity detection problem for random graphs [90].

4.2 Community detection

In a graph such as that depicted in fig. 3, nodes cor-
respond to abstracted fundamental elements of the sys-
tem, and edges represent defined relationships between
the nodes. Community detection describes the problem of
finding strongly connected groups of nodes. Nodes in dif-
ferent clusters are more weakly connected than the nodes
belonging to the same cluster. As alluded to earlier, we ap-
ply direct physical analogies where a node corresponds to
a single atom. Edges, and their corresponding weights, are
directly defined by the associated pair-wise interaction en-
ergy (or, in the absence of known interactions, may be set
by measured inter-particle correlations). Specifically, we
use the interatomic potential energies in eqs. (1) and (2).
This potential model of the network edges is physically
appealing in that finding the best partition for the net-
work is akin to minimizing the cluster binding energies of
the physical system. This is because our Hamiltonian fa-
vors solutions where the intra-cluster interaction energies
outweigh inter-cluster energies. The clusters therefore be-
have as “solute particles” which interact weakly with the
“solvent” and other solute particles. The problem is cast
as identifying tightly bound clusters (“communities” or
“solutes”) against a background or “solvent” [91]. In the
Potts model Hamiltonian that follows both attractive and
repulsive interactions are present.
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Fig. 3. An arbitrary weighted network with 4 natural commu-
nities (strongly connected) depicted as distinct node shapes.
The goal in community detection is to identify any such
strongly related clusters of nodes based on their defined edge
relationships. Solid lines depict weighted links corresponding
to complimentary or attractive relationships where Aij > 0
and Bij = 0 in eq. (3). Gray dashed lines depict missing, ad-
versarial, or repulsive relationships where Aij = 0 and Bij > 0
in eq. (3). In both cases, the relative link weight is indicated
by the respective line thicknesses. For presentation purposes,
missing intercommunity edges are not depicted. In this paper,
we directly relate the edges (attractive and missing/repulsive)
to the interaction energy between pairs of atoms which implies
that the natural groups would correspond to bound clusters of
atoms.

Our Potts model Hamiltonian for community detection
is [64]

H({σ}) = −1
2

∑
i�=j

(
Aij − γBij

)
δ(σi, σj). (3)

Globally minimizing this Hamiltonian corresponds to
identifying strongly connected clusters of nodes. The ele-
ments of the matrices Aij and Bij are the edge weights and
are defined as follows: an “attractive” weight has Aij > 1
if nodes i and j are connected, Aij = 0 if the nodes are
not connected, a “repulsive” weight has Bij ≥ 0 if the
nodes are not connected, and Bij = 0 if nodes i and j are
connected. We will set the weights Aij and Bij to repre-
sent the pair-wise potential energies (see sect. 5). These
weights may similarly be set by pair-wise correlations. In
principle, we can generalize the Hamiltonian to include
n-body correlations or interactions.

We split the “attractive” (ferromagnetic) and “repul-
sive” (anti-ferromagnetic) contributions into two separate
weighted matrices in order to insert the model weight γ
that adjusts the energy trade-off between the two types of
interactions. The parameter γ allows us to vary the tar-
get scale of the community solution. The spin states σi

designate the community membership of each node i with
a range 1 ≤ σi ≤ q, where q is the number of communi-
ties. This number q may be variable [63,64] (such as in

the multiresolution analysis that we perform in the cur-
rent work) in order to find the optimal solutions or held
fixed. Node i is a member of community k if σi = k. In
this Hamiltonian, each spin σi interacts only with other
spins in its own community.

Briefly, using eq. (3) our community detection algo-
rithm rapidly moves nodes between communities based
on the current lowest energy assignment until no more
moves are possible (see also sect. 4.4). We then attempt
p independent trials and select the lowest energy trial as
the best division [63,64]. (The number of trials serves as
our optimization parameter in this greedy algorithm. It
effectively allows the algorithm to explore more possible
configurations before selecting the best configuration for
a given replica. The number of required trials in order to
achieve a prescribed accuracy monitors the computational
complexity (correlating with the number of local minima
in which individual trials may get stuck). Somewhat better
optimization could be obtained with a heat bath solution
algorithm [90] at a cost of substantially increased com-
putational effort.) This community detection algorithm
partitions the network into communities by assigning a
unique cluster membership for each node. Further details
are provided in the appendices.

Local features in metallic glasses generally exhibit in-
terconnecting short range structures [57]. In our commu-
nity detection problem, this corresponds to allowing “over-
lapping” node memberships where atoms can be members
of more than one local cluster. We incorporate this effect
by assigning a node as a secondary member of every com-
munity for which it has a negative binding energy in terms
our Potts model in eq. (3) (see appendix C).

4.3 Physical interpretation of community detection

Some previous analyses of local structure consider each
cluster as “isolated” from the remainder of the bulk (sim-
ulation) liquid [9] or embedded within a liquid continuum
approximation [91]. We pursue a direct analysis of the
bulk (simulated) configuration where we adjust the clus-
ter boundary (situated within the bulk material) based on
the net Potts model interaction energy which is closely re-
lated to the simulated interaction energies. Specifically, a
cluster membership for a given atom is explicitly defined
when the atom has a negative Potts model (for the com-
munity detection problem) interaction energy with the en-
tire cluster. In our tested configurations, this is related,
but not explicitly equal, to the real binding energy with
the other atoms in the cluster. The potential energy used
for the edge weights is shifted by φ0, and the Potts model
energies for the “repulsive” edges (when a resulting edge
weight is positive) are scaled by the model’s resolution
parameter γ (see sect. 4.5.1).

Larger clusters are affected more by surface interac-
tions because the interactions with the distant atoms tend
to zero, which corresponds to repulsive effects in the com-
munity detection problem (due to the φ0 shift). A large
collection of these edges makes it difficult for the atom
to be assigned as a member of a particular cluster unless
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the (near) surface interaction is strong. Coulomb-like in-
teractions would likely display more limited surface-like
effects in our analysis because of the slow decay rate over
distance of the interaction.

An intuitive analogy for our analysis is that of a frag-
mentation model where the physical system is subjected to
a large external impulsive force. That is, if we strike the
system with an imaginary hammer, the system is more
likely to fragment along surfaces with weak attraction
along the walls of the boundaries. These lines intuitively
and roughly correspond to the community boundaries due
to how we define the network edges based on the potential
values. This effect is seen in a simple example system that
contains substantial defect sites [92]. Defects would likely
fall along natural divisions after an impulse, and they ap-
peared regularly along the boundaries of our community
partitions.

Our analysis is independent of the type of structures
that are being analyzed (structured, amorphous solid, and
possibly even liquid systems). It is robust to noise in the
model network, and it yields very accurate results with a
simple and fast greedy algorithm [64]. Because edge as-
signments are based on relative node positions (through
the interaction potential), our method should be robust
with respect to translational or rotational motion of solid
structures in the system (such as crystal nucleation).

4.4 Other physical community detection models

Minimizing the Hamiltonian of eq. (3) using the algorithm
briefly explained above models a dynamic community de-
tection process where we search for a local energy min-
imum that indicates a “good” community partition (in
general). In particular, we have applied a potential energy
(PE) model of network edges, and we could, in principle,
apply other edge definitions to obtain other relevant con-
figurations with the following caveat. When we minimize
the Hamiltonian using the edge weights, a low energy state
corresponds to a good partition, so for consistency with
the community detection problem, any edge definitions
should ideally be extremized at the most favorable config-
uration(s). The subtle distinctions between a few different
natural edge weight models can result in different calcu-
lated clusters (beyond natural fluctuation caused by a high
configurational entropy).

An inverted PE model fits the above criterion, and it
would at first appear to be conceptually consistent with
a model based on the relative pair-wise squared node dis-
placement (SND) model. For both cases, small deflections
about the minimum still indicate a good, even if not op-
timal, configuration corresponding to the intuitive notion
of a bound cluster. However, the SND model would cause
a perfect crystal to be identified as a single contiguous
cluster. The PE would not have this effect since more dis-
tant nodes have a much lower potential energy. In effect,
the PE model could identify the smaller scale units in a
perfect crystal that the SND model could not isolate.

Another intuitive edge model for bound clusters is re-
lated to the attractive force that one may expect to ex-

ist between constituent elements of a physical cluster. Of
course, the system forces still cause the formation of a
crystalline ground under the appropriate conditions, but
the forces dictate the system’s physical dynamics over
time where the PE model (more) directly indicates the rel-
evant ground state(s). Forces with a minimum such as the
LJ model in eq. (2) would be zero at the optimal ground
state configuration (ideal crystal state), and the maximum
force would be at a larger radius r than the PE minimum.
While a force model of edge weights is also intuitive, it
would correspond to (perhaps slightly) different clusters
in a physical system compared to clusters derived from a
PE model because the community detection Hamiltonian
is extremized at different radii.

This discussion of the subtle differences between the
edge models leads to the natural question of which is the
“best” physical cluster model. Another perspective is that
the different edge weight models simply answer different
questions. We have selected the PE definition since it best
corresponds to the ideal ground state of the system in
our pair-wise interaction model. We then infer the best
local clusters within configurations in local (frustrated)
equilibrium (in the solid systems).

Our current analysis is not suitable for a hard-sphere
system model because the energies are either zero or in-
finity. Similarly, repulsive-only potentials are not suitable
for the current study because all atoms beyond a certain
distance would be considered “attractive” in terms of the
Potts model interaction resulting in a trivial cluster defi-
nition. Although for these cases, we could attempt other
constructions for the community detection analysis such
as that given in appendix L.

4.5 Multiresolution community detection

Multiresolution methods [63,93–96] extend the ideas of
community detection to identify the “best” division(s)
over a range of network scales (“resolutions”). We test
s independent realizations of the system (“replicas”) over
all relevant network scales by specifying different values of
γ in eq. (3). Networks with a weakly defined structure will
result in more diverse solutions among the different repli-
cas. Conversely, strongly defined structures will result in
replica solutions that agree more strongly. When replicas
represent time-separated configurations, a strong agree-
ment among the replicas corresponds to consistent phys-
ical structures over time. The time separation between
different snapshot can be tuned to find the corresponding
pertinent structures for general time scales. The particular
case of vanishing time separation corresponds to different
representations of the same static system. See fig. 4. In
the particular case of vanishing time separation, we per-
mute, for identical nodes (atoms), the numbers labeling
the nodes within the network; this leads to replicas cor-
responding to different initial starting points for the algo-
rithm described in sect. 4.2. Another possibility, depicted
in fig. 4, is that of replicas constituting different copies of
the same system as it evolves in space-time (i.e., a replica
not corresponding to a given snapshot of the system at
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Fig. 4. Panel (a) depicts our replica construction for the physical system at a “static” time t0 (no time separation between
replicas, see appendix J). For presentation purposes, only a few nodes (atoms) are illustrated. Panel (b) depicts a similar set of
replicas separated by a time Δt between successive replicas. In both panels (a) and (b), we generate a model network for each
replica using the potential energy between the atoms as the respective edge weights for the network. Independently, within each
replica, we then subsequently minimize eq. (3) at a given value of γ using the algorithm briefly described in sect. 4.2. Afterwards,
we use the information measures in appendix A to evaluate how strongly the set of replicas agree on the best partition.

Fig. 5. A depiction of our multiresolution algorithm using the replicas of fig. 4(b) for a range of resolution parameters γ in
eq. (3). We solve the set of replicas at each γi after which we utilize the information measures in appendix A, such as IN in the
schematic, to measure the level of agreement among the replicas for each tested resolution. The NMI IN or VI V extrema (or
plateaus in some instances) indicate preferred (or more “stable”) resolutions.

a fixed time but rather monitoring the entire system as
it evolves in space-time). This latter possibility will be
alluded to in appendix M.

Within this framework, we identify the best resolu-
tion(s) by analyzing how well the independent replica so-
lutions agree with each other in terms of information con-
tent [63]. See fig. 5 for a schematic involving time-separat-
ed replicas. Extremal correlated resolution(s) identify the
best division(s) of the network. We apply the variation of
information (VI) V metric and the normalized mutual in-
formation (NMI) IN measure to evaluate the level of sim-
ilarity among all pairs of the s replicas (see appendix A).
Extrema correspond to locally stable solutions that re-
main locally unchanged for variations in the system scale.
In the case of very stable system resolutions, local extrema
can be replaced by plateaus in these information theory
measures that indicate no change in the system solution
over an extended range of resolution scales γ (as seen in
the networks examined in [63]). We can further extract
additional qualitative information about the “stability” of
network partitions across a range of resolutions by exam-

ining the average number of clusters q [93,94,97], mutual
information I [93], or the Shannon entropy H [63,97].

4.5.1 Physical interpretation of γ

The Potts model (resolution) parameter γ has a theoret-
ical range of 0 < γ < ∞. In practice, the upper range is
generally not higher than O(104) although the real upper
and lower bounds depend strongly on the interaction en-
ergies. On a model level, γ simply scales the contribution
of the repulsive edges for the community definition. The
relevant values of γ are not absolute in the sense that they
are readily compared among disparate problems, since the
optimal quantities depend on the edge shift φ0, the edge
definition model, and other parameters of the system. In
general, low values of γ (approaching zero) permit larger
clusters until there is a single cluster (or completely dis-
joint subclusters). Conversely, “high” values of γ require
smaller clusters, but the actual size of the minimal clusters
depends strongly on the configuration and potentials.
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In the LJ test case for example, the definitions of the
clusters asymptotically approach weighted “clique” (max-
imally connected cluster) structures where every atom in a
group is interacting strongly enough with the other mem-
bers (a positive edge). That is, no matter how large γ
is taken to be, the clusters do not break down into sin-
gle atoms. Other community detection models will behave
differently in this respect; but the effect is somewhat intu-
itive because, at the very least, the core of a well-defined
physical cluster is a group of strongly bound atoms.

We can express the general partition function for a
community partition with inter-community interactions
which may correspond to the surface terms of clusters in
Random First Order Transition theory (RFOT). Our pa-
rameter γ effectively plays the role of scaling the relation
between surface and bulk terms in RFOT. A high value
of γ corresponds to large surface effects while a small γ
corresponds to dominant bulk effects.

Other physical system models (hard spheres) or forms
of potentials (repulsive-only) would require additional
consideration with corresponding modifications to our cur-
rent clustering analysis. Varying γ has other effects for
the current application such as adjusting the relative sur-
face interaction dependence for the cluster determination
(see sect. 4.3). We could also consider other physical (i.e.,
not graph) distance scale parameters [98], where we can
probe actual geometrical scales (not ones on an infinite-
dimensional graph).

4.5.2 Phase diagram of the community detection problem

Apart from trying to find the best possible division of com-
munities in a particular system, we have also looked at the
ease at which such a solution can be found. This further
indicates when, physically, the system might be analyzed
in terms of nearly decoupled communities and when it
cannot. It also enables us, by varying the parameters and
temperature to map out when a solution is present or not,
to determine whether the solutions found can be trusted
and are physically relevant.

When solving the system of eq. (3) at non-zero tem-
perature for a given network (i.e., for an atomic configura-
tion that is held fixed), entropic effects can, on their own,
lead to a transition as the temperature is increased [90].
This transition corresponds to a spin glass type transi-
tion for random systems capturing a transition from easy
to hard computational problems. These transitions may
also be standard equilibrium transitions for sufficiently
regular systems —critical for several regular graphs (e.g.,
the square lattice viewed as a graph analyzed via a Potts
model for q ≤ 4 communities) or first order (q > 4 in
the example above); for weak disorder, the latter transi-
tions may be rounded off and further display signatures of
Griffiths-type behavior [105]. We briefly elaborate on this
idea below. As illustrated in the examples analyzed in this
work, spatially increasing low temperature structures in a
supercooled liquid as well as correlation lengths in systems
such as the Ising spin systems can be ascertained via our
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Fig. 6. A measure of the computational complexity χ of the
community detection problem as a function of the temperature
T and the density of inter-community links pout.

method. In a general decomposition of an interacting sys-
tem into optimally decoupled groups of particles (“com-
munities”), the partition function is approximated as

Z �
∑
{Λ}

g(Λ)
qΛ∏

c=1

zc. (4)

Here, zc is the partition function as computed with the
Hamiltonian of the entire system for the particles in com-
munity c, g(Λ) is the frequency of obtaining a particular
set of communities Λ in a decomposition of the entire sys-
tem into optimally disjoint communities, and qΛ is the
total number of communities in the partition Λ. Similar
considerations apply for quenched systems (where the free
energies are weighted by g(Λ)). Thus, physical transitions
or crossovers may, in this approximation, be related to
transitions (or divergent scales) or crossovers in the com-
munities found in Λ themselves and/or phase transitions
associated with the computational complexity of the com-
munity detection problem (as further manifest via the dis-
tribution of partitions g(Λ)) [90]. A decomposition of the
type of eq. (4) is exact for a (standard uniform) q state
Potts model (H = −1

2

∑
i�=j Aijδσi,σj

where Aij = 0, 1)
wherein the interaction energy between spins in different
clusters (with each cluster/community given by uniform
value of σi) is identically zero (δσi,σj

= 0).
In fig. 6, we plot a specific measure [63] of the compu-

tational complexity as a function of the density of energet-
ically attractive inter-community links pout and tempera-
ture T for a particular random graph. Within the solvable
flat region (starting at low pout and T ) the system can be
effectively decomposed into decoupled elements, i.e., the
partition function satisfies eq. (4) with a well-defined set
of partitions {Λ}. This region is separated by ridges of
high complexity in which the community detection prob-
lem becomes exceedingly hard from the unsolvable region
in which no sensible community detection occurs (weak
thermal fluctuations aid the system in avoiding metastable
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states while large thermal fluctuations are detrimental).
While the specific phase diagram boundaries were found
with the Hamiltonian of our method (discussed next), the
phase diagram changes little when other methods are used.
In several simple cases the phase boundaries coincide with
those of the known cases (e.g., the phase transition of the
Ising model on the square lattice when investigated as a
network with links representing the strength of the spin
exchange).

5 Multiresolution application to model glass
formers

We assign edges between the nodes (atoms) with the re-
spective weights based on the empirical pair potentials
given by eqs. (1) and (2). Specifically, we calculate the
potential energy φij between each pair of nodes i and j
in the system and then shift each value by a constant
φ0 to obtain φ′

ij = φij + φ0 (assuming that φij → 0 as
the distance between particles i and j tends to infinity
(r → ∞)). The shift φ0 > 0 is necessary for the commu-
nity detection algorithm to properly partition the network
of atoms since it provides an objective definition of which
interatomic spacings are preferable for a well-defined clus-
ter and which are preferred to be excluded from a cluster.

In our particular application here, we calculate the av-
erage potential energy of the system and set φ0 = −φavg.
For use in eq. (3), we define an edge with a weight Aij =
−φ′

ij between nodes i and j if φ′
ij < 0, and we weight

any missing links (or “repulsive edges”) by Bij = φ′
ij if

φ′
ij ≥ 0. We then solve both model systems over a large

range of γ using s = 12 replicas and t = 10 optimization
trials per replica.

While φ0 = −φavg is an intuitive shift that accom-
plishes the goal of an objective cluster definition here, it
is not an appropriate shift for some problems. For exam-
ple, using φ0 = −φavg turns out to be problematic in some
cases for lattice models. In a general setting, we examine
a continuum of potential shifts φ0 and monitor extrema
in the information theory measures as a function of both
γ in eq. (3) and φ0.

In addition to the systems tested below, we applied
the algorithm to various test cases including square, tri-
angular, and cubic lattice structures. The algorithm is
able to correctly identify the natural leading order scales
(plaquettes and composites of plaquettes as “cascades” in
the information theory correlations). Further testing in-
volved two-dimensional defects (dislocations, interstitials,
etc.) and domain walls in a lattice. Defects in triangular
lattices occurred most frequently near cluster boundaries.

We also tested static configurations for the ternary
model glass system where each replica is a model of the
same configuration. There we detected structures in both
low and high temperatures where the high temperature
“structures” are more fragile (that is, harder to solve in
the clustering problem). This corresponds to identifying
relevant transient features in a dense liquid.
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Fig. 7. Panels (a) and (b) show the plots of information mea-
sures IN , V , H, and I and the number of clusters q (right-offset
axes) versus the Potts model weight γ in eq. (3). The ternary
model system contains 1600 atoms in a mixture of 88% type A,
7% of type B, and 5% of type C with a simulation temperature
of T = 300 K which is well below the glass transition for this
system. This system shows a strongly correlated set of replica
partitions as evidenced by the information extrema at (i) in
both panels. A set of sample clusters for the best resolution at
γ � 0.001 is depicted in fig. 11.

5.1 Ternary model glass results

In figs. 7 and 8, panels (a) and (b) show the information
theory based correlations (averaged over all replica pairs
as in [63]) over a range of network resolutions. The lower
temperature system at T = 300K in fig. 7(a) shows a peak
NMI at (ia) with a corresponding VI minimum at (ib).
Figure 9 depicts an example of the full system partition.
Figure 10 shows some sample clusters within the simula-
tion bounding box at resolution parameter value of γbest �
0.001, where we include overlapping node memberships
(the replicas correlations are calculated on partitions), and
fig. 11 depicts additional samples of the best clusters. The
corresponding high temperature (T = 1500K) solutions
have a much lower NMI at γbest � 0.001 indicating signifi-
cantly worse agreement among replicas. That is, one would
expect that the high temperature system T = 1500K is
in a liquid state, so any observed features are not dynam-
ically stable across all replicas (snapshots of the system
over time). At T = 300K, the best structures have con-
sistent cluster sizes that are exclusively MRO.

The plateau regions for γ > 10 are similar to the LJ
plot in fig. 12, but in this system the NMI plateau is lower.
In the high temperature case in fig. 8, there are additional
“almost-plateaus” for the range 0.001 � γ � 0.1. These
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Fig. 8. Panels (a) and (b) show the plots of information mea-
sures IN , V , H, and I and the number of clusters q (right-offset
axes) versus the Potts model weight γ in eq. (3). The ternary
model system contains 1600 atoms in a mixture of 88% type A,
7% of type B, and 5% of type C with a simulation temperature
of T = 1500 K which is well above the glass transition for this
system. At this temperature, there is no resolution where the
replicas are strongly correlated. See fig. 7 for the corresponding
low-temperature case where the replicas are much more highly
correlated at γ � 0.001.

plateaus represent a region of structural transition, but
we are not concerned with them because the replica cor-
relations are very low.

5.2 Binary Lennard-Jones glass results

In figs. 12 and 13, panels (a) and (b) show the data for the
replica information correlations over a range of network
resolutions. The lower temperature system at a temper-
ature of T = 5 (in units of kB = 1) in fig. 7(a) shows a
plateau in NMI at (ia) with a corresponding VI plateau at
(ib) which are the local extrema (V = 0 is a trivial solution
with only one cluster in this problem). Figure 14 depicts
a sample of the best clusters, including overlapping node
memberships, at resolution (i) for γbest � 104. The corre-
sponding higher temperature solutions at γbest � 104 (see
figs. 13 and 15) have a lower NMI (indicating a weak agree-
ment among replicas). The dependence number of replicas
(see fig. 15) required to achieve high accuracy underscores
the faint agreement between contending solutions and the
high temperature complexity of the problem. Our identi-
fied structures for this LJ model system are consistent in
terms of the cluster sizes and are almost exclusively SRO

Fig. 9. (Color online) A depiction of the full partitioned sys-
tem where unique cluster memberships are depicted as distinct
colors (best viewed in color). The atomic identities are B, A,
C in order of increasing diameters. Overlapping nodes (multi-
ple memberships per node) are added to these communities to
determine the best interlocking system clusters.

Fig. 10. Panel (a) is the full system cube, and panels (b)–
(d) show three sample clusters (one distinct cluster each using
periodic boundary conditions) within the simulation box. Note
that the algorithm can identify structures beyond immediate
short-range neighbors.

configurations with simple adjunct-type atoms extending
into the low end of MRO size structures.
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Fig. 11. (Color online) A depiction of some of the best clusters
of the low temperature (T = 300K) ternary system at the
peak replica correlation at feature (i) in fig. 7. These clusters
include overlapping node membership assignments where each
node is required to have an overall negative binding energy
to the other nodes in the cluster. The atomic identities are C
(red), A (silver), B (green) in order of increasing diameters.

6 Conclusions

Our method constitutes a new and very general approach
to determine the natural multi-scale structures of com-
plex physical systems. We do not bias the expected con-
figurations in any way. The required input is that of
inter-particle interactions (or measured correlations as fur-
ther detailed in appendix L). Information theory extrema
(including plateaus) between contending solutions give
the different pertinent structures on all important length
scales (lattice scales and correlation lengths) of the system
in an unbiased unified way.

To illustrate the feasibility of this approach, we focused
in this work on structural glasses. The detection of struc-
ture in structural glasses is a heavily investigated hard
problem. By the use of our method, we identified consis-
tent SRO or MRO structures at temperatures below the
glass transition in two different model glass formers. Even
though this does not imply general applicability to all glass
formers, our approach introduces a new technique for de-
termining the most natural structural features in some
amorphous systems, and we leave the task of verifying its
general applicability to future investigations.

Our analysis evaluates structures in terms the poten-
tial energies (i.e., the internal binding energies of the clus-
ters). This approach differs from some other methods of
structural analysis that look strictly at the relative atomic
positions. We briefly comment on the relation between our
work and that of simpler mode analysis of the interac-
tions —the latter have been indeed been used to detect
a link between spatial structure and local dynamics [54,
99]. Local heterogeneous dynamics was shown to be cor-
related with topological defects [100] and thus (as a con-
sequence of [54,99]) with the system modes. (Indeed, a
recent work [101] directly reaffirms such a connection.)
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Fig. 12. Panels (a) and (b) show the plots of information
measures IN , V , H, and I and the number of clusters q (right-
offset axes) versus the Potts model weight γ in eq. (3). The
LJ system contains 2000 atoms in a mixture of 80% type A
and 20% type B (Kob-Andersen binary LJ system [83]) with
a simulation temperature of T = 0.01 (energy units) which is
well below the glass transition of Tc � 0.5 for this system. This
system shows a somewhat strongly correlated set of replica
partitions as evidenced by the information extrema at (ia,b)
in panels (a) and (b). A set of sample clusters for the best
resolution at γ = 104 is depicted in fig. 14.

Similarly, some old variants of graph partitioning meth-
ods such as direct spectral clustering [102,103] as well as
community detection employ a normal mode analysis [72].
Indeed, a method based on particle dynamics in high di-
mensions enabled multi-scale community detection [73].
Other different yet conceptually related approaches also
include oscillator synchronization analogies [74,104]. In
the above approaches, physical analogies were made. It is
thus natural to suspect that the approach may be inverted
and that community detection will link spatial structure
with dynamics in a broad class of physical systems where
the physics based analysis of the interacting multi-particle
system is hampered by the shear complexity of the prob-
lem. The current work indeed elucidates this link in de-
tail and introduces a method for the direct detection of
general spatio-temporal structures in rather general phys-
ical systems. Notably, via the use of information theory
correlations and extrema as a function of the Hamilto-
nian parameters therein (γ of our defining Hamiltonian of
eq. (3) and φ0 of sect. 5), we are able to identify in an un-
biased way all of the natural scales of the system. In more
rudimentary approaches this needs to be introduced by
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Fig. 13. Panels (a) and (b) show the plots of information
measures IN , V , H, and I and the number of clusters q (right-
offset axes) versus the Potts model weight γ in eq. (3). The
LJ system contains 2000 atoms in a mixture of 80% type A
and 20% type B (Kob-Andersen binary LJ system [83]) with a
simulation temperature of T = 5 (energy units) which is well
above the glass transition of Tc � 0.5 for this system. At this
temperature, the replicas are significantly less correlated than
the corresponding low temperature case in fig. 12.

Fig. 14. (Color online) Several of the best clusters for the
peak replica correlation at feature (i) in fig. 12. These clusters
include overlapping node membership assignments where each
node is required to have a overall negative binding energy to
the other nodes in the cluster. The atomic identities are B
(silver) and A (red) in order of increasing diameters.

Fig. 15. (Color online) A sample depiction of dispersed clus-
ters for the LJ system eq. (2) at a temperature of T = 5 (in
units where kB = 1). The shown clusters correspond to the
multiresolution plot in fig. 13 at a value of the resolution pa-
rameter of γ = 104. These clusters are a sample of high temper-
ature counterparts to the low temperature clusters in figs. 12
and 14. Panels (a) and (b) show a more typical example of dis-
persed clusters at a number of replicas s = 10. In some cases,
the identified high temperature clusters can be more compact,
but not densely packed. Panels (c) and (d) provide sample solu-
tions for s = 20 replicas. An increasing replica (s) number (and
generally also trial (p) number, see text) required to achieve
better solutions is indicative of a greater computational com-
plexity of the system. Physically, a larger time is required for
the system to realize better clusters under ideal conditions (in
the absence of quenching and any relaxation time constraints).
The sparsity of the identified clusters in this high temperature
system is generally consistent across all clusters in the network
solution. (This lies in contrast to the more compact and more
strongly correlated structures found at low temperatures.) The
atomic identities are B (silver) and A (red) in order of increas-
ing diameters.

hand (e.g., a cutoff on mode occupancy in spectral based
approaches) and it is not obvious how to determine all
pertinent structures of a complex physical system.

Our approach identifies MRO as the dominant feature
of our ternary model glass former with no strongly de-
fined SRO. In contrast, the LJ system shows a largely
SRO structure with adjunct atoms that create near-MRO
structures. Augmenting the changes in structure that we
find by analyzing the atomic system at different tempera-
tures and minimizing the energy function to determine the
optimal division into clusters, there are also entropic ef-
fects. The distribution of optimal partitions becomes wider
and less pronounced due to these effects as the tempera-
ture increases. This is a validation of our arguments in
sect. 4.5.2.
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On a lattice, plateaus in information theory correlation
steps correspond to a cascade of structures starting from
the smallest dyads of nodes, to basic plaquette structures
(square, triangle, etc.), and growing ever larger (two joined
plaquettes etc.). In Ising spin systems at different temper-
atures on a square lattice, the domains of “+” and “−”
spins are separated from one another by domain walls.
The information theory plateaus correspond similarly to
the cascade of small plaquette structures found on the
lattice itself (i.e., the single plaquette, two joined plaque-
ttes, etc.) up to a cutoff scale set by the domain wall.
This is sensible since no clear structure is found beyond
the domain length scale. The largest fluctuations occur
at the boundaries between different domains. These do-
main walls are directly attained by the extrema (those
corresponding to the maximum in VI). Physically, they
correspond to the scales at which the largest fluctuations
occur where the large fluctuations lead to poor informa-
tion theory correlations between the different replicas.

As we detail in appendix N, a general rigid amorphous
solid supports shear and a divergent “shear penetration
length”. This length scale monotonically increases as a
liquid is cooled to form a rigid glass. Within our graph
theoretic method, we may employ the shear stress cor-
relations as to represent graph weights to analyze such
behavior.
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Appendix A. Information theory measures

We utilize the variation of information [77] and normal-
ized mutual information to measure the strength of the
correlations among the independent replicas in our mul-
tiresolution algorithm. The mutual information I(A,B)
between community divisions A and B is

I(A,B) =
qA∑
i=1

qB∑
j=1

nij

N
log

(
nijN

ninj

)
. (A.1)

qA and qB are the number of communities in divisions A
and B, ni and nj are the number of nodes in communities
i and j, and nij is a “confusion matrix” that identifies
the number of nodes in community i of partition A that
are found in community j of partition B. For a single
community division A, we can determine the self-mutual
information by H(A) = I(A,A) which is identically equal
to the Shannon entropy. We use base 2 logarithms.

We calculate the variation of information V (A,B) by

V (A,B) = H(A) + H(B) − 2I(A,B). (A.2)

The range for VI is 0 ≤ V (A,B) ≤ log N . The normalized
mutual information IN (A,B) is

IN (A,B) =
2I(A,B)

H(A) + H(B)
. (A.3)

The range for NMI is 0 ≤ IN (A,B) ≤ 1. The NMI and VI
afford slightly different perspectives on the replica corre-
lations in the multiresolution analysis above.

These information measures are based on the cluster
definitions and are not directly related to a thermody-
namic entropy. The replica correlation measures could be
improved by incorporating information about the assigned
“overlapping” configurations (nodes may belong to more
than one cluster) such as in ref. [95], by modifying the
measures to account for the fact that same-type atoms
are indistinguishable in this type of a model, or by utiliz-
ing a thermodynamic entropy since we are dealing with a
physical system in the current application.

Appendix B. MRO and structure factor
prepeaks

One experimental approach to ascertain MRO is to look
for “prepeaks” in the scattering data. That is, one can
look for lower amplitude peaks in the structure factor S(q)
which precede the dominant S(q) peak for wave numbers
q. While the approach may capture general MRO struc-
tures, it is possible to have MRO structures without sig-
nificant prepeak(s) in the structure factor plot.

We illustrate the basic premise of this statement with
an elementary example —that of a random arrangement
of crystallites. Even though the Fourier transform of the
mass density in each individual crystallite has sharp peaks
at the reciprocal lattice vectors corresponding to these
small crystallites, the structure factor obtained from the
entire system may have those peaks vanish. We may, for
instance, denote the locations of the centers of mass of
individual grains i by Ri and denote the location of indi-
vidual atoms j in each grain with respect to its center of
mass by rj . In that case, the structure factor is

S
(
k
)

=
∑
Ri

∑
rj∈i

exp [ik · (Ri + rj)] . (B.1)

Within each individual grain on its own,

Si

(
k
)

=
∑
rj∈i

exp [ik · (Ri + rj)] (B.2)

will be sharply peaked about the corresponding reciprocal
lattice vectors of grain i. However, the complete sum,

S
(
k
)

=
∑
Ri

exp (ik · Ri) Si

(
k
)
, (B.3)
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may vanish if the relative distances between the different
crystallites are random and lead to phases exp(ik · Ri)
which obliterate the signatures of order in the individ-
ual Si(k).

Appendix C. Overlapping nodes between
different communities

We wish to account for the possibility of a given atom
being connected to more than one physical cluster. For
example, in a cubic lattice, each atom participates in the
local structure of multiple unit cells. In community detec-
tion, this corresponds to allowing “overlapping” commu-
nity memberships where a node can be a member of more
than one community. To accomplish this task, we select
the lowest energy partition at the best resolution(s) of the
model network (i.e., value(s) of γ in eq. (3) corresponding
to extrema in IN or V ).

First, we fix the initial node memberships including the
number of communities q. We then sequentially iterate
through the community memberships of each node and
make changes according to the following: 1) place the node
in any additional (non-member) clusters to which it is
bound (a negative energy contribution), or 2) remove the
node from any member clusters (except for the original
membership) in which the current net energy contribution
is positive. This process iterates through all nodes as many
times as necessary until no node additions or removals are
found. The total computational cost is slightly higher than
the initial partitioning cost in sect. 4.2 due to the multiple
allowed memberships. See also [95] for another method
that allows overlapping multiscale network analysis in a
general fashion.

Appendix D. Potential shift in the ternary
metallic glass

In fig. 16, we show the NMI correlations for a range of
potential shifts φ0 and the Potts model weights γ us-
ing s = 12 replicas and t = 10 trials for all data. The
NMI peaks are roughly constant over a range of φ0 for the
ternary model glass up to φ0 = 0.1 (the A-A interaction
minimum φmin � 0.24 eV).

Appendix E. Time correlations in the ternary
model glass

In fig. 17, we show the NMI correlations for a range of sep-
aration times ts between replicas (units are in MD time
steps) and the Potts model weights γ using s = 12 replicas
and t = 10 trials for all data. This plot intuitively shows
that the correlations weaken as we increase the separation
time between replicas. Through varying the time step be-
tween replicas, we examine the correlations as a function
of ts and γ which allows us to determine the most impor-
tant time scale(s) (or relative equivalence). See fig. 7 for
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Fig. 16. Plot of NMI IN as a function of the potential shift
φ0 and the Potts model weight γ for the ternary model system
in sect. 5.1. The temperature is T = 300 K which is below the
glass transition temperature for this system. This plot shows
that the peak is roughly constant across a range of potential
shifts. In general systems, we can obtain all natural scales by
shifting both φ0 and γ when looking for extrema (or plateaus
in some cases). See fig. 17 for the corresponding 2D plot using
φ0 = φavg.
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Fig. 17. Plot of NMI IN as a function of the time (MD time
steps) between configurations ts and the Potts model weight γ
for the ternary model system in sect. 5.1. The temperature is
T = 1500 K which is above the glass transition temperature for
this system. Intuitively, this plot shows that the correlations
become weaker as the time between configurations is increased.
This process of examining the correlations as a function of ts

and γ allows us to examine the relevant time scales in addition
to the natural spatial scales that we identify in sect. 5.
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Fig. 18. Plot of NMI IN as a function of the time (units of
10 MD time steps) between configurations ts and the Potts
model weight γ for the ternary model system in sect. 5.1. The
temperature is T = 0.01 which is above the glass transition
temperature for this system. Intuitively, this plot shows that
the correlations become weaker as the time between configu-
rations is increased.

the corresponding 2D plot using ts = 1000, and the static
limiting case is shown explicitly in appendix J.

Appendix F. Time correlations in the binary
LJ glass

In fig. 18, we show the NMI correlations for a range of sep-
aration times ts between replicas (units are in MD time
steps) and the Potts model weights γ using s = 12 repli-
cas and t = 10 trials for all data. This plot shows that
the correlations weaken only a little as we increase the
separation time between replicas up to 10000 MD time
steps. Through varying the time step between replicas, we
examine the correlations as a function of ts and γ which
allows us to determine the most important time scale(s)
(or relative equivalence). See fig. 7 for the corresponding
2D plot using t = 1000, and the static limiting case is
shown explicitly in appendix J.

Appendix G. An optimization effect in the
binary LJ glass

In fig. 19, we show the NMI correlations for a range of
optimization trials p for s = 12 replicas and the Potts
model weights γ. The plots show that the number of trials
p has a small effect on the overall accuracy of the solution
for either temperature (T = 0.01 or 5), but the effect is
slightly more pronounced in the higher temperature T = 5
case. See figs. 12 and 14 for the corresponding 2D plots
using s = 10.

The high temperature clusters are generally much
more dispersed. See fig. 15 for sample clusters using t = 10
and 20 at T = 5 where the clusters correspond to the mul-
tiresolution plot in fig. 13 at γ = 104. The correspond-
ing low temperature clusters are analyzed fig. 12 and pre-
sented in fig. 14. Panels (a) and (b) in fig. 15 display the
typical case of dispersed clusters at t = 10. In some in-
stances, the high temperature clusters can be more com-
pact, albeit not densely packed, where panels (c) and (d)

Fig. 19. Plot of NMI IN as a function of the number of trials
s used to optimize the solution and the Potts model weight γ
for the binary LJ system in sect. 5.1. The temperatures are
T = 0.01 in panel (a) and T = 5 in panel (b). The number
of trials has a higher effect on the accuracy in the T = 5
system, but the number of trials does not result in a drastic
improvement to the accuracy of our algorithm for either LJ
system.

show two examples at s = 20. The clusters that are identi-
fied are generally consistent in terms of sparseness across
all clusters in the solution. The frequency of occurrence
of the more compact high temperature clusters, and its
dependence on the level of optimization, is a subject for
further study.

Appendix H. Multiresolution VI maxima in
the LJ system

In fig. 12, we show the multiresolution correlations as a
function of the Potts model weight γ for a LJ system of
N = 2000 nodes using s = 12 replicas and t = 10 trials for
all data. The value of γ corresponding to the peak in V
corresponds to the “maximum complexity” of the energy
landscape which is often correlated to the system size (see
appendix I). Figure 20 shows a sample of the best clus-
ters corresponding to the VI peak which are roughly 300
atoms in size (7–8 atoms in diameter) which is approxi-
mately 1/7 of the size of the system. Figure 21 shows some
corresponding high temperature T = 5 clusters which we
note are approximately twice the size (n � 600 nodes) and
more dispersed.

As an additional note, we remark that, intuitively, one
would expect that the VI maxima are directly related to
the NMI minimum in this region of γ. This is not the
case in this region because the VI metric tends to zero
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Fig. 20. (Color online) Some of the best clusters for the peak
V for the low temperature system shown in fig. 12 in panel (b).
The peak in the variation of information V generally correlates
with the scale on which the fluctuations in the system divi-
sion are most prominent. These clusters include overlapping
node membership assignments where each node is required to
have an overall negative binding energy to the other nodes in
the cluster. The atomic identities are B (silver) and A (red)
in order of increasing diameters. The resulting configurations
constitute tightly bound objects. Representative corresponding
high temperature clusters are shown in fig. 21.

Fig. 21. (Color online) The best clusters found for the peak V
for the replica correlation within the high temperature LJ sys-
tem (see text). These clusters include overlapping node mem-
bership assignments where each node is required to have an
overall negative binding energy to the other nodes in the clus-
ter. The peak in the variation of information V generally cor-
relates with the scale on which fluctuations are the largest.
The atomic identities are B (silver) and A (red) in order of
increasing diameters. The diffuse objects found at high tem-
peratures are no longer as compact as at lower temperatures.
The normalized mutual information at the peak V is also cor-
respondingly lower than that for the low temperature system.
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Fig. 22. Plots of the variation of information V between
replica pairs as a function of the resolution parameter γ for
several system sizes in a LJ simulation (see sect. 3.2). Panels
(a), (b), and (c) use N = 2000, N = 4000, and N = 8000, re-
spectively. Note that the value of γ corresponding to the peak
V scales downward with the system size (larger structures)
which may indicate that it is correlated to a diverging length
scale.

as the network collapses to one cluster. It is rapidly shift-
ing from a region of maximum complexity at a peak VI
value, where most of the information comes from the sum
of the Shannon entropies H(A) and H(B), for two par-
titions A and B, to minimum complexity at a value of
V = 0. NMI has a different behavior here, as the ratio
IN = 2I(A,B)/[H(A) + H(B)], because the mutual in-
formation between different replicas becomes smaller and
approaches zero as the system collapses into larger com-
munities. The low temperature LJ system in fig. 12 shows
a transitional very low peak in NMI which corresponds to
a near bisection of the system. However, in this case the
overlapping cluster configurations collapse to the entire
system.

Appendix I. Finite size effects in the LJ
system

In fig. 22, we show the VI correlations as a function of the
Potts model weight γ for several system sizes of N = 2000,
N = 4000, and N = 8000 in panels (a), (b), and (c),
respectively. We also used s = 12 replicas and t = 10
trials for all data. The value of γ corresponding to the
peak in V scales downward with the system size (larger
structures) indicating that the maximum fluctuations are
scaling with the size of the simulation box. In the limit of
an infinite size simulation box, the VI peak would tend to
γ = 0.
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Fig. 23. Panels (a) and (b) show the plots of information mea-
sures IN , V , H, and I and the number of clusters q (right-offset
axes) versus the Potts model weight γ in eq. (3). The ternary
model system contains 1600 atoms in a mixture of 88% type A,
7% of type B, and 5% of type C with a simulation temperature
of T = 300 K which is well below the glass transition for this
system. In this system, we use a single static “snapshot” of the
system to analyze what our multiresolution algorithm finds at
T = 300K. This low temperature case shows a preferred reso-
lution at low γ as evidenced by the information extrema at (i)
in both panels. See fig. 24 for the corresponding high temper-
ature case.

Appendix J. Static multiresolution analysis
on ternary model glass

The inter-replica NMI/VI correlations change with the
time separation interval between the replicas where the
longer time separations intuitively result in poorer cor-
relations. The other limiting case is for a static analy-
sis of the system. Thus, we are interested in determining
what our multiresolution analysis finds when we examine
a single-time snapshot of the system. A single snapshot
may, potentially, capture a transient feature of the sys-
tem. This is illustrated in panel (a) of fig. 4 in which the
time separation between different replicas is set to zero.
We applied the same algorithm as in sect. 4 except that
all replicas correspond to the same system time, and we
solved the systems with s = 8 replicas and t = 4 trials
per replica. In figs. 23 and 24, our analysis identifies a
static length associated with the instantaneous configura-
tion. At both high and low temperatures, the static mul-
tiresolution analysis displays information extrema at low γ
(large spatial scales). The higher temperature system dis-
plays weaker correlations with sparser structures whereas
the structures of the low temperature system display more
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Fig. 24. Panels (a) and (b) show the plots of information mea-
sures IN , V , H, and I and the number of clusters q (right-offset
axes) versus the Potts model weight γ in eq. (3). The ternary
model system contains 1600 atoms in a mixture of 88% type
A, 7% of type B, and 5% of type C with a simulation tempera-
ture of T = 1500K which is well above the glass transition for
this system. In this system, we use a single static “snapshot”
of the system to analyze what our multiresolution algorithm
finds at T = 1500 K. This high temperature case does show
a preferred resolution at low γ as evidenced by the informa-
tion extrema at (i) in both panels, but the NMI maxima are
somewhat lower. The solutions also take longer to solve ac-
curately, meaning that the community detection energy land-
scape is more complicated. See fig. 23 for the corresponding
low temperature case.

significant correlations (and more compact structures). As
seen in figs. 23 and 24 the high temperature system dis-
plays weaker correlations in the vicinity of the peak NMI
than those of the low temperature system. That is, the
high temperature solutions require more effort to solve ac-
curately (there are far more metastable minima and more
trials are required in order to find better contending solu-
tions). (A similar occurrence was found for the high tem-
perature LJ system in fig. 15.) The solved clusters (not
depicted) are comparable to those identified for the time-
separated replicas in sect. 5 for both system temperatures.

Appendix K. Static multiresolution analysis
on LJ glass

As in appendix J for the ternary system, we further tested
a static version of the binary LJ model where the results
are similar to the dynamic case in sect. 5.2 both in the
MRA plot and the resulting clusters. A notable exception
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Fig. 25. Panels (a) and (b) show the plots of information mea-
sures IN , V , H, and I and the number of clusters q (right-offset
axes) versus the Potts model weight γ in eq. (3). As in sect. 5.2,
this LJ system contains 2000 atoms in a mixture of 80% type
A and 20% type B with a simulation temperature of T = 0.01
(energy units) which is well below the glass transition for this
system. In this test, we use a single static “snapshot” of the
system. This low temperature system has a higher overall level
of correlation among the replicas than the high temperature
case in fig. 26. The overall results are very similar to those ob-
served for the time separated replicas in fig. 12. See fig. 27 for
a sample of the best observed clusters.

is that the distinction between the high and low temper-
ature cases becomes more subtle in the multiresolution
plots.

We applied the same algorithm as in sect. 4 except that
all replicas correspond to the same system time, and we
solved the systems with s = 12 replicas and t = 10 trials
per replica. In figs. 25 and 26, we show our multiresolution
analysis associated with the instantaneous configurations.
These two static plots are similar, but the high tempera-
ture case has slightly weaker correlations (lower NMI peak
and higher VI minimum). In figs. 25 and 26 where we use
time-separated replicas, the contrast in the MRA plots at
different temperatures is stronger. Figure 27 shows a sam-
ple of the best clusters in the low temperature case which
are comparable to those identified for the time-separated
replicas in fig. 14 in sect. 5.2.

Appendix L. Multiresolution analysis via
measured pair correlation function

As stated in sect. 2, we may apply the same multireso-
lution network clustering ideas for other structure mod-
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Fig. 26. Panels (a) and (b) show the plots of information
measures IN , V , H, and I and the number of clusters q (right-
offset axes) versus the Potts model weight γ in eq. (3). The LJ
system contains 2000 atoms in a mixture of 80% type A and
20% type B with a simulation temperature of T = 5 (energy
units) which is well above the glass transition for this system.
In this analysis, we use a single static “snapshot” of the system.
This high temperature system has a lower overall correlation
than the low temperature case in fig. 25, and the overall results
are very similar to what was observed for the time separated
replicas in fig. 13 of sect. 5.2.

Fig. 27. (Color online) A depiction of some of the best clusters
for the peak replica correlation in the static system of fig. 25.
These clusters include overlapping node membership assign-
ments where each node is required to have an overall negative
binding energy to the other nodes in the cluster. The atomic
identities are A (red) and B (silver).
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Fig. 28. A plot for the multiresolution analysis of a binary
Zr80Pt20 system at 250 K below the liquidus. Atomic configu-
rations were generated using conventional RMC methods that
are consistent with the experimentally determined scattering
data for liquid Zr80Pt20 at 250 K below the liquidus. The plot
shows a poorly correlated, but nevertheless well-defined, peak
in NMI near γ � 1.

els. In particular, in fig. 28, we apply the method to ex-
perimentally adduced pair correlation functions gab(r) in
an amorphous ZrPt system between the different of the
different components a and b (i.e., Zr-Zr, Zr-Pt, and Pt-
Pt). That is, we set in eq. (3), Aij = −(gij + gij) if
(gij + gij) < 0 and Bij = (gij − gij) if (gij − gij) > 0.
Here, gij denotes the pair correlation between the atoms
corresponding to nodes i and j, gij is a background av-
erage (which we set to zero). Some sample clusters then
found by our method are seen in fig. 29. Due to the large
system size, we used s = 8 replicas and t = 4 trials per
replica.

Amorphous systems with extended atomic order be-
yond the nearest neighbor shell provide an excellent frame-
work to test the identification of natural structural ele-
ments. The ZrPt is a system that has been shown to have
MRO in both the glassy and liquid state [107–111]. MRO,
or correlations beyond direct chemical bonding manifest
as pre-peaks in the static structure factor extracted from
scattering studies of liquids and glasses. The dominant
structural elements at the heart of such an ordering are
of extreme interest. Atomic configurations that are consis-
tent with the experimentally determined scattering data
for liquid Zr80Pt20 at 250K below the liquidus were gen-
erated using conventional Reverse Monte Carlo (RMC)
methods [112–114]. The result of analysis uses uncon-
strained RMC which may or may not emulate the precise
microscopic structure. We then analyzed a representative

Fig. 29. (Color online) A sample of clusters determined by
a multiresolution clustering analysis based on the pair corre-
lation function in fig. 28. The system is a Zr80Pt20 system at
250 K below the liquidus (see text) where Zr atoms are depicted
as red, and Pt atoms are depicted as green. Each cluster has
approximately 700–800 atoms.

system with N = 7500 nodes using the algorithm outlined
in sect. 4.5.

Specifically, we analyze the system as a static model.
That is, each replica is based on the one particular sys-
tem representation since the data is obtained by RMC
methods rather than by a dynamical simulation. The mul-
tiresolution analysis (MRA) is seen in fig. 28. A few of the
relatively uniform large clusters are shown in fig. 29 where
each cluster is approximately 700–800 atoms in size. Inter-
estingly, the ZrPt system shows a well-defined secondary
MRA NMI peak near γ � 1. Although the peak NMI value
has a poor overall correlation among the replica solutions
(low IN ), it is notable that the system displays this sec-
ondary peak since it is entirely absent in the LJ binary
liquid results in sect. 5.2.

Appendix M. Multiresolution analysis in
space-time

In addition to the potential interaction energies, we may
model our multiresolution community detection analysis
using the mechanical action

S =
1
2

∫
dt

⎡
⎣

N∑
i=1

Mi

(
dri

dt

)2

− 1
2

∑
i�=j

φ(ri, rj)

⎤
⎦ . (M.1)

Here, Mi is the mass of particle i and ri(t) denotes its
location as a function of time. As throughout, φ is the
two-particle interaction. Below, we refer to the case of
a system in D spatial dimensions. In a discretized form
(allowing, in particular, for discrete time steps Δt along
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the time axis), the action is

S =
∑
ab

Wab, (M.2)

where a and b represent nodes in space-time and Wab is
an effective “interaction weight” between them. Thus, we
represent our physical system as a network embedded in
(D + 1) dimensional space-time. We extremize this action
“S” corresponding to the Hamiltonian of eq. (3). The spa-
tial links are determined by φij similar to before (apart
from a sign inversion) while the links parallel to the time
axis are determined by the particle masses. As before, ex-
trema of the information theory correlation pinpoint the
natural structures and scales in the system. In this case,
there is only one tuning parameter γ as applied to differ-
ent replicas of complete space-time networks. Thus, the
space and time scales cannot be independently adjusted
and are intertwined, being related by a ratio which is the
typical speed of sound c (or an appropriate average of such
speeds) in equilibrated solids.

That is, if we expand to harmonic order the energy
about any of its nearly local minima and denote ui as
the displacement of atom i about an equilibrium position,
then we can express the action of the system as an energy
of an anisotropic elastic solid in space-time [31,115],

S =
1
2

∫
dDx

∫
dt ∂μuαCμναβ(x, t)∂βuν , (M.3)

with Cμναβ being an effective elastic moduli for which
amorphous media are generally space (and time) depen-
dent. Here, μ and ν are space-time indices (μ = 0, 1, . . . ,D
for an elastic solid in D spatial dimensions and the ze-
roth time direction) and α, β = 1, 2, . . . , D are the spatial
Cartesian components. Along the time axis, Cμ=0,ν=0,αα

is the mass density ρ(x, t): the effective elastic constant
in space-time Cμ=0,ν=0,αα = ρ(x, t). When μ and ν both
assume values between 1 and D, the quantities Cμναβ are
the elastic moduli of the solid (e.g., the shear modulus
μ). The square root of the typical ratio between the usual
spatial elastic moduli and those along the time axis for the
space-time representation of the solid in eq. (M.3) is given
by a typical speed of sound in the system c = O(

√
μ/ρ).

Appendix N. Continuum elasticity about
local minima and the shear penetration depth

The focus of our article is on a detailed bona fide descrip-
tion of amorphous materials that invokes graph theory
methods to ascertain general structure. The various exam-
ples shown have hopefully clearly outlined the strengths of
our approach. In this appendix, we go beyond our earlier
atomistic treatment and outline a continuum formalism.
Similar to our replica inspired approach thus far, we may
consider multiple copies of the entire system wherein, at
low temperatures, the atomic configuration (in each copy
of the system) veers towards a local energy minimum.

In what follows, we consider (continuum limit) fluctua-
tions about these low energy amorphous states and discuss
how, generally, rigidity can be associated with a diverging
length scale.

Continuum elasticity in regular solids does not assume
detailed knowledge of the underlying atomic constituents.
In this section, we follow suit and outline general consider-
ations for amorphous solids. In an ideal crystalline system,
any small deformation about the crystalline ground state
will raise the energy in a harmonic manner. The increase
of energy (for non-plastic deformations) is captured by
the elastic constants of the material. Nothing prevents, in
principle, the application of these considerations for defor-
mation about local energy minima —as these pertain to
an amorphous solid in a local energy minimum (an inher-
ent structure as it would have pertained to supercooled
liquids). In what briefly follows, we consider the harmonic
expansion of eq. (M.2) about such a local energy mini-
mum state. We then review general considerations about
“shear penetration depth” —the length scale on which
the medium reacts to shear. Earlier treatments considered
the shear penetration depth in homogeneous media [115,
116]. Within a field theoretic formalism, this length scale
stems from a Higgs effect for gauge fields that are associ-
ated with elastic stress. Global translational invariance of
regular solids implies that, in the long wavelength limit,
acoustic sound waves (or phonons) have frequencies that
tend to zero (and constitute “Goldstone modes”). As in
other arenas (e.g., the Standard Model of particle physics
or superconductors), a Higgs effect associated with the
minimal coupling of gauge fields to such degrees of free-
dom, can, when symmetry is broken and a condensate is
formed, lead to a screening of mediated interactions. Here,
we consider what may occur when replicating these con-
siderations for deformations about a general non-uniform
local ground state.

In what follows, we label the displacement of the i-th
atom, ui about its position in a given state, Ri by

ui = ri − Ri. (N.1)

In eq. (N.1), ri denotes the location of the displaced
atoms. Henceforth, we consider a coarse-grained descrip-
tion in which u is a field defined in the continuum. (That
is, we replace the lattice indices i in eq. (N.1) by contin-
uous spatial coordinates x.) The displacement vector u
is a D-dimensional vector in real space. We apply field
theoretic ideas introduced by [117]. In particular, we next
follow the procedure of [31,115,116] and write the cor-
responding action of the system in a manner similar to
that of the energy of an anisotropic solid in (D + 1) di-
mensions. We will label the time direction as the α = 0
direction and denote all spatial Cartesian coordinates by
α = 1, 2, . . . ,D. We use Latin indices a = 1, 2, . . . ,D to
label the spatial directions alone. In the continuum limit,
expanding the energy to harmonic order about any local
minima (inherent state), the action reads [115,31],

S =
1
2

∫
dDx

∫
dt ∂αuaCαβab(x, t)∂βub. (N.2)
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In eq. (N.2), repeated indices are to be summed over.
The quantities Cαβab derive from effective elastic mod-
uli. In regular solids, Cαβab are space (and time) inde-
pendent quantities. In an amorphous medium, however,
Cαβab(x, t) are generally space (and time) dependent. The
effective elastic constant C00ab in eq. (N.2) is set by the
mass density, i.e., C00ab = ρ(x, t) [31,115,116]. When α
and β both assume values between 1 and D, the quantities
Cαβab are set by the elastic moduli of the solid (e.g., the
shear modulus μ). The square root of the typical ratio be-
tween the usual spatial elastic moduli and those along the
time axis for the space-time representation of the solid in
eq. (N.2) is given by a typical speed of sound in the system
c = O(

√
μ/ρ).

One approach to defining defects such as dislocation
and disclinations in regular solids is to consider the net
change in the displacement or local orientation associated
with closed trajectories. Defect densities relative to a given
inherent state may be defined in a similar way. More for-
mally, we can dualize (via a Hubbard Stratonovich trans-
formation) the quadratic action of eq. (N.2) and asso-
ciate the dual fields with defect current densities in space-
time. Replicating the analysis performed for regular solids
in [31,115,116] to amorphous solids with an invertible
space-time dependent elastic moduli Cαβab, we obtain the
same result obtained for regular solids. Namely, disloca-
tion and disclination current densities are given by

Ja
αβ = εαβλρ∂

λ∂ρua,

Tαβ
γδ = εγδλρ∂

λ∂ρωαβ , (N.3)

with the local rotation given by

ωαβ =
1
2
εαβλa∂λua. (N.4)

The temporal direction (α = 0) components of these ten-
sors are the usual (dislocation and disclination) defect
densities of elasticity,

αa
i = εijk∂j∂kua,

Θa
i =

1
2
εijkεabc∂j∂k∂bu

c. (N.5)

The condition of a divergence-less stress tensor (σ) in the
absence of an applied force enables us to write it as a curl
of a gauge field

σa
α = εαβλ∂βBλa. (N.6)

Elastic shear is mediated by the gauge field B that medi-
ates “shear photons” [115,116]. When a plastic component
of the displacement field u exists, it couples minimally to
the stress-gauge fields via

Sdisl =
∫

dDxdt BαaJαa (N.7)

for the coupling between the dislocation currents and
gauges. Mathematically, the structure is very similar to
that in electromagnetism when currents couple minimally
to gauge fields. In the Higgs borne effect that results, just

as charges screen applied electromagnetic fields (as, e.g., in
the Debye screening of plasmas), defect charges can screen
the elastic shear. In the uniform medium, when a defect
condensate (|Ψ0| �= 0) appears, it gives rise to a screening
of the elastic shear [31,115], with a screening length set
by

λshear =
cT

|ψ0|
√

μ
. (N.8)

In eq. (N.8), cT is the transverse sound velocity and μ is
the shear modulus. In the case of simple dilation of the
elastic moduli when Cαβab(x, t) = w(x, t)Kαβab, where
Kαβ is a space-time independent tensor and w is a dilation
function, the calculation of the elastic shear penetration
depth can be replicated for the amorphous system to yield
eq. (N.8) when the quantities refer to the local values of
λshear, cT , ψ0, and μ. A similar effect appears for general
space-time dependent elastic moduli [118] when consider-
ing elastic deformations about a local energy minimum.
As is seen from eq. (N.8), when the defect density tends to
zero, the elastic shear penetration depth diverges

λshear → ∞, (N.9)

as the system becomes rigid throughout. In order to as-
certain detailed shear response in a system, we may em-
ploy the shear stress correlation functions as link weights
within our community detection algorithm. This is topic
of a future study.
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