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Abstract. The estimation of large sparse inverse covariance matrices is a ubiquitous statistical
problem in many application areas such as mathematical finance, geology, health, and many others.
The `1-regularized Gaussian maximum likelihood (ML) method is a common approach for recovering
inverse covariance matrices for datasets with a very limited number of samples. A highly efficient
ML-based method is the quadratic approximate inverse covariance (QUIC) method. In this work,
we build on the advancements of QUIC algorithm by introducing a highly performant sparse version
of QUIC (SQUIC) for large-scale applications. The proposed algorithm focuses on exploiting the
potential sparsity in three components of the QUIC algorithm, namely, construction sample covari-
ance matrix, matrix factorization, and matrix inversion operations. For each component, we present
two approaches and provide supporting numerical results based on a set of synthetic datasets and
a stylized financial autoregressive model. Testing conducted on a single modern multicore machine
show that using advanced sparse matrix technology, SQUIC can recover large-scale inverse covari-
ance matrices of datasets with up to 1 million random variables within minutes. In comparison to
competing ML-based algorithms, SQUIC is orders of magnitude faster with comparable recovery
rates.
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mate inverse matrices

AMS subject classifications. 65N55, 65F10, 65N22

DOI. 10.1137/17M1147615

1. Introduction. In mathematical statistics, one is often faced with the problem
estimating the underlying distribution from large-scale datasets with a limited num-
ber of samples. Even if one assumes that the distribution is Gaussian, the mean and
the inverse covariance matrix are unknown. Here we focus on the inverse covariance
matrix from a Gaussian distribution which is either sparse or can be approximated
as such. In a Gaussian setting, the sparsity structure of the inverse covariance ma-
trix corresponds to the graphical structure of the Gaussian Markov Random Field
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LARGE-SCALE INVERSE COVARIANCE MATRIX ESTIMATION A381

(GMRF). Simply understanding the graphical structure of such GMRF can provide
significant insight into the dynamics of random variables under observation.

One common method for estimating the inverse covariance matrix is the maxi-
mum likelihood (ML) method. To enforce sparsity using the ML-based method one
minimizes the `1-regularized negative log-likelihood function; see, e.g., [3,18,44]. The
resulting problem is convex and thus there are many approaches one can take from
convex optimization. Among these there are blockwise descent methods [3,12,18,35],
(inexact) interior point methods [5, 27, 44], alternating linearization [36], iterative
thresholding [34], projected subgradients [14], greedy-type descent methods [37], and,
more recently, second-order methods [2, 11, 22, 23, 32]. In particular second-order
methods are attractive because of their faster convergence; however, they are more
computationally demanding in comparison to first-order methods. The quadratic
approximate inverse covariance method (QUIC, cf. [22]), is a second-order method
which has multiple attractive computational properties; see [22] for further details.
The QUIC algorithm uses dense matrix operations and is thus is limited to problem
sizes of up to about 104 random variables. In [23] a version called BigQUIC has
been proposed to deal with large-scale problems by avoiding the explicit construction
of larger dense matrices, thus reducing the overall runtime and memory footprint.
However, even with BigQUIC the time-to-solution quickly becomes impractical when
working with datasets with millions of random variables.

In this paper, we are going to present a sparse version of the QUIC algorithm
(SQUIC) where we identify three components of the QUIC algorithm for which we
exploit potential sparsity in the computation. Specifically, using advanced sparse
matrix technologies, our contributions are based on introducing two highly performant
approaches for each QUIC component, namely, (i) the sparse representation of sample
covariance matrix, (ii) sparse matrix factorization, and (iii) sparse approximate matrix
inversion. The proposed approaches benefit most in terms of performance when both
the inverse covariance matrix and the covariance matrix can be approximated as
sparse.

In section 2 we give a short summary of the mathematical problem of sparse
inverse covariance estimation and its formulation as a convex optimization problem.
Next, in section 3 we briefly review the QUIC method. Following this in section 4,
we outline the three major numerical challenges addressed by the main contributions
of the paper. We introduce two performant approaches for each of the three major
components of the QUIC algorithm using state-of-the-art sparse matrix techniques.
The SQUIC algorithm is tested in section 5 using synthetic large-scale and real-world
datasets demonstrating that on a modern multicore computer we are easily able to
solve these problems within a few minutes.

2. Sparse inverse covariance estimation. In many applications one is often
faced with the following problem: given the data matrix Y ∈ Rp×n comprised of n
independently drawn samples from a p-variate Gaussian distribution N (µ,Σ), where
µ ∈ Rp and Σ ∈ Rp×p are the true mean and covariance matrix, respectively; we would
like to estimate Θ = Σ−1. We will assume throughout the paper that p � n. This
situation arises quite frequently in big data problems where increasing the number of
samples to construct adequate estimate of Σ is not feasible. We start by defining the
estimates

µ̂ =
1

n

n∑
j=1

yi, S =
1

n

n∑
i=1

(yi − µ̂) (yi − µ̂)
>
,(1)
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A382 BOLLHÖFER, EFTEKHARI, SCHEIDEGGER, AND SCHENK

referred to as the sample mean and sample covariance matrix,1 respectively. Here the
notation yi denotes to ith column of the data matrix Y . Due to the limited number
of samples, that is, n � p, S is both singular and contains significant noise. One
common method for solving this problem is the ML method which involves minimizing
the negative log-likelihood function

g(Θ) = − log(det Θ) + tr(SΘ).(2)

To enforce sparsity on Θ one usually adds a sparsity prior to g, which is equiva-
lent to enforcing sparsity on the associated GMRF. The resulting `1-regularized ML
optimization problem is

argmin
Θ�0

{
fλ(Θ)

}
, where fλ(Θ) = g(Θ) + λ‖Θ‖1,(3)

and Θ � 0 denotes positive-definiteness of Θ. Here fλ is the `1-regularized negative
log-likelihood objective function, ‖ · ‖1 refers to the elementwise 1-norm, and λ > 0
is the sparsity parameter which is chosen a priori. The constrained minimization of
g (resp., fλ) is also referred to as a Lasso-type problem and since g is strictly convex
and fλ is still convex, there exist several optimization methods to minimize fλ such
as blockwise coordinate descent methods (graphical Lasso) [3,12,18,35], (inexact) in-
terior point methods [27,44], alternating linearization [36], iterative thresholding [34],
projected subgradients [14], and greedy-type descent methods [37]. These approaches
have in common that they are first-order methods. More recently, second order have
been proposed such as the Newton-like method in [32] or quadratic approximation
methods [22]; the latter has led to the so-called QUIC method which we will briefly
describe in the next section.

3. The QUIC algorithm. The basis of the QUIC method [22] consists of locally
constructing a second-order approximation for the differentiable part g of fλ using a
Taylor expansion. For fixed Θ, the local quadratic approximation g̃(∆) of g(Θ + ∆)
reads as

g(Θ + ∆) ≈ g̃(∆) = tr((S −W )∆) +
1

2
tr(W∆W∆)− log(det Θ) + tr(SΘ),(4)

where W = Θ−1. Up to a constant, this yields a local approximation

h(∆) ≡ tr((S −W )∆) +
1

2
tr(W∆W∆) + λ‖Θ + ∆‖1

of fλ(Θ+∆). Rather than minimizing h for all ∆, the authors have proposed to apply
a sequence of one-dimensional minimization steps of type

h(∆ + µ(eie
>
j + eje

>
i )),

where ∆ refers to the already completed updates, ei, ej refer to suitably chosen unit
vectors, and µ is the parameter to be computed. Interestingly, it has been shown in
the same article that it suffices to select the sequence of indices (i1, j1), . . . , (ik, jk)
only from those entries (i, j) such that |sij − wij | > λ or θij 6= 0. A quite realistic
expectation is that this set of indices is usually significantly less than p2. Each one-
dimensional step (i, j) requires, in particular, the values of sij and wii, wjj , and wij as

1Here we use 1
n

rather than 1
n−1

in the sample covariance matrix for simplicity.
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LARGE-SCALE INVERSE COVARIANCE MATRIX ESTIMATION A383

well as the ith and jth columns of W . Moreover, ∆ and θij are required. At this point
we skip presenting the detailed formula for computing µ and kindly refer to [22] for
further details. Once the complete sequence is computed, the collection ∆ of all one-
dimensional steps is used to update Θ by Θ′ = Θ +α∆. Here α is chosen as 2−m and
α is reduced until Θ′ is positive definite and the associated fλ satisfies an additional
Armijo-type criterion to ensure sufficient descent and positive-definiteness of the next
iterate. According to [22] we adopt Armijo’s rule and try step-sizes λ ∈ {β, β2, β3, . . .}
with a constant decrease rate 0 < β < 1 (typically β = 0.5), until we find the smallest
k ∈ N with α = βm such that is Θ′ is positive-definite, and it satisfies a sufficient
decrease condition. We refer to [22] for further details.

Without going into further details of the QUIC code, it is obvious that the fol-
lowing tasks are part of the algorithm.

1. The sample covariance matrix S is referenced for every (i, j) from the se-
quence; this includes, in particular, (i, j) such that |sij | > λ, e.g., when W is
diagonal.

2. In order to verify whether Θ′ is positive definite or not, an algorithm is
required to test the positive definiteness of Θ′.

3. The computation of fλ(Θ) requires a method for computing log(det Θ).
4. Finally, for setting up the active set (i1, j1), . . . , (ik, jk), the entries of W =

Θ−1 are required, in particular, for detecting |sij − wij | > λ, but also for
computing each one-dimensional update. The latter requires each column
wi, wj for computing µ for every (i, j) from the active set sequence.

We will next describe how these numerical challenges are treated by existing algo-
rithms.

4. Large-scale challenges. The original QUIC algorithm is designed to work
with dense matrices; therefore, the sample covariance matrix S is directly passed as
a dense matrix to the algorithm; the positive definiteness as well as log(det Θ) are
computed via the dense Cholesky decomposition. Using the dense Cholesky decom-
position, W = Θ−1 is easily inverted. This numerical core part is performed using
level-3 BLAS kernels while maintaining the numerical behavior of LAPACK and BLAS
implementations.

More recently, in [23] a large-scale version BigQUIC of the QUIC algorithm has
been presented with the major objective to save memory and to deal with a million
variables. The hallmark of the BigQUIC algorithm is avoiding memory consumption
and, therefore, the log(det Θ) is computed via a recursion formula [23] which allows
us to both compute the determinant by solving linear systems and to check positive-
definiteness. Similarly, W is not computed in total but on demand using the conjugate
gradient method. In addition, the entries of S are only computed when needed.
To improve efficiency, a further blocking strategy is applied to the sequence of one-
dimensional updates in order to recycle the computed quantities more often.

In [2] a version of the QUIC algorithm using hierarchical matrices is presented.
Here the major idea is to represent all matrices in H format so as to compute the
Cholesky decomposition and the inverse matrix using H matrix arithmetic.

We will now present our approach to working with the QUIC method for large-
scale systems. The numerical methods presented allows for the use of state-of-the-art
sparse matrix technology. These are employed to efficiently deal with the following
tasks: (i) a sparse (approximate) representation of the sample covariance matrix S,
(ii) checking the positive definiteness of Θ and (approximately) computing log(det Θ),
and finally (iii) computing a sparse approximate inverse matrix W . To be efficient,
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A384 BOLLHÖFER, EFTEKHARI, SCHEIDEGGER, AND SCHENK

these tasks certainly require that the underlying statistical problem possesses certain
sparsity properties, e.g., the GMRF (i.e., Σ−1) is assumed to be sparse but, in ad-
dition, we certainly need W ≈ Σ to be at least approximately sparse and that the
entries |sij | > λ can be represented by a sparse matrix. Whenever this is fulfilled,
sparse matrix technologies can be efficiently applied as we will demonstrate in the
following.

4.1. Sparse representation of the sample covariance matrix. Given the
initial statistical data Y = [y1, . . . , yn] and their mean value µ̂ = 1

n

∑n
i=1 yi, let us

recall that S is formally given by

S =
1

n
ZZ>, where Z = Y − µ̂,

and the difference Y − µ̂ is understood to be taken by columns. In our case S is large-
scale, symmetric positive, semidefinite low-rank (since p� n) matrix. Theoretically,
when n → ∞ we would have S → Σ. Certainly, we will not have n large enough
to see this convergence. Therefore, even if Σ were approximately sparse it does not
mean that S has to be approximately sparse. Conversely this means that S could
have a significant number of entries which could be considered as noise. Taking this
into account, we propose to compute a sparse approximation of the sample covariance
matrix Ŝ for which only the entries suv such that u = v or |suv| > λ (e.g., λ = 0.5)
are stored. To only compute these entries initially does not interfere with computing
some additional entries of S on request. In particular at a given Newton iteration
step, the computation of the active set requires to compare |suv−wuv| for all nonzero
entries of W . To achieve this we will compute the missing entries of S at the nonzero
pattern of W if not yet present. This approach ensures that the nonzero pattern of
S overlaps that of W . We also like to emphasize that usually it is not known a priori
at which positions the large entries are located. This certainly makes it harder to
develop an efficient algorithm for an approximate sparse representation of S. Taking
all this into account we will now present two algorithms to compute an initial sparse
representation S̃ of all suv such that u = v or |suv| > λ.

The first algorithm to compute S̃ computes the product 1
nZZ

> using level-3
BLAS. Since the amount of memory for computing this is considerably high, we
compute this product in chunks of size k, i.e., we set Z> = [C1, . . . , Cm], where
C1, . . . , Cm ∈ Rn,k. Possibly Cm has fewer columns p − (m − 1)k 6 k if p is not
a multiple of k. In practice, we will use k = 256 for simplicity to compute a suffi-
ciently large chunk of S. Certainly, different values of k were possible and we did not
investigate which size k would lead to an optimal computation time, but we like to
stress that for this size, the level-3 BLAS cache performance will be obtained [26].
We sketch the computation of S̃ via Algorithm 1 in Figure 1.

We like to note that Algorithm 1 can be easily parallelized with a large number
of cores c. But even on a high-performance system the total amount of computation

time remains on the order of O(p
2n
c ), maybe with a small constant if all architecture-

dependent properties are used, and we do not see that, in general, a deterministic
algorithm can significantly reduce the complexity. We therefore present a second
randomness based algorithm which may in practice consume less time, in particular,
when the size p is getting large.

To break the complexity O(p2n), as a first step we will make use of a column
compression technique. This approach is motivated by probing techniques [8,9,10,41]
to efficiently compute sparse matrices by matrix-vector products using significantly
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LARGE-SCALE INVERSE COVARIANCE MATRIX ESTIMATION A385

Algorithm 1. Deterministic computation of S > λ.

Require: Y ∈ Rp×n, λ > 0, k ∈ N.
Ensure: sparse restriction S̃ ∈ Rp×p of S such that (s.t.) |suv| > λ or u = v

1: µ̂ := 1
n

∑p
j=1 yj , Z := Y − µ̂, partition Z> = [C1, . . . , Cm] s.t. Cj ∈ Rp×k

2: for j = 1 : m do
3: denote by Z̃ = (zuv)u>(j−1)k,v the block lower triangular part of Z

4: compute Dj = 1
n Z̃Cj .

5: for i = 1 : k do
6: sparsify ith column of Dj s.t. only suu and |suv| > λ are saved to S̃
7: end for
8: end for

S ∼

chunks

co
m

p
u

te

→

sp
ar

si
fy

co
m

p
u

te

→

sp
ar

si
fy

co
m

p
u

te
→

sp
ar

si
fy

Fig. 1. Sketch of Algorithm 1.



∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗





1

1

1


=



∗
∗

∗
∗
∗

∗
∗


Fig. 2. Column compression Sg = d via probing.

fewer vectors than the size p of the matrix. Here the idea is relatively easy when
the pattern of the underlying matrix is known as indicated in the following trivial
pattern example of Figure 2. In order to extract the matrix entries one simply uses
a small number of probing vectors consisting of zeros and ones. A single one in a
probing vector refers to a node in the undirected graph of S, and the entries in the
associated column refer to its neighbors. Therefore in order to get multiple columns
of S simultaneously, the ones in a probing vector have to be chosen such that the
related nodes and their neighbors do not overlap. In our case there are the two
following difficulties with the probing approach; first, we do not know the pattern of
S in advance. Second, even if Σ is approximately sparse, S is usually not sparse due
to the limited number of samples.
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A386 BOLLHÖFER, EFTEKHARI, SCHEIDEGGER, AND SCHENK

We now describe the main idea of a heuristic algorithm for computing S using
probing vectors. Some technical details will be described after that. In order to deal
with the first difficulty we randomly choose l numbers from {1, . . . , p} and denote this
set by J . Then we set

g =
∑
v∈J

ev,(5)

where ev denotes the vth unit vector and compute d = Sg. Choosing the entries of
J randomly, there is a good chance that for v ∈ J the associated columns Sev of S
do not overlap, at least if S is sparse. Next we will deal with the second difficulty.
Even if on average the t largest entries in each column v ∈ J of S do not overlap,
noisy entries will surely accumulate as we increase the size l of J . In particular, since
n� p, S is far away from Σ, therefore, the noise is likely to add up to contributions
greater than λ when l gets larger. For this reason we simply sort the entries of d = Sg
in modulus in decreasing order and only keep the F · t · l largest entries, where F > 1
refers to some failure factor, allowing more entries than we expect to be greater than
λ. These remaining F · t · l entries of d are associated with some index set I, and the
only thing we have to do now is to recompute suv for all u ∈ I and v ∈ J to cross
check which of these entries really satisfy |suv| > λ. These entries are then kept and
build the approximate sample covariance matrix S̃.

After having given a sketch of the major idea, we will now comment on some
details of this probing method. Although we certainly do not know t in advance,
we can start with a relatively pessimistic large initial guess for t. While computing
columns of S step by step, we uncover more and more entries suv such that |suv| > λ.
This allows us to adapt t throughout the computation. Similarly, starting with an
initial guess F we can easily compare the number of entries suv that were successfully
computed with the number of entries that were left over after sorting. This also
allows us to adaptively modify F . It is also clear that analogously to Algorithm 1
we can compute multiple columns G = [g1, . . . , gk] simultaneously to exploit dense
linear algebra kernels. Since each gi in (5) is a sum of l unit vectors, the formal
product C = Z>G =

(
Z>gi

)
i=1,...,k

is easily achieved for each i summing up only

those columns v of Z> such that v ∈ Jm. Algorithm 2 states the major frame of the
randomized computation of the sparsified sample covariance matrix. The adjustment
of the parameter l has not yet been discussed. This will be done now based on a
simplified cost model.

For the computational cost of Algorithm 2 we initially note that the formal pro-
duct C = Z>G costs O(nl ·k) during a single loop since we exploit the special pattern
of G. Thus, this product is significantly cheaper than computing D = 1

nZC which
costs O(pn ·k) locally. From this one can immediately conclude that the computation
of D using dense linear algebra kernels (level-3 BLAS) is dominating the computation
time up to step 12. Assuming that l is a constant, the total matrix–matrix product
D accumulated over the outer while-loop costs O(εpn · pl ) which roughly reads as
compressing l columns simultaneously and ε is some small constant (e.g., 10−2) that
takes into account the high performance of the dense linear algebra kernel. The
recomputation of suv in steps 16–29 locally costs O(Ftl2n · k) which results in an
overall cost of O(Ftl2n · pl ).

After we have motivated a simple cost model for the matrix–matrix computation
and the recomputation of suv, we use these simplified models to define an equilibrated
value of l. Assuming that F, t, ε are constant, the optimal performance is achieved
whenever the two most time-consuming parts coincide, i.e., whenever we have
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Algorithm 2. Randomized computation of S > λ using column compression

Require: Y ∈ Rp×n, λ > 0, k ∈ N.
Ensure: sparse restriction S̃ ∈ Rp×p of S s.t. |suv| > λ or u = v

1: µ̂ := 1
n

∑p
j=1 yj , Z := Y − µ̂, C = {1, . . . , p}

2: compute suu, u = 1, . . . , p.
3: while C 6= ∅ do
4: G = [g1, . . . , gk] = 0 ∈ Rp×k
5: {for each column i pick l unused indices randomly:}
6: for i = 1 : k do
7: Ji = ∅
8: for j = 1 : l do
9: pick r ∈ C, C = C \ {r}, Ji = Ji ∪ {r}

10: gi = gi + er
11: end for
12: end for
13: {compute k compressed columns of S:}
14: set C = Z>G and compute D = 1

nZC and let D = [d1, . . . , dk]
15: {for each compressed column k detect the neighboring structure:}
16: for i = 1 : k do
17: {filter d s.t. only the largest entries remain:}
18: exclude the elements of Ji from di
19: sort the remaining entries of |di| in decreasing order
20: keep the largest F · t · l in modulus and denote the associated indices by Ii
21: {for each large off-diagonal index u search for one associated column v:}
22: Ĵi := Ji
23: for u ∈ Ii do
24: for v ∈ Ĵi do
25: recompute the exact value suv
26: if |suv| > λ, store suv, remove v from Ĵi and stop as soon as t entries

are detected in column v of S.
27: end for
28: end for
29: end for
30: adjust t, F, l
31: end while

εpn · p
l

= Ftl2n · p
l
,(6)

which is satisfied by choosing l =
√

εp
Ft . We will use this formula for l in Algorithm 2.

In this ideal scenario the computation time of Algorithm 2 is O(p3/2n
√
Ftε), which

is much cheaper than Algorithm 1 O(p2n). We finally like to point out that the
computation of chunks of columns of S with or without column compression is easily
performed using multithreaded level-3 BLAS. Similarly, the sparsification of each
computed column will be done in parallel using OpenMP.

After we have discussed how the first (and major) obstacle of deriving a sparse
and approximate representation of S is performed, we will next discuss the second
part which consists of computing an (approximate) factorization of Θ as computed
iteratively in the minimization process of fλ(Θ).
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4.2. Sparse matrix factorization. In this subsection we will discuss, given
an update Θ′ = Θ + α∆, how to detect that Θ′ is still positive definite. Provided
that Θ′ is symmetric and positive definite and satisfies an Armijo-type criterion with
respect to the decrease of fλ(Θ′), we discuss how to compute log(det Θ′). Here we will
concentrate on two variants based on sparse matrices. The first algorithm is simply
computing the Cholesky decomposition for Θ′ and returning an error message if it
fails. Among many numerical software packages that allow for fast sparse Cholesky
decomposition (cf., e.g., [6,21,24,33,38]), we decide to use the CHOLMOD [6] factor-
ization which is obtained by default when using the chol MATLAB function. Please
find in [13] more information on fast sparse Cholesky decompositions in CHOLMOD.
We note that it thrives in its parallel performance.

As an alternative to a sparse Cholesky decomposition we use an incomplete LDL>

factorization following the ideas from [19]. The main motivation for using an incom-
plete factorization here is to save memory rather than to decrease computation time.
Indeed, modern sparse direct methods use a deep machinery of technologies which
makes it hard to beat these kind of methods, except if the incomplete factorization
produces factors with drastically less fill-in. But the latter may save memory which
could become a significant issue in sparse inverse covariance matrix estimation. For
the incomplete LDL> approach, symmetric maximum weight matchings [15, 16] are
performed in a preprocessing step in order to improve the diagonal dominance fol-
lowed by a fill-reducing ordering on the compressed graph such as [1, 25]. Finally a
left-looking approximate LDL> factorization with 1×1 and 2×2 pivots is performed
similarly to [28]. Certainly, for symmetric positive definite matrices, this amount of
work is not necessary, but since Θ′ = Θ+α∆ is not guaranteed to be positive definite,
we prefer to use an indefinite approach. It is clear that in the simplest cases, checking
whether the diagonal entries of Θ′ are at least positive, one can easily skip (incom-
plete) factorizations once this property is violated. Otherwise, positive definiteness
can be read off from D. We are aware that using a drop tolerance, the information
could be unsafe due to dropping; however, similarly to [39], we did not observe this
in our experiments. This may be caused by the choice of our drop tolerance τ . To be
precise, define

ρ := |fλ(Θ′)− fλ(Θ)|/|fλ(Θ′)|(7)

as the relative error between subsequent QUIC iteration steps. Then we use τ =
0.1ρ, i.e., for safety reasons τ is chosen one order of magnitude less than the relative
accuracy ρ. To choose τ one order of magnitude less is also intended to prevent the
target function fλ from being perturbed too much. In order to avoid extreme values
of |fλ(Θ′) − fλ(Θ)|/|fλ(Θ′)|, we also make sure that ρ is always chosen such that
ρ 6 10−1 is the maximum tolerance, and at the other bound, we use ρ > tol, where
tol is the user-defined accuracy as passed to the QUIC method (in our experiments
we will use the default value τ = 10−6).

In total we like to point out that both approaches could be uniformly represented
by

Π>QAQΠ ≈ LDL>,(8)

where Π is a suitable permutation matrix, Q is a diagonal scaling matrix, L is unit
triangular, and D is (block) diagonal with diagonal entries of size 1 × 1 or 2 × 2.
Once D is discovered to be positive definite we could reduce it to a (scalar) diagonal
matrix and, in this case, we easily obtain log(det Θ′) =

∑p
i=1 (log dii − 2 log qii) as a

byproduct of the Cholesky decomposition.

D
ow

nl
oa

de
d 

12
/2

3/
23

 to
 1

85
.1

60
.1

13
.2

43
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LARGE-SCALE INVERSE COVARIANCE MATRIX ESTIMATION A389

4.3. Sparse approximate inverse representation. As a last step to intro-
duce sparse matrix computation into the QUIC algorithm we will discuss two ap-
proaches to approximately compute W ≈ Θ−1 during the iterative minimization of
fλ(Θ). The first approach which we will discuss simply utilizes the given factorization
(8). Having an (approximate) Cholesky decomposition available we certainly reuse
the given factorization in order to compute an (approximate) inverse W ≈ Θ−1, which
we will discuss next. Given some tolerance ε we can approximately compute

A−1 ≈ QΠL−>D−1L−1Π>Q

by setting L = I − E and writing the inverse of L as a Neumann series L−1 =
I +E +E2 + · · ·+Ep−1. Using Horner’s scheme and the tolerance ε we successively
compute

iL1 = I + E, iLk+1 = iLk E + I, k = 1, 2, 3, . . . .

We define ε := 0.1ρ with ρ from (7). In each step k we can sparsify the columns of iLk
by using a finer tolerance 0.1ε, and we stop the expansion as soon as the elementwise
error between the elements of two neighboring polynomials iLk+1 − iLk drops below
the tolerance ε. Finally we use

A−1 ≈ iA = QΠ iL
>
D−1 iL Π>Q,

say, with some relative dropping |iauv| 6 ε iauu
iavv to build the final approxima-

tion iA. The beneficial property of the Neumann-based approach is its ease and its
simplicity that allow for straightforward parallelization. This is because the succes-
sive computation using Horner’s scheme can easily be performed in parallel using
OpenMP multithreading on all columns given k. The intermediate sparsification with
smaller tolerance 0.1ε is intended to prevent the Neumann series from producing too
much fill-in. On the downside all entries are eventually computed up to some tol-
erance ε, and the algorithm to compute the sequence of one-dimensional updates
h(µ) = h(∆ + µ(eie

>
j + eje

>
i )) may theoretically lead to inaccurate updates.

As an alternative approach to compute an approximate inverse, we now present
a second approach. Here the idea is first to compute an accurate inverse at those
positions where necessary and then later on to fill up the remaining positions by a
less accurate inverse such that the inverse is accurate enough to meet the conditions
of the sequence of one-dimensional minimization steps. Looking at the strategy to
select the active set (i1, jj), . . . , (ik, jk), the sequence of indices is chosen by θij 6= 0
or |sij −wij | > λ. This certainly forces us initially to choose (i, j) such that |sij | > λ
whenever wij = 0. Assuming that wij 6= 0 if θij 6= 0, it is therefore necessary to have
the entries of W precisely at those positions where θij 6= 0. As a consequence of the
optimization process, after one iteration we will already have that θij 6= 0 if |sij | > λ.
Therefore we expect that the pattern of |S| subject to λ is included in the pattern
of Θ (at least after the first iteration step) and, to find a new active set, it is likely
that it is sufficient to have W available for the pattern of Θ or, say, at the pattern
of its Cholesky factor. This observation leads directly to the idea of using a selected
inverse [29, 30, 40] rather than an approximate inverse. In the symmetric case, the
selected inverse is easily explained as follows. Let

A = LDL>, where L =

(
I 0
LE I

)
, D =

(
DB 0
0 DC

)
.

From this it follows that

D
ow

nl
oa

de
d 

12
/2

3/
23

 to
 1

85
.1

60
.1

13
.2

43
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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(LDL>)−1 =

(
D−1
B + L>E(D−1

C LE) −L>ED
−1
C

−D−1
C LE D−1

C

)
≈
(
D−1
B + L>EGE −G>E
−GE GC

)
,

(9)

where GC = D−1
C and GE coincides with D−1

C LE only in those rows that are required
to compute L>E (D−1

C LE) accurately. This forces the equality in (9) everywhere in
the (1, 1) and (2, 2) block and selectively in those rows of the (2, 1) block (resp., (1, 2)
block), where GE is computed. Applying this approach successively from the lower
right corner to the upper left corner yields the exact inverse at selected positions,
at least in the case of a direct solver (this can be verified using the notion of the
elimination tree). We like to point out that computing the selected inverse is on a
comparable order to the computational cost computing the Cholesky decomposition
having the same fill-in. Once the selected inverse is computed, we decide how to select
the active set (i1, j1), . . . , (ik, jk) based on the computed selected inverse W ≈ Θ−1.
After the set is defined, we sparsify W back to the diagonal entries and active set
(i1, j1), . . . , (ik, jk). Since now we can compute the subgradient, we compute a refined
approximate inverse W using again the Neumann series, but only using a different
threshold ε̂ = 0.1ρ̂ which we will briefly explain in the following. Following [23], we
define the subgradient via

∇Sijfλ(Θ) :=

{
sij − wij + sign(θij)λ if θij 6= 0,

sign(sij − wij) max(|sij − wij | − λ, 0) if θij = 0.
(10)

Theorem 2 in [23] states that the approximate Hessian has to approximate the exact
Hessian up to O(|∇Sijfλ(Θ)|1) in order to obtain superlinear to quadratic convergence.

Note that the entries of the Hessian refer to the entries w>i ∆wj , where wi, wj corre-
spond to the ith and jth columns of W . Assuming that |∆|1 = O(|Θ|1), a natural
bound ρ̂ for the entries of W would be

ρ̂ := |∇Sijfλ(Θ)|1/|Θ|1(11)

in order to ensure that the entries of the approximate Hessian w>i ∆wj are sufficiently
accurate. We conclude this subsection mentioning that for both approaches the Neu-
mann series is parallelized using OpenMP.

5. Numerical experiments. A Matlab implementation of the sparse QUIC al-
gorithm was developed to illustrate the robustness of the approach and examine its
practical nature. We will demonstrate that using modern sparse matrix technologies
we are able to extend the QUIC method easily to sparse large-scale problems comput-
ing the solution within a reasonable amount of time. In our numerical experiments
we will compare the QUIC method [22] and the BigQUIC method [23] as well as our
sparse implementation of QUIC for which we will use the abbreviation SQUIC.

The numerical experiments are carried out on a single node with 1 TB main mem-
ory and 4 Intel Xeon E7-4880 v2 @ 2.5 GHz processors each of them having 15 cores
on a socket leading to 60 cores in total. Each approach uses all 60 cores, in particular,
the multithreaded BLAS as used in MATLAB will make use of them. Likewise, im-
plementation in OpenMP of parts of the algorithms as outlined for BigQUIC in [23]
and described in the previous sections for SQUIC will make use of 60 cores.

In the sections to follow we will outline our results for four experiments. For
the first three experiments we will prescribe the exact solution Σ−1 for testing and
use fixed sample size n = 500 at varying problems sizes up to p = 106. For these
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experiments we define Σ−1 as a tridiagonal, pentagonal, and structured random ma-
trix, respectively. For the fourth experiment we will apply SQUIC to a financial
application where we test the predictability of foreign exchange rates using an time-
dependant p-order autoregressive model. As default tolerance all algorithms will use
ε = 10−6 which is the default value for QUIC. We allow BigQUIC to use up to 80 GB
of memory (default was 8 GB). This did not have a major influence on BigQUIC in
our experiments. For a measure of how well Θ is recovered by the variants of the
QUIC method in comparison to the true inverse covariance matrix Σ−1, we follow the
approach of [2, 5] using the F1 score (refer to [42] for further details) defined as,

F1 =
2TP

2TP + FP + FN
∈ [0, 1],

where TP, FP, FN corresponds the number of true positive, false positives, and false
negatives nonzero entries in Θ. Higher values of the F1 score correspond to a better
recovery of the sparsity pattern of Θ.

Two methods have been proposed for each of the components of SQUIC outlined
in section 4, namely, (i) the sample covariance matrix, (ii) positive definiteness check of
Θ and evaluation of the log det(Θ), and finally (iii) the approximate matrix inversion.
In Table 5.1 we show each of these methods which correspond to 8 variants of SQUIC,
comprising of the various combination of the methods. The naming standard adopted
uses three string code which encodes the method for each SQUIC component. For
examples, SQUIC(aba) corresponds to the implementation using the deterministic
sample covariance matrix, incomplete LDL> for the check of positive definiteness
and evaluation of log det(Θ), and finally using truncated Neumann series for matrix
inversion. Furthermore, we use the asterisks as wild card, for example, SQUIC(a∗∗)
denotes an implementation with a deterministic computation of the sample covariance
matrix and any other method for the remaining two SQUIC components.

Table 5.1
SQUIC components and varying methods of computation (see section 4 for details).

SQUIC components Method a Method b

Sample covariance matrix Deterministic Randomized

Positive definiteness & log det(Θ) Cholesky Incomplete LDL

Approximate matrix inversion Truncated Neumann Selected inversion

5.1. Tridiagonal example. For this test we define Σ−1 = trid[−2, 5,−2]/4.
Note that since Σ−1 is strongly diagonal dominant, the elements σij of Σ tend to be
small as |i − j| increases. This attribute is very fitting for SQUIC as the proposed
sparse approximate inversion will certainly attain some degree of sparsity in W for
very large matrices. The total compute time of QUIC, BigQUIC, and SQUIC using
λ = 0.5, for varying problems sizes are shown in the top-left panel of Figure 3. For the
SQUIC implementations, the overall performance is dominated by the computation of
the sample covariance matrix, and thus for visual clarity, we only show the comparison
for SQUIC(a ∗ ∗) and SQUIC(b ∗ ∗). The total computation time of the remaining
variants are within a range of about 25% with respect to the selected ones. Notice
both QUIC and BigQUIC were limited to problems size of p ≤ 104 and p ≤ 105,
respectively. In the case of p = 104, both versions of SQUIC are roughly two order
of magnitude faster that QUIC and BigQUIC. In the large-scale case of p = 106,
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Fig. 3. Tridiagonal example: Top-left panel—Total compute time of QUIC, BigQUIC, and
SQUIC for varying problem sizes using λ = 0.5. Top-right panel—F1 score for QUIC, BigQUIC,
and all variants of SQUIC for p = 104. Bottom-left panel—Average number of nonzeros per row
of W for p = 104 using SQUIC variants with respect to λ. Bottom-right panel—Average number
of nonzeros per row of W and relative change in objective value for p = 104 and λ = 0.5 using
SQUIC(∗∗ a) with respect to ε.

SQUIC(b∗∗) variants are three times faster than SQUIC(a∗∗). For both classes of
SQUIC the significant amount of the computation time is consumed by the sample
covariance matrix. However, in scenarios where Ŝ is less sparse, that is, if λ is small,
the computational efforts for the convex optimization program rapidly increase. This
is demonstrated in the right panel of Figure 4. The F1 score for p = 104 is shown in
top-right panel of Figure 3, respectively. For p = 104 we observe that QUIC, BigQUIC,
and all variants of SQUIC are more or less identical. Note also that we have reversed
the horizontal scaling, since numerically it seems to be much more natural to start
with a large λ and then decrease it. We note that the optimal selection of λ falls
outside the scope of this paper, but it certainly warrants further investigations.

The average number of nonzeros per row of W for the various SQUIC methods
are shown in the bottom-left panel of Figure 3 for p = 104 and in the left panel of
Figure 4 for p = 106. In particular, we see that W is indeed sparse, but there is an
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Fig. 4. Tridiagonal example: Left panel—Average number of nonzeros per row of W for p = 106

using SQUIC with respect to λ. Bottom-right panel—Computation time for S compared to total
runtime for p = 106.

increase in the number of nonzeros with decreasing λ. In particular, when λ is small,
we see that SQUIC(∗∗ a) variants result in a relatively higher number of nonzeros
in comparison to the SQUIC(∗∗ b). In the bottom–right panel of Figure 3 we show
the average number of nonzeros of W per row and relative change in the objective
function with respect to the tolerance of the truncated Neumann series for a p = 104.
As expected the number of nonzeros per row decreases with increase tolerance values.
However, we can see that the relative change in the objective function is minor for
ε < 0.0316. This is a critical observation, as here we can see that even though Σ
is dense, for a sufficiently small ε, using a sparse approximation W will not have a
significant impact on the objective.

5.2. Pentadiagonal example. For this example we generate correlated syn-
thetic dataset based on a pentadiagonal matrix Σ−1 = band[−1,−1, 5,−1,−1]/4.
Here the results are very similar to that of the tridiagonal experiment in the previous
section. In the top-left panel of Figure 5 we show the total compute time of the
SQUIC in comparison to QUIC and BigQUIC. Similar to the first example, we see
a significant performance gain over both methods. For the problem size of p = 105,
BigQUIC takes approximately 7.4 hours to complete while both versions of SQUIC
take less than a minute. For the large-scale test case of p = 106 the SQUIC(b∗∗) is
faster than SQUIC(a∗∗) by factor of two. In the top-right panel, the F1 score for a
problem size of p = 104 is shown. All SQUIC variants behave similar to QUIC with
higher F1 score of 0.9 at λ = 0.3.

For p = 104 the fill-in of W we see in a bottom-left panel of Figure 5 that
SQUIC(∗bb) variants provide the highest degree of sparsity. The routines using sparse
Cholesky factorization and truncated Neumann series, that is, the SQUIC(∗aa) imple-
mentation, exhibit the highest degree of fill-in. This is expected as the CHOLMOD
routine provides an exact factorization and truncated Neumann series is using very
low tolerance (for all experiments we have used ε = 10−6). In the bottom-right panel
of Figure 5 we observe that the average number of nonzeros per row of W and rel-
ative change in the objective function using the truncated Neumann series. We can
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Fig. 5. Pentadiagonal example: Top-left panel—Total compute time of QUIC, BigQUIC, and
SQUIC for varying problem sizes using λ = 0.3. Top-right panel—F1 score for QUIC, BigQUIC,
and all variants of SQUIC for p = 104. Bottom-left panel—Average number of nonzeros per row
of W for p = 104 using SQUIC variants with respect to λ. Bottom-right panel—Average number
of nonzeros per row of W and relative change in objective value for p = 104 and λ = 0.3 using
SQUIC(∗ ∗ a) with respect to ε.

observe the minimal change in the objective function for if the ε is relatively small,
while at the same time the number of nonzeros per row of W decrease consistently.
We observed the same behavior in the previous example.

5.3. Random example. Here we use a random structured matrix2 from [2],
where Σ−1 is generated randomly having approximately 4 nonzeros per row. This is
done by first generating a matrix C1 with 1% of the total number of nonzeros. Next, a
second block diagonal matrix C2 with block size 20 is created such that the remaining
99% of the nonzeros are randomly placed inside the diagonal blocks. Both matrices
are constructed to be positive definite following the idea presented in an example
of [27]. Finally Σ−1 is obtained as Σ−1 = C1 + 4C2.

2We would like to thank Jonas Ballani for providing the code for generating Σ−1.

D
ow

nl
oa

de
d 

12
/2

3/
23

 to
 1

85
.1

60
.1

13
.2

43
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LARGE-SCALE INVERSE COVARIANCE MATRIX ESTIMATION A395

Again QUIC, BigQUIC, and the different versions of SQUIC will be compared.
In top-panel of Figure 6 we see the compute time of QUIC, BigQUIC, and SQUIC
for varying problem sizes using λ = 0.03 which provided the best F1 scores. As
with the other experiments, SQUIC both exhibits significant speedup over QUIC and
BigQUIC and scales to problem sizes not computable by competing algorithms. We
also like to emphasize that the plot is logarithmic in both directions, in particular,
the two fastest algorithms SQUIC(bba) and SQUIC(bbb) are, by more than one
order of magnitude, faster than the other ones for p = 106. Before we start explaining
these significant differences we also like to show the maximum relative fill nnz(W )/p
of W and nnz(L)/p of the Cholesky factor L as computed during SQUIC. Again
SQUIC(bba) and SQUIC(bbb) are, by far, better than all other methods as shown in
bottom-left panel in Figure 6.
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Fig. 6. Random example: Top-left panel—Total compute time of QUIC, BigQUIC, and SQUIC
for varying problem sizes using λ = 0.03. Top-right panel—F1 score for QUIC, BigQUIC, and
variants of SQUIC for up to p = 106. Bottom-left panel—Average number of nonzeros per row of
W for up to p = 106 using SQUIC variants with respect to λ = 0.03. Bottom-right panel—Average
number of nonzeros per row of W and relative change in objective value for p = 104 and λ = 0.03
using SQUIC(∗ ∗ a) with respect to ε.
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After having seen the computation time and the relative fill we will now explain
the effect. First of all, in contrast to the deterministic approach to compute all sij
such that |sij | > λ, the randomized approach for computing the empirical covari-
ance matrix certainly does not detect all entries of S such that |sij | > λ. This, in
particular, affects the 1% entries which are not located within the diagonal blocks of
size 20. This might be seen as a disadvantage, but since this problem has a random
structure anyway, compressing the initial S is reasonable, in particular since these
entries are even by a factor 4 less than the entries in the diagonal block. This in turn
has effects on the Cholesky decomposition and the incomplete LDL> decomposition
which perform, by far, more poorly when the 1% off-diagonal block entries have to be
considered. Clearly, the Cholesky decomposition is more seriously slowed down than
the incomplete factorization since there is no opportunity to drop some small entries.
Moreover, due to the random pattern of the matrix, fill-reducing methods such as
approximate minimum degree [1], which is used for both factorization methods, are
less efficient. When computing an approximate inverse for W , the amount of fill of the
(incomplete) Cholesky factor exceeds, by far, the fill of the approximate inverse for
larger p, e.g., p = 105 or 106. This was, in particular, the case for all four SQUIC(∗a∗)
variants that use the exact Cholesky decomposition. Among the other four methods
based on incomplete factorizations, the versions using the deterministic computation
of S were more affected (i.e., SQUIC(ab∗)). This explains why only the SQUIC(bb∗)
methods were left over. In this case the selected/approximate inverse were sparse
enough. One might argue that omitting parts of S may cause the algorithms to yield
a poorer success rate. This was not observed, on the contrary, or large p > 105, the
three SQUIC(b∗∗) methods were even superior (approximately 0.45) than the three
SQUIC(a∗∗) versions (approximately 0.40). The best explanation we have is that by
having a lot of fill-in, the (incomplete) Cholesky factor will also cause a larger amount
of numerical rounding errors and approximation errors in W , in particular when the
fill of W is significantly less than that of the Cholesky factor for p = 105 and p = 106,
as explained earlier. A large amount of fill-in of L requires in this example that the
approximate inverse (a) and selected inverse (b) have to compute many small size
entries for W and thus propagate perturbations further, though they fall below the
given threshold. As a result in the top-right panel of Figure 6 we show the F1 score for
varying problems sizes at λ = 0.03. For better visibility we only display SQUIC(aaa)
for the four versions SQUIC(a∗∗), since the success rate is almost identical. Inter-
estingly, we see that SQUIC provides the highest F1 score but degrades in the same
trajectory as both QUIC and BigQUIC with increasing p.

Finally, in the bottom-right panel of Figure 6 we observe similar properties of
the average number of nonzeros of W and relative change in objective function with
respect to the Neumann series tolerance ε. Here, as with previous experiments, we can
see that increasing the tolerance of the truncated Neumann series does not significantly
change the objective function, provided that ε adequately small. However, the fill-in
of W is reduced consistently. This supports our approach of approximating W as
sparse.

5.4. Financial application. In this section, we utilize SQUIC to solve a styl-
ized financial model, requiring fast approximation of a large covariance and inverse
covariance matrices. Specifically, we will model the log-returns (see [7] for further
details) of the exchange rate between the United States dollar and the Swiss franc
(USDCHF), as a time-dependent p-order autoregressive (AR(p)) process (see [4, 20, 31]
for details). We will test the validity of the model by generating short-term forecasts
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of future log-returns of the USDCHF exchange rate. The forecast values Ŷ and ac-
tual observation Y will be analyzed to see the predictive accuracy of the model with
respect to following two errors:

Mean of errors (MoE) := |E(Ŷ − Y )|, Variance of errors (VoE) := Var(Ŷ − Y ).

Consider the time-series with price xt at time index t. We refer to the log-return
of the time series as yt = ln(xt/xt−1). The process we describe presumes that yt
follows a time-dependent AR(p) process, with each future forecast dependent on both
the sequence of p historical realizations, and time index t. Furthermore, we assume
that this process is repeated for at least n observations, where n� p. Let Yt ∈ Rp×n
be a matrix of mean deducted historical returns, structured in reverse order. For
example for p = 3 and n = 2 we will have (Yt)1,1 = yt−5 − µ, (Yt)1,2 = yt−2 − µ
and (Yt)3,2 = yt−0 − µ, where µ is the mean of the log-returns. The relation between
historical and future log-returns is described by the linear relation

Yt+1 = βtYt + Z, Z ∼ N (0, σ2I),(12)

where βt ∈ Rp×p is the time-dependent operator, and Z ∈ Rp×n is normally dis-
tributed, zero mean, uncorrelated errors with variance σ2. Explicitly computing the
ordinary-least-squares estimator (see page 56 of [43])

β̂t =

(
1

n
Yt+1Y

>
t

)(
1

n
YtY

>
t

)−1

(13)

is not possible, due to the following reasons: (i) the sample covariance matrix St :=
( 1
nYtY

>
t ) is not invertible, due to the limited number of historical samples n, and (ii)

we require information about the future time index t+1. To sidestep these two issues,
we start with the assertion that there exists a true time-dependent covariance matrix
Σt with the following properties:

lim
n→∞

Pr [|St − Σt| < ε] = 1 ∀ ε > 0, v>Σtv > 0 ∀ v 6= 0.(14)

The true covariance matrix admits a Cholesky factorization Σt = LtL
>
t , where Lt

is a lower triangular matrix. We can consider Y ∗t =
√
nLt as a set of n = p

“ideal” observations, for which the corresponding the sample covariance would be
St = ( 1

nY
∗
t Y
∗T
t ) = Σt. We can now address problem of inverting St by writing (13)

in terms of the ideal log-return observations,

β̂∗t =

(
1

n
Y ∗t+1Y

∗T
t

)(
1

n
Y ∗t Y

∗T
t

)−1

= Lt+1L
−1
t .(15)

We can estimate Lt+1 by noting that row p−1 of Y ∗t+1 represents n ideal observations at
time index t, and thus it is equal to row p of Y ∗t . More formally, for a given time offset
index i, Lt+i will have rows (Lt+i)q = (Lt)q−i for row index q = {1, 2, . . . , , (p− i)}. It
follows from this that the elements of Σt+i in the intersection of the rows and columns
q are the permuted values of Σt. For i � p, we assume that Σt+i can be sufficiently
approximated as a permutation of Σt,

Σt+i ≈ ΠiΣtΠ
−i, Π := [1p, 11, . . . , 1p−1],(16)

where Π is a permutation matrix with 1i indicating ith unit vector. We can now
express the desired Cholesky factors of Σt+1 as Lt+1 ≈ Π2Lt−1. Notice that this
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formulation implicitly induces periodicity in the forecast. Using these assumptions
we can write the ith forecast as

Ŷt+1+i = β̂∗t+iŶt+i, β̂∗t+i ≈ Π2+iLt−1L
−1
t Π−i.(17)

For i = 0 we have Ŷt = Yt and thus for each evaluation of (17) we will have one

forecast value, (Ŷt+1+i)p,n. To compute this model we use SQUIC to approximate
W−1
t ≈ Σt and Wt−1 ≈ Σ−1

t−1 for the respective Cholesky factors outlined in (15).
The parameters used for the tests carried out have been selected to best highlight

the specific attributes of SQUIC and the model outlined. A total of 6 sets of tests
have been conducted, each using 5 iterations for solving W−1

t and Wt−1. Each test
is run using n = 2 observations, sequence lengths p = {1, 10, 30, 50, 100, 200} × 103,
and at varying sparsity parameter λ. To standardize the selection of λ, we redefine it
as λ := ηmax [E(Yt)]

2
, where the positive constant η = {10.00, 1.00, 0.95, 0.90, 0.80}

is referred to as the normalized sparsity parameter. Note that for η = 10 we force a
diagonal recovery of the W−1

t and Wt−1. In the top-right and left panels of Figure 7
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Fig. 7. Top-left panel—Minimum forecast errors for MoE with respect to sequence length
p, for nondiagonal and diagonal W−1

t and Wt−1. Top-right panel—Minimum forecast errors for

VoE with respect to sequence length p, for nondiagonal and diagonal W−1
t and Wt−1. Bottom-left

panel—Total normalized compute time for varying sequence lengths p. Bottom-right panel—Total
normalized objective value with respect to compute time for p = 50, 000.
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we compare the forecast errors at each p, for the nondiagonal and diagonal recovery
of W−1

t and Wt−1. In the nondiagonal case, we have plotted the results with the
lowest errors for η < 10, and for the diagonal case, η = 10 is used, which forces a
diagonal approximation of the covariance and its inverse. We can see that the MoE
is lowest at p = 100, 000 for both cases. However, in comparison to the diagonal
case, the nondiagonal approximation has about 26× lower MoE at its minimum with
corresponding η = 0.95. For the VoE displayed in the right panel, the nondiagonal case
is consistently lower than or equal to the diagonal case, with the minimum attained
at p = 30, 000 with η = 0.90.

The normalized compute times at varying sequence length p for SQUIC, QUIC,
and BigQUIC are shown in bottom-left and right panels of Figure 7. We can see that
SQUIC is significantly faster than the compared routines. Due to the limitations of
QUIC and BigQUIC tests cases for p > 50, 000 could not be computed in a reasonable
time frame (>day). This limitation is important, as the lowest MoE is achieved at
p = 100, 000, for which SQUIC requires only 14 seconds. Using p = 50, 000 the
normalized objective function values for 5 iterations of algorithms are plotted with
respect to the compute time. The convergence trajectory of SQUIC follows that of
QUIC, but each iteration is about 5 orders of magnitude faster. For BigQUIC we
see a slower convergence trajectory with each iteration taking roughly 3 order of
magnitudes longer than SQUIC.

6. Concluding remarks. In this paper, we were concerned with the com-
putational cost in solving log-determinant optimization problems arising from the
l1-regularized Gaussian ML estimator of a sparse inverse covariance matrix problem
in high-dimensional settings. The novel aspects of the approach include our defini-
tion of the covariance matrices in the optimization method. Here, we used various
advanced sparse linear algebra techniques to tackle three subproblems as follows: we
first generate the sample covariance matrix S using a deterministic or randomized
approach; second, we present novel techniques in QUIC to check for the positive def-
initeness of Θ and log(det Θ); and third, we derive and evaluate two approximate
inversion techniques based on a truncated Neumann series and a novel selected in-
version method. These proposed algorithms can advance sparse inverse covariance
estimation by orders of magnitude leading to scalability rates which are observed to
be less than quadratic with respect to the p-variate dimension of the statistical prob-
lem. We have demonstrated that problems of size p = 106 can be easily computed
within minutes on a single compute node. We showed that our method SQUIC3 is
highly comparable with respect to solution quality with a state-of-the-art optimiza-
tion algorithm, and it significantly outperforms the conventional approach in terms
of storage and CPU time for the larger problem instances in our tests.

Interestingly, the computation of the sample covariance matrix is often observed
to be a major computational obstacle. Luckily, on large-scale parallel architectures
having thousands of cores, this bottleneck can be bypassed or at least down scaled
significantly (as demonstrated in [17]). It is clear that this approach maybe applicable
and highly beneficial for applications where the covariance matrix, and its inverse, are
at least approximately sparse.

Acknowledgment. The authors of this paper like to gratefully thank the au-
thors of [22] for their initial QUIC project which was the basic motivation for our
sparse inverse covariance matrix approach.

3The Matlab binary code of SQUIC is available on https://www.pardiso-project.org/squic.
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