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Abstract
We study the distributions of the resilience of powerflowmodels against transmission line failures via
a so-called backup capacity.We consider three ensembles of randomnetworks, and in addition, the
topology of the British transmission power grid. The three ensembles are Erdős–Rényi random
graphs, Erdős–Rényi randomgraphswith afixed number of links, and spatial networks where the
nodes are embedded in a two-dimensional plane.Wenumerically investigate the probability density
functions (pdfs) down to the tails to gain insight into very resilient and very vulnerable networks. This
is achieved via large-deviation techniques, which allow us to study very rare values that occurwith
probability densities below 10−160.Wefind that the right tail of the pdfs towards larger backup capa-
cities follows an exponential with a strong curvature. This is confirmed by the rate function, which
approaches a limiting curve for increasing network sizes. Very resilient networks are basically char-
acterized by a small diameter and a large power sign ratio. In addition, networks can bemade typically
more resilient by addingmore links.

1. Introduction

Stability and control of power grids have not only been investigated by engineers [1, 2], for whom rotor angle
and voltage stability play an important role, but they have also attracted attention in the physics community. By
generalizing the swing equation [1, 2] of a synchronousmachine to small networks using thewell-studied
Kuramotomodel [3, 4], Filatrella, Nielsen, andPedersen [5] stimulatedmany studies in this field. In [6], the
synchronization of this dynamicalmodel on the topology of the power grid of theUnitedKingdom (UK) is
investigated.While [7, 8], analyzed this Kuramoto-likemodel with respect to its application for power grids, in
[9, 10], synchrony-optimized networks withKuramoto oscillators were constructed.More generally,
synchronization of oscillators with spectralmethodswas put under scrutiny in [11–13].

In addition,many studies [14–22] deal with loadmodels and analyze the vulnerability of networks due to
node failures and the resulting cascading failures thatmight occur.

Here, we are not interested in the stability of dynamical systems, but rather in the resilience of networks. In
[23], the resilience of a very basicmodel for transportation networkswas investigated by introducing a ‘backup
capacity’ (see below) and using large-deviation techniques. Themodel in [23] assumes that one unit of some
‘quantity’ is transported between all pairs of nodes along the shortest paths. In the present work, we study a very
differentmodel, which is still quite simple but designed formodelling power grids based on the laws of
electricity. Specifically, we introduce a powerflowmodel on networks based on thefixed points of a Kuramoto-
likemodel [5, 6] and a linearized direct current (dc) power flowmodel (see, e.g., [24]) as used in electrical
engineering, respectively.

The resilience is defined by the backup capacity. This quantitymeasures the overcapacity of the transmission
lines, which is needed to ensure stable operationwhen themost-loaded link in the network exhibits a failure.We
obtain the probability density functions (pdfs) of the resilience for three different randomnetwork ensembles
and the topology of the power grid of theUK.

We are interested in obtaining the pdfs of these ensembles over a large range of the support, because a
probability distribution contains the full information of a stochastic system in contrast to afinite number of
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moments (e.g., mean or variance). Therefore, tomake statements about the different ensembles concerning the
resilience, we need thewhole pdf, including the low-probability tails. By obtaining these tails, we are also able to
obtain the properties of very vulnerable (high backup capacity) and very resilient (low backup capacity)
networks. The analysis of these very resilient networks allows us to derive design principles for a resilient future
power grid.

Furthermore, given the backup capacity of an existing network, one can compare it with a suitable network
ensemble. The cumulative probability offinding amore resilient network (with smaller backup capacity) in the
ensemble yields a qualitymeasure for the investigated network. This is the so-called p-value, which is a standard
quantity in statistics that estimates the significance of a result. Sometimes, one needs to access the low probability
tails of a pdf, as in the present approach, wherewewant to study optimized, high-resilience power grids. This is
analogous to the calculation of significance of protein alignments, where one also needs to access the tails of the
pdf, since proteins are optimized by evolution [25]. For an example of the p-value calculation, see section 6.1.

The paper is organized as follows. In section 2, the studiedmodel and its simplification to staticflow
equations are described. Section 3 deals with the determination of the backup capacity, and hence the resilience
of a network against transmission line failures. Next, section 4 presents the investigated randomnetwork
ensembles and the topology of an existing power grid. After this, the simulation and reweighting techniques are
explained in section 5. Section 6 provides the numerical results of the simulations. Last, a conclusion is drawn
and a short outlook is given.

2.Model

2.1. Kuramoto-likemodel
Weuse a simplifiedmodel of interconnected synchronousmachines, derived from the dynamics of the rotor, to
model a power grid. The classic constant-voltage behind transient-reactancemodel then gives the swing
equations (see, e.g., [1, 8]) which are derived from energy conservation. TheKuramoto-likemodel used in
[5, 6, 8] is directly related to this swing equation.On each node, i, of the network, either a synchronous generator
or a synchronousmotor are placed. The generators exhibit power plants and therefore produce power
( >P 0i

source ), whereas themotors consume power ( <P 0i
source ).

Note that only active power is considered here, and all transmission lines are regarded as lossless. These
simplifications appear justified to us, since for thefirst time, the resilience properties ofmodels for electric power
grids are studied over the almost-complete ensemble, even in the regime of extreme networks. Thus, ourwork
lays a solid foundation for later comparisons tomore sophisticatedmodels. For example, in [1, 8], an extension
of themodel studied here applies to transmission lineswith losses (using the admittancematrix) and nodal
voltages are explained. A further expansion of themodel with reactive power is given in [7].

Each synchronousmachine i can be described [5, 6] by itsmechanical phaseθ Ω ϕ= +ti i whereΩ is the
angular frequency of the power grid (2π·50 or 2π·60 rad s−1) andϕi is the phase deviation. Note that the
mechanical phase deviationϕi is the same as the electrical angleδe except for a constant factor, namely the
number of polesnP of the synchronousmachine [1]:δ ϕ= n( 2) ie P . To derive the equation ofmotion forϕi, one
needs to consider energy (or power) conservation [5, 6], so that for each synchronousmachine i

= + +P P P P , (1)i i i i
source diss acc flow

where ≷P 0i
source , depending onwhether themachine is a generator or amotor.Pi

diss andPi
acc are the dissipated

and accumulated power, respectively. The power flowbetween twounits i and j is given by [5, 6]

θ θ= − −( )P P sin , (2)ij ij j i
flow MAX

wherePij
MAX is themaximum capacity of the power line, which connects the nodes i and j. The powerflowof

node i is therefore given by the sumof the flow to all its neighbors

∑ ϕ ϕ= − −( )P P sin , (3)i

j

ji j i
flow MAX

wherewe have usedθ θ ϕ ϕ− = −j i j i and =P 0ij
MAX if the edge between i and j does not exist.

From (1) follows the equation ofmotion (for details see [5, 6]) for the phase deviation of unit i

∑ϕ κϕ ϕ ϕ= − + −( )P K¨ ˙ sin , (4)i i i
j

ji j i
MAX

2
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where κ is a damping parameter.We apply uniform links (i.e., =K Kij
MAX MAX ) if a link exists between nodes i

and j, and =K 0ij
MAX otherwise. The powersPi are directly related toPi

source (cf, [5, 6]). Note that (4) is a version
of the famousKuramotomodel [3, 4].

2.2. Simplifications leading to a powerflowmodel
Here, we use a static approach, sowe are only interested in the fixed points of (4). Hence, settingϕ ϕ= =¨ ˙ 0i i

yields

∑ ϕ ϕ= − −( )P K sin . (5)i

j

ji j i
MAX

Aswe are not interested in the region close to the phase transition (where global synchronization sets in), as
seen, for example, in [6, 26], we choose quite a large value for themaximumcapacity of the power lines. In fact,
we choose =K N5 ·MAX . Therefore, the argument of the sine in (5) needs to be small to fulfill the equation, as
we choose the consumed and produced powerPi uniformly from the interval −[ 1, 1], respectively. Hence, we
expand the sine and obtain

∑ ϕ ϕ= − −( )P K , (6)i

j

ji j i
MAX

which is a linear equation. It is independent of initial conditions and represents the power flowbalance for each
machine i. It is equivalent to the linearizedDC (LDC) powerflowmodel (for an overview, see [24]) used in
electrical engineering. Themost popular variant of the LDCmodel uses the following simplifications [27] to
derive the equations from the alternating currentmodel. Please note that all approximationsmentioned here
also apply to themodel studied in this work. First, the (absolute value of the) conductance of the transmission
lines needs to be small in comparisonwith the susceptance (i.e., lossless lines corresponding to zero resistance).
Second, the phase angle difference is small, so that ϕ ϕ ϕ ϕ− ≈ −sin ( )j i j i holds. Third, the nodal voltages are

≈E| | 1i and are constant over time.

3. Resilience

The observable that quantifies the resilience of a network is based on the power flows between the synchronous
machines in the power grid. These flows between two nodes i and j are basically given by (2), where only the
variables have been changed. Thus, we define

θ θ= −( )K K sin , (7)ij ij j i
flow MAX

wherewe use the absolute value to be independent of the direction of the flow. To calculate this power flow for all
nodes, the investigated network needs to be connected (i.e., no isolated nodes exist). In the sampling described
in section 5, it is ensured that only connected networks are used.

To determine the power flows, (6) is solved numerically [28]with given uniformly distributed ∈ −P [ 1, 1]i

andfixed =K N5·MAX . The solutions for the phase deviationsϕi are then used in (7) to calculate the power
flows for all links in the network.

Next, the transmission line =e Kargmax i j ijmax { , }
flow with the highest load (power flow) in the network is

removed,mimicking a failure in the transmission line. Selecting the highest-load line results in a good estimate
of theworst-case single-line failures [23]. Afterwards, equation (6) is solved again, and the powerflows (7) of the

network are recalculated, resulting inflowvalues K{ ˜ }ij
flow

of themodified network. Now, the backup capacity is
defined as the highest increase of the powerflowover all edges

= −( )P K Kmax ˜ . (8)
i j

ij ijB
{ , }

flow flow

If the removal of emax disconnects the network = ∞PB so these networks are neglected in the sampling. Due
to the reorganization of theflowpattern, in some links a decrease of the powerflow is also possible, so that some

<K K˜
ij ij
flow flow.
These backup capacities represent the resilience of a network against the failure of a transmission line. Note

that the ability of a system to get back to stable operation after a single outage of a component (e.g., a
transmission line) of a power grid is called the −N 1 criterion in electrical engineering. It is used in the planning
andmaintenance of power grids. Here, the backup capacities give an estimate of howmuch additional capacity
of the transmission lines needs to bemaintained to keep them stable, even if one line breaks down. For small
values ofPB, the network structures are quite resilient, so little additional (over)capacity for the lines is needed. In

3
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cases where there is large backup capacity, the network structure does not allow for the compensation of a single-
line failure so easily, and therefore it is less resilient.

4.Networks

In this work, we investigate one existing network and different network ensembles.We used the topology
[6, 21, 29] of the British power grid (see figure 1) to determine the resilience of this gridwhen generators and
motors are randomly placed on the nodes.

In addition, we obtained the pdf bymeans of a histogramof this resiliencewhen one starts with the British
gridwith the same distribution of synchronousmachines and uses the procedure for Erdős–Rényi graphswith a
fixed number of edges (see section 5). Amore detailed discussion aboutfigure 1 and the pdf of the resilience is
given in section 6.

The studied network ensembles are the Erdős–Rényi (ER) graph ensemble [31] and a spatial network
ensemble [32]. The different parameters in these networkmodels are chosen such that each node has, on
average, three neighbors. This should take into account that real transmission grids are sparse, with an average
number of neighbors per node of〈 〉 ≈k 3. For theNorthAmerican power grid, Kinney et al [19] report about

=N 14 000 substations and =M 20 000 transmission lines, resulting in〈 〉 ≈k 2.9.Watts and Strogatz [33]
found〈 〉 =k 2.67 for the the electrical power grid of thewesternUS For the European transmission grid, Solé
et al [22] state a value of〈 〉 =k 2.70.

The simplest type of randomnetwork is an ER randomgraph. In this ERnetwork ensemble [31], no
assumptions on the topological structure of the network aremade. It is therefore an ideal ensemble to be
comparedwith, for example, spatial networks to see the effects of the topological structure. The creation of an
ERnetworkworks as follows. One starts with an empty network ofNnodes. Then, each pair of i, jnodes is
connectedwith the probability

Figure 1.Topology of the power grid of theUK [6, 21, 29] withN=120 synchronousmachines andM=165 transmission lines.
Generators ( >P 0i ) are labeled○ andmotors ( <P 0i ) are denoted by■. Half of the synchronousmachineswere chosen as generators
and the other half asmotors. The dashed line in the southeast denotes the transmission line emax with the highest powerflow

=K| | 1.294flow which connectsmachines with powers = −P 0.76117 and =P 0.95118 . After the removal of this edge, the power flow in
the transmission line depicted in bold (a bit to thewest of the highest-flow line, emax) increasesmost. Actually, it takes all the flow from
emax, and it therefore defines the backup capacity =P 1.294B .Map of theUK from [30], changed.
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=p c N . (9)ij
ER

Thus, = 〈 〉 =c k 3 is the connectivity of the network ensemble.
Next, we consider spatial networks [32] that are embedded in a two-dimensional plane. Each of theN nodes

is distributed uniformly at random in a ×[0, 1] [0, 1]plane, so to each node an x- and a y-position are assigned.
A link is added between nodes i and jwith probability

π α= +
α−( )p f N d1 , (10)ij ij

SN

where = − + −d x x y y[( ) ( ) ]ij i j i j
2 2 1 2 is the Euclidean distance between the two nodes. The parameters f andα

have been chosen such that an average number of neighbors,〈 〉 ≈k 3, is achieved. For all considered system
sizes,N,we usedα = 3 and ∈f [0.54, 1.9](in decreasing order for increasing system size,N).

In addition, we also used the ER ensemblewith a fixed number of links.

5. Simulation and reweightingmethod

Todetermine the pdfs over a large range of backup capacities for the different graph ensembles, we use a
reweighting technique. For details on the derivation of this technique, we refer to [23, 25, 34] and state only the
main ideas and results that are important for the determination of the pdf.

Themainmethod of reaching very small probabilities or probability densities of the order 10−100 is the use of
an additional Boltzmann factor −P G Texp ( ( ) )B in aMarkov-chainMonte Carlo (MC) simulation generating
network instances. This is different from simple sampling, where the network realizations are drawn directly and
independently with their natural ensemble weights. The parameterT is an artificial temperature, whichmakes it
possible to sample different regions of the pdf ofPB. The argumentG is the investigated network in the current
MC step t.

ThisMC simulationworks as follows. In each step t of the simulation, a candidate networkG* from the
current networkG(t) is created in the followingway: First, a node i is chosen uniformly at random. For the
different network ensembles, diverse techniques are nowused. In the case of ER graphs, all adjacent edges to i are
removed, andwith probability =p c N ,ij

ER a link is added for each other node j. For an ERwith afixed number

of edges, all adjacent edges to i are also removed.Next, node i is connectedwith an equal number of randomly
chosen feasible nodes and removed edges. Hence, the number of edges is preserved. For spatial networks, the
procedure is the same as for ER graphs, but the probability to add a link is now pij

SN (see (10)).

Next, we checkwhether the graphG* is connected. If this is not the case, the above procedure is repeated on
G until a feasible networkG* is found.Note that the initial networks also need to be connected. Therefore, ring-
type or complete (all −N N( 1) 2 edges present) networks are created in the beginning, and theMC simulations
with the above-described procedure run until the desired connectivity is reached. For ERnetworks with afixed
number of links, the procedure for ER graphs with aflexible number of links is used for this purpose.

After the candidate graphG* is created, its backup capacityPB is calculated. The candidate graph is then

accepted ( + =G t G( 1) *) with theMetropolis probability

= − −⎡⎣ ⎤⎦{ }( )p P G P G t Tmin 1, exp ( *) ( ( )) , (11)Met B B

otherwise the current graph is kept, ( + =G t G t( 1) ( )).
From [23, 25, 34]

=( ) ( ) ( )p P P T Z T p Pexp ( ) (12)TB B B

one can determine the full pdf p P( )B with pdfs p P( )T B measured at different finite temperaturesTup to a
normalization constantZ(T). This constant can be determined by choosing two histograms of neighboring
temperatures. In the overlapping region, the pdfs need to agree, whichmakes it possible to calculateZ(T) via
(12). In an iterative procedure, the histograms are ‘glued’ together until the full pdf is obtained. Amore detailed
explanationwith examples about themerging of the different histograms is given in [35].

In order to checkwhether theMC simulations are equilibrated, two different initial networks are used: a ring
graph, where all nodes have two neighbors, and a complete (fully connected) graph. Equilibration is reached
when both values ofPB agreewithin the range offluctuations. For the ensemble with afixed number of links, we
studied the average ofPB overMC sweeps to determine the equilibration time. The longest equilibration timewe

observedwas2·106 sweeps for ERnetworks withN=50nodes.
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6. Results

Weperformed simulations for theUK grid, ERnetworks, spatial networks, and ER graphs with afixed number
of links. For all networks except theUK grid, we used networks of sizeN=10 up toN=400. For ER and spatial
graphs, the determination of the (possibly) full pdf of the resilience forN=400was not possible, as a large gap in
this pdf appeared. The histograms for different temperatures have their peak either below or above this gap,
whichmade it almost impossible to sample in this gap.Oneway to overcome this isWang-Landau sampling
[36], whichwe did not try. Nevertheless, we also took data for these two ensembles forN=400 to analyze other
quantities (see section 6.3).

After leaving out the data before equilibration time and taking samples only in intervals such that theMarkov
chain is roughly decorrelated, ourfinal data sets contain between about5 · 103 samples forN= 400, up to almost
107 samples forN=10.

The consumed and produced powers Pi are drawn from auniformdistribution ∈ −P [ 1, 1]i and sumup to
zero∑ =P 0i i . Furthermore, a combination of P{ }i is chosen such that the same number of generators ( >P 0i )
andmotors ( <P 0i ) are drawn.Most simply, sets of randomnumbers from the interval −[ 1, 1]were drawn until
all above criteria can be fulfilled by assigning the last node. This is a bit time consuming, but has to be performed
only once during a simulation: the power values attached to the nodes are not changed during theMarkov chain
MC, since all possible networks can be accessed via changing the edges.

6.1. Probability density functions of the backup capacity
First, we analyze the probability density functions of the backup capacity for the different network ensembles, as
well as for theUKpower grid.

Figure 2(a) shows the pdf of the resilience for ERnetworks with a fixed number of links andN=120 nodes,
based on theUK grid (see figure 1). The procedure for creating a candidate graph in the large-deviation scheme
is the same as for ER graphswith afixed number of edges (see section 5). Note thatwe only used one histogram
with simple sampling corresponding to the temperature = ±∞T . Nevertheless, backup capacities from smaller
than 0.4 up to 2.8 could bemeasured. Infigure 2(a), we can see an interesting double-peak structure in the pdf,
where the right peak is higher than the left. In these peaks, the networkswith typical values of the backup
capacity are represented like the initial network of the simulation.When taking a closer look at the two peaks,

consider the powerflowKe
flow
PB

before the removal of the highest-load link through the edge ePB
which later

defines the backup capacity (i.e., exhibits the highest flow increase). Infigure 2(b), whereKe
flow
PB

is plotted against

the backup capacity, two clusters become visible. One cluster is represented by a very smallflow through ePB

before removal of emax and quite high values ofPB (cluster below the dashed line). This cluster corresponds to the
right (higher) peak of the pdf. An explanation for the left peak is that it belongs to the cluster, where a
considerable flow through ePB

is already present in the network, and thus theflow increasePB is rather small (the

cigar-shaped cluster at smallPB, many points above the dashed line).

Figure 2. (a) Probability density function p P( )B of the backup capacityPB for ER networkswithN=120 andM=165 (fixed) starting
from theUK grid (see figure 1). About 106 samples are used to generate this pdf. (b) Scatter plot of the power flowKe

flow
PB

before the

removal of the highest-load link through the edge that exhibits the highestflow increase (i.e., later defines the backup capacity) against
the backup capacityPB forN=100, an ER ensemble, and 105 samples. Dashed line represents =K Pe

flow
BPB
.

6

New J. Phys. 17 (2015) 015005 TDewenter andAKHartmann



TheUK grid (see figure 1) has a backup capacity of =P 1.294,B
* which is in this region of typical networks.

Nevertheless, in principlemuchmore resilient networks exist. This is confirmed by the p-value of theUK grid
shown infigure 1. To obtain the p-value, we calculate the cumulative probability that networks with smaller (or
equal) backup capacity exist in the ensemble: ⩽ ≈P P P( ) 0.67B B

* . This value tells us that the probability of
finding amore resilient network than theUK grid in the ER ensemblewithfixed edges (N= 120,M=165) is
higher than 2/3. Thismeans theUK grid, as depicted infigure 1, has a low significance in terms of resilience
because of the large p-value. The right tail of the pdf follows an exponential, resulting in a line in a logarithmic
plot, whereas the left tail ismuchmore curved.

Next, we compare the results for ERnetworks, spatial networks, and ER graphswith afixed number of links.
For all these ensembles, we obtained the pdf over the possibly full support ofPB. Formany of the pdfs, it was quite
difficult to obtain the far-left or far-right tail. For very small values of the backup capacity (corresponding to
small positive temperatures in the large-deviation approach), the histograms tend to become delta shaped,
meaning the observablePB becomes almost constant overMC time. The large values of the backup capacity (i.e.,
small negative temperatures) are evenmore difficult to obtain. In the simulations, one could see that the
maximumvalue ofPB could hardly be reached in the pdfs, as sampling in this region results in a delta
distribution. This is also visible in the finally obtained pdf (see e.g., figure 3(a)), because as the values ofPB get
closer to themaximum, a strong curvature appears.

Figure 3(a) shows the pdfs of the backup capacity for ERnetworks on almost the full support for different
graph sizesN. In the inset of 3(a), the double-peaked structure of the pdfs for the smallest and the largest
obtained networks are shown. For increasing graph sizeN the double peaks shift toward larger backup
capacities.We found that this shift is logarithmic inN (see figure 3(b)). Interestingly, the right peak becomes
more pronounced forN=200 in comparison toN=10.

With the large deviation approach described in section 5, one can access typical, very resilient, and very
vulnerable networks. Typical networks close to the double peaks of the pdfs show a rather small backup capacity.
Infigure 3(a), very vulnerable networks with a large backup capacity of ≈P 45B forN=200 are very rare and
appear only with a probability density of about 10−90. Note that such small probabilities (densities) are
impossible to reachwith ordinaryMC simulations. These vulnerable networks are located at the right tail of the
pdf. Although this tail is compatible with an exponential, a strong curvature occurs when themaximumpossible
value of the backup capacity is approached. For transportation networks [23], the right tail of the pdf does not
show any curvature. The very resilient networks can be found in the left tail, close to the peaks of the density
function.

Infigure 4(a), the pdf for the ER graphswith afixed number of edges is shown. Again, the peaksmove
logarithmically to the right with increasingN. As for ERnetworks with a variable number of links, the right peak
is almost twice as high as the left peak forN=200. In contrast, forN=10, the peaks have almost the same height.
The curvature of the right tail is not as strong as for ER or spatial networks.

Figure 4(b) shows the results for the spatial networkmodel, where the nodes of the network are placed in a
two-dimensional plane. As found for the other network ensembles, the peaks in the inset offigure 4(b) shift

Figure 3. (a) Probability density functions p P( )B of the backup capacityPB for ERnetworks with sizesN=10 up toN=200. Inset:
Region close to the peaks of the pdf forN=10 andN=200. Lines are guides for the eyes only. (b) Peak positionsPB

peak of the left peak in
the pdfs for ERnetworks as a function of network size,N. Dashed line is a logarithmic fit (N=50 excluded) =P N a b N( ) · ln ( · ),B

peak

with parameters =a 0.146(8) and =b 0.44(6). Inset: the same as for the left peak. The dashed line is a logarithmic fit (N=50
excluded) =P N c d N( ) · ln ( · )B

peak with parameters =c 0.216(17) and =d 0.79(26).
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logarithmically towards the right with a growing number of nodes. The twopeaks differ less in height forN=200
than forN=10. The curvature of the right tail is stronger than for the ER ensemble with afixed number of links.

Next we compare the resiliences of typical, very vulnerable, and very resilient networks for the different
ensembles. For the typical networks, we investigate the right (usually higher) peak of the pdf forN=200. For the
ERnetwork ensemble, the typical networks exhibit quite a small backup capacity of ≈P 1.065B , followed by the
ER ensemblewith afixed number of links ( ≈P 1.115B ). The typical spatial networks are almost as resilient, with

≈P 1.163B . A similar order of peak positions has been found for the left peak.
Very vulnerable networks at ≈P 44B forN=200 aremost unlikely for the ER ensemblewith a fixed number

of links ( ≈ ≈ −p P( 44) 10B
106). For the ER ensemble, this probability density at ≈P 44B is about 10−88.

Networks from the spatial network ensemble have densities of about 10−82 at ≈P 44B . These results support the
findings for the typical networks, because for the two ER ensembles, it is unlikely that onewould find very
vulnerable networks (i.e., with a large backup capacity). The graphs from the spatial network ensemble exhibit
the highest densities at large backup capacities, and thus favor less resilient networks.

Very resilient networks at ≈P 0.024B forN=200 aremost unlikely for the ERnetwork ensemblewith a fixed

number of links, where ≈ ≈ −p P( 0.024) 10B
52. For the spatial ( ≈ ≈ −p P( 0.024) 10B

37) and ER

( ≈ ≈ −p P( 0.024) 10B
34) network ensembles, the densities tofind a networkwith ≈P 0.024B are almost equal.

In contradiction towhat has been found previously, the ER ensemblewith a fixed number of links exhibits quite
lowdensities around ≈P 0.024B . Both spatial and ERnetwork ensembles favor very resilient graphs, which have
small backup capacities.

These results need to be takenwith care, because as for the ensemble with afixed number of edges, arbitrarily
small backup capacities cannot be reached. In contrast, for the two ensembles with aflexible number of links,
many edges are allowed to be present in the networks, and specifically, the complete graph (each node is
connected to all other nodes) is included in these ensembles. Therefore, the probability densities at lowPB for the
ensembles with aflexible number of links are a factor of 1018 higher than for the ER ensemble with afixed
number of links.

To sumup, themost promising network ensemble in terms of resilience is the ER ensemble, although it is
high dimensional (i.e., quite unrealistic). The ER ensemble with afixed number of links is also quite resilient
against transmission line failure. Themore realistic (it is embedded in a two-dimensional plane) spatial network
ensemble is also a good candidate for choosing resilient networks, although vulnerable networks are quite likely.
Thesefindings are compatible with [23], although amuch simpler, very general transportmodel was studied in
that reference.

6.2. The rate function
Next, we investigate the behavior of the so-called rate function [37, 38]

Φ = − ( )
N

p P
1

log , (13)B

Figure 4.Probability density functions p P( )B of the backup capacityPB for given networks. Inset: region close to the peaks of the pdf
forN=10 andN=200. Lines are guides for the eyes only.
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which is based on the fact that the leading behavior (away from the typical instances) of the pdf is an exponential
decay, ∼ −p P( ) e NP

B
B. Figure 5(a) shows the rate function as a function of the rescaled backup capacity =r P NB

for the ER ensemblewith afixed number of links. This rescaling ismotivated by the following observation.
Consider a network that consists of two large N( ) subnetworks, which are connected via a core (e.g., a triangle,
cf, [23]) with generators on one side andmotors on the other. In this setup, themost power has toflow through a
single link in the core. After the removal of this high-loaded link, the powerflows through the other two core
links of the triangle. Hence, the backup capacity increases by an amount of∼N , as the power flows ofN 2 nodes
run through these two links.

Infigure 5(a) one sees that the rate function approaches a limiting curve asN increases. Below a certain value

=r r* this curve is approached frombelow, whereas above r*, the curve is approached from larger values ofΦ.
The point r*moves toward smaller values of r asN increases. ForN=400, deviations from this behavior for large
r can be observed. Although the limiting curve is not compatible with a straight line as in [23], an exponential
behaviorwith strong curvature for p P( )B is still possible.

Note that the rate functions for the other graph ensembles look similar, with basically the same limiting
behavior. This apparent convergence of the empirical rate function indicates that itmight be promising to apply
analytical large-deviation techniques [37, 38] to study the resilience of power grids for these graph ensembles.

6.3. Characterization of very resilient and very vulnerable networks
Next, we investigate the relationship between the backup capacity (i.e., resilience) and the number of edges in
the graph for the ER and spatial network ensembles. Hence, we used our simulation results to bin data jointly for
all different temperaturesTwith respect to the number of edgesNe. In each of these bins, the average backup
capacity is calculated and the result is shown infigure 5(b). For a small number of edges in the network, the
backup capacity is very large.However, formany edges,PB assumes very small values. Thismeans that in general,
a networkwithmore edges ismore resilient than a networkwith fewer edges. Note that adding a link to a
network can sometimes destabilize it, according to Braessʼs paradox [39].With our data, it is not possible to
determinewhether the steep decrease of the backup capacity appears at smallerNe for the ER or the spatial
network ensemble. In [23], the decrease appears at a smaller number of edges for the ER ensemble. Thus, in
contrast to general transportation networks, it is possible to obtain very resilient power grids embedded in a two-
dimensional planewith the same effort (i.e., number of edges) as for an infinite-dimensional (i.e., less restricted)
ER ensemble.

Figure 6(a) shows the average diameter for all studied network ensembles andN=400. The diameter of a
network is defined as the longest of the shortest paths between all possible node pairs. First, a binning of the data
with respect to the backup capacity is performed, and then the diameters are averagedwithin each bin. In the
inset offigure 6(a), one can see that with increasing backup capacity, the diameter also increases, at least for small
values ofPB. Networks from the ER ensemble have the smallest diameter, followed by networks from the ER
ensemblewith a fixed number of links in this smallPB region.Networks from the spatial network ensemble also
reveal the largest diameters for large backup capacities. Interestingly, graphs from the ER ensemble have rather
large diameters for larger backup capacities, whereas for smallerPB, the diameters are the smallest of all the

Figure 5. (a) Rate functionΦ as a function of the rescaled backup capacity =r P NB for ERnetworks with a fixed number of edges
( =M N1.5 ) and different sizes,N. (b) Average backup capacityPB as a function of the number of edgesNe for ER and spatial networks
with sizeN=400. Error bars are comparable to symbol size.
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ensembles. These results are somehow the opposite of what was found in [23], where networks from the spatial
network ensemble reveal the smallest diameter for small backup capacities.

Networks from the ER ensemble with afixed number of edges show a decrease in the average diameter above
≈P 45,B and a small increase for very large backup capacities. This shows that the diameter only serves as a good

observable to determine the resilience of a power flownetwork if the edge number isflexible. Clearly, for real-
world situations where the number of links is an economic factor, one aims for aminimal, or at least constant,
edge number. Thus, for network ensembles with afixed number of edges, other quantitiesmay be considered.

One quantity is, for example, whatwe call a power sign ratio (cf, [9, 10], where a frequency sign ratio is used to
characterize synchrony-optimized networks). This quantitymeasures the fraction of links that connect
synchronousmachines whose power Pi has an opposite sign compared to the total number of edges in the
network. Infigure 6(b), the average of this quantity is shown for the studied network ensembles. The averaging is
performed in the sameway as for the graph diameter. For smallPB, the power sign ratio is close to 0.5 for all
network types. Thismeans that on average, from any two edges in the graph, one of them connectsmachines
with opposite signs of the power. This corresponds to the purely random case, since half of the nodes exhibit
positive power and half exhibit negative power. Clearly, for increasing backup capacity (i.e., decreasing
resilience), −p also decreases. For networks from the spatial network ensemble, this decrease is themost shallow.

Similarly to [9, 10], where a increasing value of the frequency sign ratio −p indicates enhancement of
synchrony, here −p (with the powers Pi) serves as a good indicator for the resilience of power flownetworks.

7. Summary and outlook

We studied the resilience of power-flowmodels on networks against the failure of a transmission line.We
analyzed three different randomnetwork ensembles, namely ER, spatial, and ER networks with a fixed
number of edges and in addition the topology of theUK power grid. The key quantity for determining the
resilience of a network is the backup capacity, which is defined by the additional capacity of the links that needs
to be provided to ensure stable operation in case of a failure of the link with the highest power flow. This
quantity is a realisticmeasure of resilience, since a power-grid blackout is very costly and should be avoided at
all costs.With a specific reweighting procedure, the tails of the pdfs with densities as small as 10−160 were
investigated. This procedure enabled us to study very resilient, very vulnerable, and typical networks. In
addition, the p-value allows for the comparison of a given networkwith a network ensemble by providing a
qualitymeasure for the investigated network.

For theUKpower grid, we found a typical backup capacity ≈P 1.3B which is located in the right peak of the
corresponding pdf generated for an ER ensemble with afixed number of links. A p-value of 0.67 of theUKgrid
indicates that it is of low significance regarding the resilience, and thatmany networks exist in the ER ensemble
with afixed number of links that aremore resilient. The position of the two peaks in the pdf increases

Figure 6.Average diameter d and power sign ratio −p as functions of the backup capacityPB for all studied network ensembles with size
N=400.Note that because of the gap in the data for ER and spatial networks, some intermediate values ofPB are not present. Because
there are few data points forPB in [18, 50] for the ER and spatial network ensemble, some data points have a large error bar, which is
omitted here for clarity of the plot. For the ER ensemble with a fixed number of nodes, error bars are comparable to symbol sizes.
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logarithmically with growingN for the three ensembles of randomnetworks. The right tail of the pdfs for these
three ensembles toward larger backup capacities is an exponential in about the left half of its support, followed
by a strong curvature in the right half of its support. This is confirmed by the rate function, which converges to a
corresponding limiting curve for increasingN.

Addingmore links to a networkmakes it typicallymore resilient, which is not surprising. Also, in the
nonspatial ER ensembles, which allow formore freedomwhen placing the edges, it is easier tofind resilient
networks. Nevertheless, for real applications, the two-dimensionalmodel ismore appropriate, particularly since
it is almost as likely as for the ER ensembles tofind very resilient networks. Interestingly, in this case, resilient
networks are characterized by small diameters and large power sign ratios, even for the ER ensemblewith afixed
number of links. The latter observation is quite interesting, because itmeans that power producers should be
placed close to power consumers. This is convenient, since this strategy reduces the costs for creating the
network that transports the electric power, as it is classically done anyway. Thus,minimizing the transportation
costs andmaking the networks resilient are, to a large extent, not conflicting goals.

When using the p-value calculation, one should choose a suitable network ensemble for comparison. The
ensemble shouldmatch the constraints of the investigated real-world network.Here, we used an ER ensemble
with afixed number of edges for comparisonwith theUK grid, as an illustrating example. For practical
evaluations of existing or planned power grids, onewould include, for example, geographical constraints or cost
minimization.Within such a constrained ensemble, the backup capacity of an existing gridwould be located in
the low-probability tail of the pdf. Thus, a large-deviation approach, like the one presented here, is necessary to
evaluate such a power grid.

In the future, it would be interesting tomore thoroughly investigate where the double-peaked structure of
the pdf comes from. Itmight also be useful to considermore realistic (i.e., dynamic) networks for electric power
grids, asmentioned previously. In addition, one could use a spatial network ensemble, which takes the costs of
adding a transmission line into account, to get amore realistic economicalmodel.
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