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M
odeling structure in complex networks using 
Bayesian nonparametrics makes it possible to 
specify flexible model structures and infer the 
adequate model complexity from the observed 
data. This article provides a gentle introduc-

tion to nonparametric Bayesian modeling of complex networks: 
Using an infinite mixture model as running example, we go 
through the steps of deriving the model as an infinite limit of a 
finite parametric model, inferring the model parameters by 
Markov chain Monte Carlo, and checking the model’s fit and 
predictive performance. We explain how advanced nonparamet-
ric models for complex networks can be derived and point out 
relevant literature.

Introduction
We are surrounded by complex networks. From the networks 
of cell interaction in our immune system to the complex net-
work of neurons communicating in our brain, our cells signal 
to each other to coordinate the functions of our body. We live 
in cities with complex power and water systems and these cities 
are linked by advanced transportation systems. We interact 
within social circles, and our computers are connected through 
the Internet forming the World Wide Web. To understand the 
structure of these large systems of physical, biological, social, 
and virtual networks, there is a great need to be able to model 
them mathematically [6].

Complex networks are studied in several different fields from 
computer science and engineering to physics, biology, sociol-
ogy, and psychology. “Network science is an emerging, highly 
interdisciplinary research area that aims to develop theoretical 
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and practical approaches and 
techniques to increase our under-
standing of natural and manmade 
networks’’ [6]. Network science 
can be considered “the study of 
network representations of physi-
cal, biological, and social phe-
nomena leading to predictive 
models of these phenomena” [8]. 

To understand the many 
large-scale complex networks we 
sample and store today, there is a 
growing demand for advanced 
mathematical and statistical 
models that can account for the 
structure in these systems. The 
modeling aims are twofold; to provide a comprehensible 
description (i.e., descriptive modeling) and to infer unobserved 
properties (i.e., predictive modeling). In particular, a statistical 
analysis is useful when the focus lies beyond single node prop-
erties and local interactions but on the characteristics and 
behaviors of the entire system [6], [30], [54].

A complex network can be represented as a graph 
( , )G V E  with vertices (nodes) V  and edges (links) E  where 

an edge defines a connection between two of the vertices. In 
the following, we denote the number of nodes in the graph 
by N  and the number of links by .L  Graphs are often 
represented in terms of their corresponding adjacency matrix 
X  defined such that x 1,i j =  if there exists a link between 
node i  and j  and x 0,i j =  otherwise. Common types of 
graphs include undirected, directed, and bipartite graphs, 
and these can in turn be weighted such that each link has an 
associated strength (see Figure 1). Complex networks are 
commonly stored in a sparse representation as an “edge list”; 
a set of L  3-tuples ( , , )i j w  where w  is the weight of the link 
from node i  to node .j  Using this representation, the storage 
requirements for a network grows linearly in the number of 
edges of the graph.

Network characteristics
An important regimen in network science is to examine 
different characteristics or metrics computed from an 
observed network. The characteristics that have been exam-
ined include the distribution of the number of edges for each 
vertex (the degree distribution), the tendency of vertices to 
cluster together in tightly knit groups (the clustering coeffi-
cient), the average number of links required to move from one 
vertex to another (the characteristic path length), and many 
more (see Figure 2, and for a detailed list of studied network 
characteristics; see [49].)

To assess the importance of these characteristics, they 
can be contrasted with the properties of some class of ran-
dom graphs: to discover significant properties that cannot be 
explained by pure chance. The most simple class of random 
graphs used for comparison is the so-called Erdő s-Rényi 

graphs in which pairs of nodes connect independently at 
random with a given connection probability ,z

	 ( ), [ ; ] .x 0 1Bernoulli,i j !+ z z � (1)

Among the findings is that many real networks exhibit 
“scale-free” and “small-world” properties. A network is said to 
be scale free if its degree distribution follows a power 
law [4] in contrast to Erdő s-Rényi random graphs, which have 

[Fig2]  Illustration of three important network characteristics: the 
degree distribution, clustering coefficient, and characteristic path 
length. The degree of a vertex is the number of edges that links 
it to the rest of the network. The clustering coefficient, defined 
as the average fraction of triangles relative to the total number 
of potential triangles given the vertex degree, quantifies the 
degree to which the vertices in a graph tend to cluster together. 
The characteristic path length is defined as the average shortest 
path between the vertices of the network.

Degree Mean

Degree Std.

Clustering Coef.

Char. P
ath Length

Erdős-Rényi Graph

1.8 1.1 0.0 2.9

Heavy-Tailed Degree Distribution

1.9 1.9 3.10.0

High Clustering Coefficient

3.1 1.2 0.5 3.4

Long Characteristic Path Length

1.9 0.3 0.0 6.3

[Fig1]  Illustration of undirected, directed, weighted, and bipartite graphs. An undirected graph 
consists of a set of nodes and a set of edges. In directed graphs, edges point from one node to 
another. Edges in a weighed graph have an associated value, e.g., representing the strength of 
the relation. A bipartite graph represents a set of relations between two disjoint sets of nodes. 
Nonparametric Bayesian models can be formulated for all of these types of network structures. 
(a) Undirected graph, (b) directed graph, (c) weighted graph, and (d) bipartite graph.

(a) (b) (c) (d)
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a binomial degree distribution. The power law degree distribu-
tion indicates that many nodes have very few links, whereas a 
few nodes (hubs) have a large number of links. A network is 
said to be small world if it has local connectivity and global 
reach such that any node can be 
reached from any other node in a 
small number of steps along the 
edges. This associates with hav-
ing a large clustering coefficient 
and small characteristic path 
length [57] and suggests that 
generic organizing principles and 
growth mechanisms may give 
rise to the structure of many 
existing networks [57], [4], [54], 
[10], [6], [30]. Using analytic tools from network science, stud-
ies have demonstrated that many complex networks behave far 
from random [57], [4], [54], [10]. 

Exponential random graphs
To understand the processes that govern the formation of links 
in complex networks, statistical models consider some class of 
probability distributions over networks. A prominent and very 
rich, general class of models for networks is the exponential 
random graph family [12], [46], [56], also denoted the p*  
model. In the exponential random graph model, the probability 
of an observed network takes the form of an exponential family 
distribution,

	 ( | )
( )

( ) ,expp X s X1
i

l i
i= <" , 	 (2)

where i  is a vector of parameters, ( )s X  is a vector of sufficient 
statistics, and ( )l i  is the normalizing constant that ensures 
that the distribution sums to unity. In general, the sufficient 
statistic can depend on three different types of quantities:

1)	Exogenous predictors: In addition to the network, side 
information is often available that can aid in modeling the 
network structure. Including such observed covariates on 
the node or dyad level allows the analysis of networks and 
side information in a single model.
2)	Network statistics: Statistics computed on the network 
itself, such as counts of different network motifs can be 
included. This could be quantities such as the number of 
edges, triangles, two-stars, etc. Since these terms depend on 
the graph, they introduce a self-dependency in the model, 
significantly complicating the inference procedure. There is 
virtually no limit to which terms could potentially be 
included, and how to choose a suitable set of terms for a 
specific network domain is an open problem.
3)	Latent variables: The network can be endowed with a 
latent structure that characterizes the network generating 
process. The latent variables could for example be continu-
ous or categorical variables on the node level or a latent 
hierarchical structure. The latent variables are most often 
jointly inferred with the model parameters. One reason for 

including latent variables is to aid in the understanding of 
the model: For example, if each network node is given a 
categorical latent variable, this corresponds to a clustering 
of the network nodes.

The parameters in exponential 
random graphs are usually esti-
mated using maximum likeli-
hood that can be nontrivial since 
the normalizing constant usually 
can not be explicitly evaluated. 
While exponential random graph 
models are very flexible and work 
well for predicting links, they 
have the following important 
shortcomings:

■■ Model complexity: It can be difficult to determine the 
suitable model complexity: which network statistics to 
include, how many latent dimensions or categories to 
include etc. To address this issue, different approaches have 
been taken, including imposing sparsity on the parameters 
and using model order selection tools such as the Bayesian 
information criterion (BIC) and Akaike’s information crite-
rion (AIC).

■■ Computational complexity: In general, the computa-
tional complexity of inference in exponential random graph 
models grows with the size of the network, ( ),O N2  rather 
than with the number of edges, ( ),O L  making exact large-
scale analysis infeasible. There are, however, certain special 
cases for which the complexity of inference scales linearly 
in the number of edges, which we will discuss further in 
the sequel.

■■ Inferential complexity: When only exogenous predictors 
and latent variables are included in the model, inference is 
fairly straightforward; however, when network statistics are 
included inference can be challenging, involving either 
heuristics such as pseudolikelihood estimation or 
complicated Markov chain Monte Carlo methods [46], [45].

Nonparametric Bayesian network models
In the following, we present a number of recent network 
modeling approaches based on Bayesian nonparametrics, 
which can all be seen as extensions or special cases of the expo-
nential random graph model. In nonparametric modeling, the 
structure of the model is not fixed, and thus the model com-
plexity can adapt as needed according to the complexity of the 
data. This forms a principled framework for addressing the first 
issue (model complexity) mentioned above. With respect to the 
second issue (computational complexity), it turns out that 
many of these nonparametric Bayesian models can be con-
structed such that their computational complexity is linear in 
the number of links, allowing these methods to scale to large 
networks. While it certainly is possible to include network sta-
tistics in nonparametric Bayesian network models, Bayesian 
nonparametrics does not address the third issue (inferential 
complexity) which is an open area of research.

to understand the many 
large-scale complex networks 

we sample and store today, 
there is a growing demand 

for advanced mathematical 
and statistical models that 

can account for the structure 
in these systems.
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The focus of the remainder of this article is twofold: 1) to 
provide a comprehensible tutorial on the most simple 
nonparametric Bayesian network model: the infinite relational 
model [26], [58], and 2) to give a brief overview of current 
advances in nonparametric Bayesian network models.

Tutorial on the Infinite relational model
In the following, we give a tutorial introduction to the infinite 
relational model [26], [58], which is perhaps the most simple 
nonparametric Bayesian network model. We will derive the 
necessary Bayesian nonparametric machinery from first 
principles by taking limits of a parametric Bayesian model. 
Understanding the details involved in deriving this simple 
model later serves as a foundation for understanding other 
more complicated nonparametric constructions. Further, we go 

though the details involved in inference by Markov chain Monte 
Carlo, and show how a Gibbs sampler can be implemented in a 
few lines of computer code. Finally, we demonstrate the model 
on three network data sets and compare with other models 
from the exponential random graph model family.

The infinite relational model
The infinite relational model is a latent variable model where 
each node is assigned to a category, corresponding to a cluster-
ing of the network nodes. The number of clusters is learned 
from data as part of the statistical inference. As a starting point, 
we introduce a Bayesian parametric version of the model, 
which we later extend to the nonparametric setting. For read-
ers unaccustomed with Bayesian modeling, we provide a short 
introduction (see “Bayesian Modeling”). 

Bayesian Modeling
In traditional frequentist statistical modeling, probabilities 
describe relative frequencies of random variables in the limit 
of infinitely many trials. Model parameters are considered 
unknown but fixed quantities. A statistical model is character-
ized by a set of distributions, 

	 ( ), ,p X (likelihood)i 	 (S1)

where the unknown parameter i takes values in parameter 
space .H  When considered as a function of ,i  the distribution 

( )p X i  is known as the likelihood. A nonparametric model is, 
contrary to what one might expect from its name, not a 
model without parameters, but a model that cannot be 
parameterized by a finite dimensional parameter space. In 
other words, we can think of a nonparametric model as one 
having an infinite number of parameters—a notion that will 
be made explicit later. 

In Bayesian modeling, in addition to describing random 
variables, probabilities are used to describe inferences, i.e., to 
quantify degree of belief about the parameters. Although 
parameters are still thought of as unknown, fixed quantities, 
they are modeled as random variables where the randomness 
reflects our lack of knowledge about them. To this end, they 
are assigned a so-called prior probability distribution 

	 ( ),p (prior)i 	 (S2)

representing the degree of belief about the model parame-
ters prior to observing any data. Often, it is convenient to 
specify the prior using some parameterized family of distribu-
tions. The parameters of the prior distribution are often 
referred to as hyperparameters and can either be fixed or 
assigned hyperpriors, which themselves might have hyperhy-
per parameters, etc. A model defined in this manner is 
referred to as a hierarchical Bayesian model. 

Once the prior and the likelihood have been decided upon, the 
model is completely specified. Inference entails using the rules of 
probability to compute the conditional distribution of the 
parameters given the observations, also known as the posterior, 

	 ( )
( ) ( )

( ) ( )
,p

p p

p p

x
x

x

d
i

i i

i

i

i
=
#

	 (S3)

	 posterior
evidence

likelihood prior
.

#
= 	 (S4)

Thus, we are not merely interested in a single parameter esti-
mate, but aim at estimating a distribution over parameters 
quantifying our state of knowledge about the parameters 
after observing the data. Often, only a subset of the parame-
ters is of interest—the others are simply used as a means to 
specifying a reasonable probabilistic model, but are not of 
interest themselves. Such parameters are often referred to as 
nuisance parameters. Assume for instance the parameters 

,vi k= " , can be divided into interesting ( )k  and nuisance ( )o  
parameters. In that case, we compute the posterior distribu-
tion of the parameters of interest, 

	 ( ) ( ) ,p x p x dik o= # 	 (S5) 

which can be found by marginalizing (integrating over) the 
nuisance parameters. 

Although conceptually simple, inference might be computa-
tionally unwieldy because of high dimensional and analyti
cally intractable integrals (or summations, in the case of 
discrete parameters). In practice, one must therefore use 
some method of approximation, which we will discuss later. 

Bayesian data modeling can be divided into three tasks [13]: 
•	 Joint distribution: The first step involves formulating the 

probabilistic model, i.e., a joint distribution over data and 
parameters, by specifying the likelihood and priors.

•	 Inference: Next, the posterior distribution of the parame-
ters is inferred, often using some method of numerical 
approximation such as Monte Carlo sampling.

•	 Checking implications: Finally, we check how well the 
model describe the data and evaluate the implications of 
the posterior distribution by computing quantities of inter-
est and making decisions. 

In this article, we go through the details of these three steps 
in the context of the infinite relational model [26], [58].
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A parametric Bayesian  
stochastic block model 
A simple and very powerful approach to modeling structure in 
a complex network is to use a mixture model, leading to a 
Bayesian version of the so-called stochastic block model [42]. 
In a mixture model, the observations are assumed to be distrib-
uted according to a mixture of K  components belonging to 
some parametric family. Conditioned on knowing which mix-
ture components generated each datum, the observations are 
assumed independent. In a mixture model for network data, 
each node belongs to a single mixture component, and since 
each edge is associated with two nodes, its likelihood 
will depend on two components. Thus, the likelihood of the 
network will take the following form:

	 ( | ) ( | , , )p X p x z z,
( , )

i j i j
i j

i z=% ,	 (3)

where the product ranges over all node pairs, and the 
parameters are given by { } , }zi i

N
1i z= =" , where zi  indicates 

which mixture component the i th node belongs to and z  
denotes any further parameters. In the most simple setting, 
each term in the likelihood could be a Bernoulli distribution 
(a biased coin flip),

	 ( | , , ) ( )p x z z Bernoulli, ,i j i j z zi jz z= 	 (4)

	 ( ) ( ) ,1, ,z z
x

z z
x1, ,

i j
i j

i j
i jz z= - - 	 (5)

such that ,kz ,  denotes the probability of an edge between two 
nodes in group k  and .,  To finish the specification of the 
model, we must define prior distributions for the mixture com-
ponent indicators z  as well as the link probabilities .z  Starting 
with ,z  a natural choice would be independent Beta  distribu-
tions for each pair of components,

	 ( ) ( , )p a bBeta,kz =, 	 (6)

	
( , )

( ) ( ) ,
a b
1 1

B , ,k
a

k
b1 1z z= -, ,

- - 	 (7)

where the parameters for example can be set to a b 1= =  to 
yield a uniform distribution. A natural choice for z  would be a 
K-dimensional categorical distribution,

	 ( | )p z ki kr r= = 	 (8)

parameterized by { }k k
K

1r r= =  where .1
k

K
k1
r =

=/  How, then, 
should r  be chosen? We could, for example, set each of these 
parameters to a fixed value, e.g., / ,K1kr =  but this would be a 
strong prior assumption specifying that the mixture compo-
nents have the same number of members on average. A more 
flexible option would be to define a hierarchical prior, where r  
is generated from a Dirichlet distribution,

	 ( ) ( )p Dirichletr a= 	 (9)

	
B( )

,1
k

K

k
1

1k

a
r=
a

=

-% 	 (10)

where ( )B a  is the multinomial beta function, which can be 
expressed using the gamma function,

	 ( )
( )

.B
kk

K

kk

K

1

1a
a

a

C

C
=

=

=

` j
%
/

	 (11)

Since each component a priori is equally likely, we select 
the concentration parameters to be equal to each other, 

/A KK1 ga a= = =  such that the scale of the distribution 
is .Akk

K

1
a =

=
/  This results in a joint prior over z  and r  

given by

	 ( , ) ( | ) ( | )p z p z pi
i

N

1
#r r r a=

=

= G% 	 (12)

	 ,1
B k

nk

k

K
1

1

k

a
r=

a+ -

=^ h % 	 (13)

where nk  denotes the number of zi s with the value .k

Nuisance parameters
As we are not particularly interested in the mixture component 
probabilities r  (they can be considered nuisance parameters), 
we can compute the effective prior over z  by marginalizing 
over r  which has a closed form expression due to the conju-
gacy between the Dirichlet and Categorical distributions (i.e., 
the posterior distribution of r  has the same functional form as 
the prior),

	 ( ) ( , )
( )

( )
p z p z

nd
B

B
r r

a

a
= =

+# 	 (14)

	
( )

( )
( )

( ) .
A N

A n
k

k k

K

K

1 a

a

C
C

C
C

=
+

+

=

% 	 (15)

This resulting effective prior distribution is known as a 
multivariate Pólya distribution.

Furthermore, the link probabilities z  can also be consid-
ered nuisance parameters and can also be marginalized analyti-
cally due to the conjugacy between the Beta and Bernoulli 
distributions,

	 ( | ) ( | , ) ( )p X z p X z p dz z z= # 	 (16)

	
( , )

( , )
,

a b
m a m b

B
B , ,

( , )

k k

k
=

+ +, ,

,

r% 	 (17)

where the product ranges over all pairs of components and 
m ,k ,  and m ,k ,r  denote the number of links and nonlinks 
between nodes in component k  and , , respectively.

An infinite number of components
In the previous section, we specified a parametric Bayesian 
mixture model for complex networks. In the following, we 
move to the nonparametric setting in which the number of 
mixture components is allowed to be countably infinite. First, 
consider what happens when the number of components is 
much larger than the number of nodes in the graph. In that 
situation, many of the components will not have any nodes 
assigned to them; in fact, no more than N  components can be 
nonempty, corresponding to the worst case situation where 
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each node has a component of its own. To handle the situation 
with an infinite number of components, we can not explicitly 
represent the components but, as we will show in the follow-
ing, we need only an explicit representation of the finite num-
ber of nonempty components.

As we defined the model so far, we have introduced 
K -labeled mixture components. This means that if we, for 
example, have N 5=  nodes and K 4=  components, we 
assign a separate probability to, say, the configurations 
{ , , , , }1 2 1 4 2  and { , , , , }3 4 3 2 4  even though they correspond to 
the same clustering of the network nodes. A better choice is to 
specify the probability distribution directly over the equiva-
lence class of partitions of the network nodes. Since we have 
K  labels in total to choose from, there are K  possible label-
ings for the first component, K 1-  for the second, etc. result-
ing in a total of

	
( ) !

!
K K

K
- r

	 (18)

labelings corresponding to the same partitioning, where Kr  
is the number of nonempty components. Thus, defining a 
parameter zr  that holds the partitioning of the network nodes, 
we have

	 ( )
( ) !

!
( )

( )
( )

( ) .p z
K K

K
A N

A n
k

k k

K

K

1 a

a

C
C

C
C

=
- +

+

=

r r % 	 (19)

Since zr  represents partitions rather than labels, it can be 
finitely represented. We can now simply let the number of 
components go to infinity by computing the limit of the prior 
distribution for ,zr

	 ( )
( )
( ) ( ) .lim p z
A N
A A

n
K

K

k
k

K

1C
C

C=
+"3

=

r
r r

% 	 (20)

The details involved in computing this limit can be found in 
[15] and [40]. The limiting stochastic process is known as a 
Chinese restaurant process (CRP) [2] (for an introduction to 
the CRP, see [14]). Compactly, we may write

	 ~ CRP( ) .z Ar 	 (21)

Summary of the generative model
In summary, the generative process for the infinite relational 
model can be expressed as follows:

	 ( ),z ACRP+r 	 (22)

	 ( , ),a bBeta,k +z , 	 (23)

	 ( ) .x Bernoulli, ,i j z zi j+ z 	 (24)

The network nodes are partitioned according to a CRP; a 
probability of linking between each pair of node clusters is 
simulated from a Beta distribution; and each link in the net-
work is generated according to a Bernoulli distribution 
depending on which clusters the pair of nodes belong to. A 

few example networks generated according to the model are 
shown in Figure 3.

Identically, in the notation of exponential random graph 
models, the likelihood in (24) can be expressed as

	 ( | , )
( , )

( ) ( , ) ,expp X z
z

s X z1
z

l z
i z= <6 @ 	 (25)

where the sufficient statistics are the counts of links between 
each pair of clusters, ( , ) { },s X z m ,k= ,  and the natural parame-
ter is the log odds of links between each pair of clusters, 

( ) [( / )] .log 1, ,k ki z z z= -, ," ,

Inference
Having specified the model in terms of the joint distribution, 
the next step is to examine the posterior distribution, which is 
given as

	 ( | )
( | ) ( )

( | ) ( )
.p z X

p X z p z
p X z p z

z

=r
r r

r r

r

/ 	 (26)

Here, the numerator is easy to compute as the product of (17) 
and (19); however, the denominator is difficult to handle as it 
involves an elaborate summation over all possible node parti-
tionings. Consequently, some form of approximate inference 
is needed.

There are two major paradigms in approximate inference: 
variational and Monte Carlo inference. The idea in variational 
inference is to approximate the posterior distribution with 
a simple, tractable distribution that is fitted to the posterior 
by minimizing some criterion such as the information 
divergence [5].

In Monte Carlo approximation, the idea is to generate a 
number of random samples from the posterior distribution and 
approximate intractable integrals and summations by empirical 
averages based on the samples.

In the following, we focus on Monte Carlo inference. In 
particular, we review the Gibbs sampler for the infinite rela-
tional model.

Gibbs sampling
In Gibbs sampling, the variables are iteratively sampled from 
their conditional distribution, and in repeating this process the 
samples will eventually approximate the posterior distribution. 

[Fig3]  Example of graphs generated according to the infinite 
relational model for different choices of the parameter a of the 
CRP. (a) . ,0 1a =  (b) ,1a =  and (c) .10a =

(a) (b) (c)
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We iteratively sample the partition assignments, ,znr  from their 
conditional distribution

	 ( | , ),p z k z X\
n

n=r r 	 (27)

where z nr  denotes all partition assignments except .znr  An 
expression for this conditional distribution can be found 
by considering which terms in the likelihood and prior will 
change when node n is assigned to a different partition. For 
the prior in (20) we have

	 ( | )p z k z
n
A

k
k
 is an existing partition,
 is a new partition,

\
n

n k
?=

-

r r ' 	 (28)

where nk
-  is the number of nodes 

associated with component k  not 
counting node .n  Adding node 
n  to an existing component 
increases the argument of the 
corresponding Gamma function 
by one, effectively multiplying the 
prior by ,nk

-  whereas adding the 
node to a new cluster increases Kr  
by one, effectively multiplying 
the prior by .A  For the likelihood in (17), adding node n to 
partition k  effectively multiplies the likelihood by

	
B ,

B ,
,

m a m b
m r a m n r b

,
\

,
\

,
\

, ,
\

,

k
n

k
n

k
n

n k
n

n

+ +

+ + + - +

, , ,

, , , , ,%
r

r

^
^

h
h

	 (29)

where m ,
\
k
n
,  and m ,

\
k
n
,r  denote the number of links and nonlinks 

between nodes in component k  and ,,  not counting any links 
from node ,n  and r ,n ,  is the number of links from node n to 
any nodes in component , .

To perform Gibbs sampling, we can now simply consider 
each node in turn; for each partition (including a new, empty 

partition) compute the product of (28) and (29), normalize to 
yield a categorical distribution over partitions, and sample a 
new znr  according to this distribution. The final algorithm is 
summarized in Figure 4. The result after running the Gibbs 
sampler for T2  iterations is a set of samples of ,zr  where usu-
ally the first half is discarded for burn in. This yields a final 
ensemble { : , , }z t T1( )t f!r  approximately sampled from the 
posterior.

Computational complexity
In the algorithm outlined in Figure 4, it can be observed that 
there are two loops: one over the T  simulated samples and one 
over the N  nodes in the network. In each run of the inner 

loop, a node is assigned to a clus-
ter by the Gibbs sampler. In the 
following, we consider the num-
ber of clusters K  a constant 
(although of course it will vary 
depending on the network data) 
and examine how the computa-
tional complexity of the algo-
rithm depends on the number of 
nodes and edges in the network.

In the code in Figure 4, the variables M0 M1, , and m, which 
hold the counts of nonlinks, links, and nodes, are recomputed 
in each iteration. In a more sensible implementation, these 
quantities would be precomputed and efficiently updated dur-
ing the Gibbs sampling.

Evaluating the probability of assigning a node to each clus-
ter then requires the computation of the vector r which holds 
the count of links from node n to each of the clusters. The 
time complexity of this computation is on the order of the node 
degree. Looping over the nodes gives a total time complexity of 

( )O L , where L  is the number of edges in the graph. To 

[Fig4]  MATLAB code implementing the infinite relational model for an undirected graph. X is the symmetric adjacency matrix, T is the 
number of Gibbs sweeps, and a, b, and A are the hyperparameters. The code illustrates the computations involved in the Gibbs 
sampler, but it is not efficient since it recomputes all the needed link counts in each iteration. 

function Z = irm(X,T,a,b,A)
N = size(X,1); z = true(N,1); Z = cell(T,1);  % Initialization
for t = 1:T  % For each Gibbs sweep
 for n = 1:N  % For each node in the graph
  nn = [1:n-1 n+1:N];  % All indices except n
  K = size(z,2);  % No. of components
  m = sum(z(nn,:))'; M = repmat(m,1,K);  % No. of nodes in each component
  M1 = z(nn,:)'*X(nn,nn)*z(nn,:)- ...  % No. of links between components
   diag(sum(X(nn,nn)*z(nn,:).*z(nn,:))/2);
  M0 = m*m'-diag(m.*(m+1)/2) - M1;  % No. of non-links between components
  r = z(nn,:)'*X(nn,n); R = repmat(r,1,K);  % No. of links from node n
  logP = sum([betaln(M1+R+a,M0+M-R+b)-betaln(M1+a,M0+b) ... % Log probability of n belonging
   betaln(r+a,m-r+b)-betaln(a,b)],1)' + log([m; A]);  %   to existing or new component
  P = exp(logP-max(logP));  % Convert from log probability
  i = find(rand<cumsum(P)/sum(P),1);  % Random component according to P
  z(n,:) = false; z(n,i) = true;  % Update assignment
  z(:,sum(z)==0) = [];  % Remove any empty components
 end
 Z{t} = z;  % Save result
end

In Gibbs sampling, the variables 
are iteratively sampled from 

their conditional distribution, 
and in repeating this process 
the samples will eventually 
approximate the posterior 

distribution.
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[Fig5]  Experiment demonstrating that the computational 
complexity grows linear in both the number of nodes N and 
edges L for the IRM model. The graphs used in the experiments 
are generated with K 5=  communities of equal size and 

/ ,Ncz z=  where cz  is kept constant in the experiments ensuring 
that the number of edges L grows linearly with the number of 
nodes N in the generated networks. The Gibbs sampler used 
in the experiment was implemented to precompute M0 M1,,  
and m, resulting in a computational complexity of ( )O L  for each 
iteration of the sampler. Given are the mean CPU-times in 
seconds for the sampler and standard deviation across T 10=  
iterations when varying the number of nodes ( )N  and edges ( )L  
in the generated graphs.

Nodes

C
P

U
 T

im
e

(s
)

#103
0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

Edges #103
0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

calculate the probabilities of assigning the nodes to the clusters 
for all N  Gibbs samples requires K N2 2  evaluations of the (log-
arithm of the) Beta function so the time complexity of this 
computation is ( ) .O N  As a result, since in general ,L N2  the 
total computational complexity of the Gibbs sampler for the 
infinite relational mode (IRM) model is ( ) .O L  Figure 5 demon-
strates that this linear scaling is observed in practice when ana-
lyzing networks of varying numbers of nodes and edges.

For comparison, Monte Carlo maximum likelihood inference 
in exponential random graph model (ERGM) based on endoge-
nous network statistics requires the simulation of random net-
works from the ERGM distribution, which is inherently an 

( )O N2  operation. We should note though, that, in practice, we 
would not expect the time complexity of the IRM to scale linearly 
in the number of edges, since the number of clusters most likely 
would increase with the size of the network and since the num-
ber of required iterations of the Gibbs sampler might also go up.

Checking model fit
Once an approximation of the posterior distribution has been 
obtained, we wish to check the implications of the model. This 
can include computing the posterior distribution of important 
quantities of interest, evaluating how well the model fits the 
data, and making predictions about unobserved data.

Computing posterior quantities
Say we are interested in some function ( )f zr  that depends on 
the model. We can now compute the posterior distribution of 
this quantity,

	 ( ) ( ( ) ( )) ( | )p f z f z f z p z X
z

d= =/ l lr r r r
r

^ h 	 (30)

	 ( ( ) ( )),
T

f z f z1 ( )

t

T
t

1

. d =
=

/ r r 	 (31)

approximated by an empirical average over the posterior 
samples. For example, the approach can be used to compute 
the posterior distribution over the number of components in 
the mixture model or other quantities of interest.

Link prediction
Missing data is easily handled in the Bayesian framework, sim-
ply by leaving out the terms in the likelihood corresponding to 
unobserved links. If we observe only a part of the network and 
are interested in predicting the presence or absence of an 
unobserved link between two nodes, we can simply compute 
the posterior predictive distribution of the missing link,

	 ( | ) ( | , ) ( | )p x X p x z X p z X, ,i j
z

i j=/ r r
r

	 (32)
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/ r 	 (33)

Here X  denotes the observed part of the network, and z( )tr  is 
simulated from the posterior distribution where only the 

observed part of the network is conditioned on. Inserting 
( | , ) ( | , ) ( | , )p x z X p x z p z X d, ,i j i j i i i= 8r r r  yields

	 ( | ) Bernoulli ( ),p x X ,ij i j. t 	 (34)
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Predicting missing links can be used to compare different 
models: A number of links can be excluded when fitting the 
models, which can then be compared by assessing their ability 
to predict the held-out links. Since the links in a network are 
highly correlated and because many networks exhibit a highly 
imbalanced distribution of links and nonlinks, care must be 
taken in choosing a hold out test set in an appropriate way. If 
the test set is chosen to balance the number of links and non-
links, its distribution will not correspond to the full network, 
which makes the absolute link prediction results difficult to 
interpret. Thus, although indicative of a model’s predictive 
performance, this approach is perhaps best suited for the 
relative comparison of different models. If, on the other hand, 
several examples of full networks are available, a whole net-
work can be used as test data making the absolute link predic-
tion results directly interpretable.

Posterior predictive checking
Finally, we might be interested in examining how well our 
model describes the data to assess if the model is appropriate 
for the data at hand or if a more suitable model should be 
constructed. A principled approach to achieving this is poste-
rior predictive checking. First, an ensemble of replicated 
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networks from the posterior predictive distribution is gener-
ated from

	 ( | ) ( | , ) ( | ),p X X p X z X p z Xrep rep

z
=/ r r

r

	 (36)

which as before can be approximated using samples of zr  simu-
lated from the posterior using (34). Now, the idea is to compare 
characteristics of the observed network, such as the degree dis-
tribution, clustering coefficient, and characteristic path length, 
with the posterior predictive distribution of these properties, 
approximated by the empirical distribution over the ensemble 
of replicated networks. If the model fits well, the observed 
characteristic of the network should be quite likely under the 
posterior predictive distribution, whereas a large discrepancy 
indicates model mismatch. Posterior predictive checking is 
useful for model criticism, i.e., for exploring lack of fit as 
opposed to testing whether the model is correct. Discovering 
network characteristics for which the model does not fit the 
data well can inspire to the development of more sophisticated 
models; however, even a simple model that does not fit the data 
in all respects can be useful.

Directed, weighted, bipartite, 
and multiple networks
The infinite relational model readily extends to other types of 
graphs including directed, weighted, and bipartite networks as 
well as multiple networks on the same set of nodes. These 
extensions can be arrived at by modifying the model 
parametrization and the observational model (the likelihood 
function) as well as making appropriate changes to the priors. 
The process of formulating the joint distribution and deriving a 
Markov chain Monte Carlo procedure for inference closely 
follows the steps we have taken for the basic infinite relational 
model described in the previous sections. The extensions 
described below can also be combined, for example, to model a 
set of directed, bipartite networks with edge weights.

Directed networks
In a directed network, the links have an associated direction so 
that they point from one node to another. A directed network can 
be represented by an asymmetric adjacency matrix, and the direc-
tionality of links between groups can be modeled through the 
parameter z by the existence of asymmetric interactions between 
the groups such that ., ,k k!z z, ,  This double the number of link 
probability parameters .z  The rest of the model is unaffected, 
except for the likelihood which must now be evaluated not for 
each pair of nodes but for each ordered pair of nodes. This exten-
sion of the infinite relational model assigns different probabilities 
to links in each direction between each pair of clusters, but has 
only a single parameter for the link probability within 
each cluster—thus, directionality is not modeled within clusters.

Bipartite networks
A bipartite network is defined as a set of links between two 
disjoint sets of nodes, possibly with different cardinality. The 

adjacency matrix for a bipartite network can thus be non-
square. We can then use two independent CRPs to model the 
clustering of the two sets of nodes,

	 ~ CRP( ), ~ CRP( )z A w Az wr r 	 (37)

and change the likelihood to [cf. (24)]

	 ~ Bernoulli ( ) .x , ,i j z wi jz  	 (38)

This latter parameterization is also useful for the modeling of 
directed networks when the groupings of the nodes may be dif-
ferent for the rows and columns of the adjacency matrix.

Weighted networks
In a weighted network, each edge has a (scalar) weight associ-
ated with it. Depending on the type of weights, the Bernoulli 
likelihood can be changed to some other suitable distribution: 
For example, if the weights are positive integers [36], a Poisson 
distribution could be employed

	 Poisson( ),x , ,i j z zi j+ m 	 (39)

where m  is the rate parameter for the edge weights, playing 
the role of z in the Bernoulli model, cf. (24). As a prior over ,m  
the typical choice is a Gamma distribution, replacing the Beta pri-
ors for .z  If the weights are real numbers [18] an observational 
model based on a normal distribution might be appropriate,

	 Normal( , ) .x , , ,i j z z z z
2

i j i j+ n v 	 (40)

Here, we have two sets of parameters, n  and ,2v  denoting the 
means and variances of the edge weights between nodes in 
groups i  and .j  Again, appropriate priors for n  and 2v  should 
be selected.

Multiple networks
Sometimes the data consists of multiple observations of net-
works on the same set of nodes (see [26], [34], [36], and [3]). 
The only required change to the model is that the likelihood 
should be evaluated as the product of the likelihoods for each 
observed network. It can then either be assumed that the clus-
tering structure as well as the link probabilities are equal 
across the multiple networks, that the clustering structure is 
shared but the link probabilities only shared according to an 
additional clustering of the multiple graphs, or that the clus-
tering is shared but each network has an individual set of link 
probabilities, .z  When the link probabilities are analytically 
marginalized this leads to three different expressions for the 
marginal likelihood.

Experimental evaluation
In the following, we conduct a series of experimental evalua-
tions with the infinite relational model, highlighting some of 
its properties and comparing it with other models.
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Analysis of three example networks
To demonstrate the nonparametric Bayesian modeling frame-
work in practice, we analyzed the following three real 
networks:

1)	Zachary’s Karate Club: Zachary’s Karate Club is an 
undirected unweighted network of friendships between 34 
members of a karate club at a U.S. university in the 1970s 
[59]. A total of 74 undirected links between the members of 
the karate club are observed. In the analysis, the standard 
IRM model was used.
2)	Connectome of Caenorhabditis elegans: The only com-
plete connectome currently recorded of an organism is the 
directed integer weighted network of the 8,799 connections 
between the 302 neurons of the Caenorhabditis elegans. 
The network has been compiled in [57]. In the analysis, the 
weighted IRM model with a Poisson likelihood and Gamma 
priors was used.
3)	Drugs and side effects: The drugs and side effects net-
work is a bipartite network on marketed medicines and 
their recorded adverse drug reactions extracted from public 
documents and package inserts. The network currently con-
sists of 996 drugs and 4,199 side effects with 100,049 
unweighted links between drugs and side effects [29]. In the 
analysis, the bipartite IRM model was used.

These three networks in turn represent three important com-
plex network application domains within social science, neuro-
science, and bioinformatics.

The parameters of the models were inferred by Markov 
chain Monte Carlo sampling such that 250 iterations were used 
as burn in for the sampler and 250 iterations for drawing sam-
ples from the posterior. To improve mixing, the data was ana-
lyzed based on five randomly initialized runs. In addition to a 
Gibbs sampler (as described in Figure 4) the so-called split-
merge sampler described in [26] and [24] was also employed. 
The hyperparameters for the Beta distribution we set to 

.a b 1= =  The posterior distribution of the number of compo-
nents was computed. For assessing model fit by prediction of 
missing links, we excluded 10% of links and an equivalent 
number of nonlinks in the analysis of the Zachary’s Karate 
Club data and 5% of links and an equivalent number of non-
links in the two larger Connectome and drug side effects net-
works. For posterior predictive checking, we stored every 25th 
posterior sample and generated 20 replicated networks for each 
sample for each of the five random initializations. From the 
ensemble of these networks, the distribution over the network 
characteristics—degree mean, degree standard deviation, 
characteristic path length, and clustering coefficient—were 
calculated and compared to the true values of these quantities 
for the actual network.

The results of the modeling is given in Figure 6. The figure 
illustrates the network as well as a permutation of the net-
works adjacency matrix. The nodes are color coded according 
to the partition given by the sample with highest posterior like-
lihood across the five random initializations. From the per-
muted adjacency matrices it can be seen that the nodes of the 

networks have been grouped into clusters that share similar 
patterns of interactions, defining regions of network homoge-
neities. These blocks are color coded according to the expected 
value of the corresponding group interactions using a logarith-
mic gray scale. On the right, the posterior distribution of the 
number of components is shown as well as the model’s perfor-
mance in predicting held-out links. The link prediction perfor-
mance is quantified by the area under curve (AUC) of the 
receiver operator characteristic (ROC) [34]. In addition, the 
results of the posterior predictive checking of the models abil-
ity to account for the mean and standard deviation of the 
degree distribution, characteristic path length and clustering 
coefficient are given. Since the mean degree is explicitly mod-
eled in the IRM model, this posterior predictive check serves 
only as a sanity check—the IRM should by definition get this 
right except for a small bias due to the prior.

From these results it can be seen that the IRM model 
accounts well for all the considered characteristics in the 
Zachary Karate Club network but that it poorly accounts for 
the degree standard deviation, the clustering coefficient, and 
the characteristic path length of the connectome of C. Elegans. 
As expected, the average degree falls within the lower tails of 
the simulated distributions for all the estimated models, but 
they underestimate the standard deviation of the node degree 
of both the connectome and drugs and side effect networks. 
This highlights a deficiency of the IRM model; that it does not 
explicitly model the degree distribution.

While the IRM is adept in identifying blocks of homoge-
neous network regions with the z  (nuisance) parameter speci-
fying the density of each of these blocks, it does not explicitly 
account for microscale properties such as triangles and node 
degree. Hence, the clustering coefficient, characteristic path 
length, and the standard deviation of the degree distribution is 
not well accounted for by the model as is evident in the poste-
rior predictive checks. Despite these limitations, the infinite 
relational model does well account for mesoscale structure in 
the networks as quantified by its ability to predict links—for all 
the three networks, the infinite relational model is able to pre-
dict links significantly better than random guessing.

Apart from being able to predict links, the IRM model has 
made the structure of the networks substantially more compre-
hensible by reducing the complex network of pairwise interac-
tions to a much smaller number of groups (defined by zr ) and 
their interactions (defined by z). The IRM can therefore be con-
sidered an efficient framework for compressing a large complex 
network to a smaller network constituting consistent patterns 
of interactions between groups of nodes, which can substan-
tially facilitate in the understanding of mesoscale network pat-
terns. For example, the analysis of the Zachary’s Karate Club 
network, the infinite relational model reveals six groups of club 
members including two large groups and two singletons (actu-
ally the posterior has support for five to eight groups, so these 
other configurations should also be considered in the interpre-
tation of the results). It is known from the literature [59] that 
the karate club later split into two fractions, corresponding to 
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the two large groups, led by the president and the instructor, 
which are the two singletons.

Comparison with other models
Next, we compare the IRM model to several other methods 
on a set of social networks derived from a study of 

intra-organizational relations: This set of undirected networks 
[9] consists of two types of relations defined on the same set of 
nodes corresponding to employees in a consultancy company. 
Links in the first network signifies employees who interact 
whereas links in the second network signifies that either of the 
employees thinks that the other has expertise in an area 

[Fig6]  Infinite relational model analysis of three networks. Social relations in (a) Zachary’s Karate Club, (b) neural network of 
Caenorhabditis elegans (C. elegans), and (c) relations between drugs and side effects. Networks are shown as graphs (20% of links 
shown for C. elegans and 10% shown for drugs and side effects) as well as adjacency matrix. Posterior distribution of the number of 
components as well as ROC curve indicating performance on predicting missing links is shown (shaded regions indicate two times the 
standard deviation on the mean across the separate runs). Posterior predictive distribution of node degree (mean and standard 
deviation), clustering coefficient, and characteristic path length is shown with vertical lines indicating values for the observed 
networks.
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important to him or her. The networks were 
generated by thresholding and symmetriz-
ing the original directed weighted networks 
[9]. The two networks are highly correlated 
since employees would be expected to inter-
act frequently with colleagues with impor-
tant expertise.

We used the first of the two networks for 
training and examined the model fit by 
assessing the posterior predictive distribu-
tion of the node degree distribution. We fit 
an IRM model as well as two other nonpara-
metric Bayesian network models, the infi-
nite multiple membership relational model 
(IMRM) and the Bayesian community detec-
tion model (BCD), which are discussed fur-
ther in the sequel. These models were fit 
using Markov chain Monte Carlo with 

,10 000 rounds of Gibbs sampling where the 
first half of the samples were discarded for 
burn-in. Furthermore, we fit an ERGM 
using the network statistics “sociality” and 
“gwdegree” [35] as well as a latent position 
and cluster model (ERGMM) [28] using a 
latent space of dimension four and six latent 
clusters (varying these parameters gave 
similar results). To compare how well the 
models fit the data, we plotted the posterior 
predictive distribution of the degree distri-
bution (see Figure 7). The results show that 
the two most flexible models, the ERGM 
and the IMRM, fit the data very well in 
terms of reproducing the degree distribu-
tion. The fit of the IRM and BCD models 
which are both simple latent cluster models 
is not as good: Both models appear to 
underestimate the number of nodes with a 
high degree, i.e., employees interacting 
with more than 15 colleagues. The ERGMM 
model, on the other hand, appears to over-
estimate the number of nodes with degrees 
around 15–20.

Next, we compared the models’ predictive 
performance by evaluating their ability to 
predict links in the second network (see 
Figure 7). Here, all models except the ERGM 
performed on par, suggesting that the inclusion of latent 
variables in the model is beneficial for this task.

Review of nonparametric 
Bayesian network models
In the previous section, we have discussed the infinite rela-
tional model, which is the most simple example of a nonpara-
metric Bayesian latent variable model for a complex network. 
In that model, the latent variable is categorical, introducing a 

clustering of the network nodes; however, many other types of 
nonparametric Bayesian network models have been proposed 
in which the latent variables take other forms. Most of these 
can be classified as latent class, latent feature, or latent hierar-
chy models. In the following, we review a number of recent 
nonparametric Bayesian network models: We present their 
generative model and discuss the underlying modeling 
assumptions but omit the specific details involved in inference 
and model checking.

[fig7]  Comparison of five network models. The plots show the network’s observed 
degree distribution as well as the posterior predictive 95% and 50% intervals 
(shaded areas) for each of the models. Part (f) shows the fraction of correctly 
predicted links/nonlinks when the models are trained on one network and used to 
predict links in another related network. (a) IRM, (b) ERGM, (c) Latent position and 
cluster (ERGMM), (d) multiple membership (IMRM), (e) BCD, and (f) link prediction.
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Latent class models
In latent class models, each node is assumed to belong to one 
class and the CRP is used a nonparametric distribution of these 
latent classes. The infinite relational model is the most 
prominent example of nonparametric latent class models for 
complex networks. This can be attributed to the fact that the 
model can capture multiple types of network structures. 
Contrary to other network modeling approaches, such as 
spectral clustering [55] and modularity [41], groups are defined 
by how they interact not only internally but also externally. As 
such, groups are not only defined in terms of their internal 
properties but in particular by 
how they interact with the 
remaining parts of the network. 
Groups may therefore be defined 
as having no links between the 
nodes within the group as illus-
trated by the fourth (light blue) 
group in the adjacency matrix of 
the Zachary Karate Club network 
in Figure 6.

Communities in the IRM model can in turn be defined as 
clusters with high within-cluster density relative to their 
between-cluster density, interactions between groups can be 
accounted for by the off-diagonal elements of the z  matrix 
while hierarchical structures form a structured system of inter-
action between the elements in the z  matrix.

The IRM model can be considered a compression of a 
complex network into a subgraph formed by z  that 
accounts for the connectivity between the components. If 
the number of components is the same as the number of 
vertices of the graph the model will recover the actual graph 
(when we disregard potential influences of priors) and noth-
ing is learned in terms of structure in networks. As such, 
the IRM model can adjust its complexity, interpolating 
between the full graph and the Erdő s-Rényi graph that cor-
responds to an IRM model with only one component. Bayes-
ian nonparametrics, i.e., the CRP, here admits inference 
over the hypothesis space encompassing all models between 
these two extremes to find plausible accounts of block struc-
ture in networks.

Restrictions on cluster interactions
Although the IRM model is very flexible in terms of the struc-
ture it is able to account for, specialized nonparametric latent 
class methods have been proposed that specifically aim at 
extracting specific types of network structures. These models 
can be characterized by the restrictions that they impose on 
the between-class interactions .z

In [21], the z  matrix is constrained to only include two 
parameters, a within-group link probability wt  and a between-
group link probability bt  such that

	
if ,k ,=

,k
w

b
z

t

t
=, otherwise.
) 	 (41)

In [36], the within-group link probabilities are individual 
for each group but between-group probabilities are shared for 
all combinations of groups,

	
if ,k ,=

,k
b

z
t

t
=,

,

otherwise.
) 	 (42)

Bayesian community detection
Both of the models mentioned above are inspired by the notion 
of communities defined as “the organization of vertices in clus-
ters, with many edges joining vertices of the same cluster and 

comparatively few edges joining 
vertices of different clusters” [11].

This definition is used explic-
itly in [36] forming the BCD 
method. The BCD is based on the 
following nonparametric genera-
tive model that strictly enforces 
community structure by con-
straining the diagonal elements of 

the z  matrix to be larger than the off-diagonal elements. The 
generative model for BCD is given by

	 ~ CRP( ),z Ar 	 (43)

	 ~ Beta( , ),kc { { 	 (44)

	 ~
Beta( , )
BetaInc( , , )
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otherwise,
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	 where [ , ],minw ,k k kkc z c z=, , ,, 	 (46)

	 ~ Bernoulli ( ) .xij z zi jz 	 (47)

According to the model, the probability of a link between 
communities k  and ,  is strictly smaller than w ,k ,  defined as 
the minimum over the two communities of some number kc  
times the within-community probability .kz  This is enforced 
by generating the between-group probabilities according to an 
incomplete Beta distribution (BetaInc). The parameters kc  
define a relative gap between link probabilities within and 
between communities, such that 1kc =  says that there should 
be fewer links (on average) between than within, and 0kc =  
says that no links can be generated from nodes in community 
k  to other communities. The gap parameter kc  can in turn be 
learned from data and used to define the extend to which 
networks are community structured.

Subset infinite relational model
In [23], the IRM model was extended to handle irrelevant data 
entries by letting these entries constitute a separate noise clus-
ter forming the subset infinite relational model (SIRM). The 
generative model for SIRM can be written as

	 ~ Bernoulli ( ),ri m 	 (48)

	 ~ Beta( , ),a b,kz , 	 (49)

While latent class models 
restrict each node to belong to 
one and only one class, latent 

feature models endow each 
node with a vector of latent 

feature values.
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	 ~ Beta( , ),c dt 	 (50)

	 ~ CRP( ),z Ar 	 (51)

	 ~ Bernoulli ( ) .xij z z
r r r r1

i j
i j i jz t - 	 (52)

For each node, the binary variable r 0i =  indicates that the 
node belongs to the noise cluster. For all pairs of nodes ( , )i j  
not in the noise cluster the model is identical to the IRM model; 
however, links between pairs of nodes of which at least one is in 
the noise cluster are generated with a shared probability .t

All the above extensions can potentially improve on 
identification of structure in complex networks by substan-
tially reducing the parameters space of the within and 
between group interaction matrix z  compared to the IRM 
model. The above extensions are illustrated in Figure 8.

Latent feature models
While latent class models restrict each node to belong to one 
and only one class, latent feature models endow each node with 
a vector of latent feature values. Exponential random graph 
models that embed each node in a latent feature space of fixed 
dimension belong to the class of latent feature models. In 
contrast, in nonparametric Bayesian latent feature models, the 
dimensionality of the latent space is learned from data to best fit 
the observed network. Existing nonparametric latent feature 
models for networks are based on the Indian buffet process 
(IBP) [16], [17]. Similarly to the CRP, the IBP can be derived by 
starting with a finite model and considering the limit as the 
number of features goes to infinity. A finite set of ( , , )k K1 f=  
binary features z ,i k  with entry one if node i  possesses feature k  
and zero otherwise, can be generated according to

	 ~ Beta( , ),1k kr a 	 (53)

	 ~ Bernoulli ( ) .z ,i k kr 	 (54)

Each z ,i k  is independent of all other assignments conditioned on 
kr  while the kr  are generated independently [17]. As in the der-

ivation of the CRP, we define /A KK1 fa a= = =  and marginal-
ize over the nuisance parameter ,kr  yielding the expression [17]

	 ( ) ( ) ( )p Z p z p d,
k

K

i
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i k k k
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= =
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Since again, as in the CRP, the labels of the features are arbi-
trary, we define an appropriate equivalence class for the binary 
matrix Z  by ordering the columns of the matrix from left to 
right according to their “history” h in decreasing order. A 
history h denotes one of the potential 2N  specific combina-
tions of nodes a feature can possess enumerated according to 
the order of the nodes such that a feature possessed by the nth 
node contributes by a factor of 2N n-  to its history. For exam-
ple, in a network with three nodes, if only Nodes 1 and 3 pos-
sess feature ,q  the feature will have the history enumerated by 

h 2 2 53 1 3 3= + =- -  which is greater than a feature ql pos-
sessed by only Nodes 2 and 3, which has the history 

.h 2 2 33 2 3 3= + =- -l  As a result, feature q will be to the left of 
feature .ql  Features which are not possessed by any nodes have 
h 0=  and are ordered last. Since a permutation of the order-
ing of the features in Z  is inconsequential, we consider the 
equivalence class of features ordered by their history. The num-
ber of equivalent feature matrices can be computed as

	
!

! ,
K

K

hh 0

2 1N

=
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	 (57)

where Kh  is the number of features with history h  and 
K0  denotes the number of features that are empty. This 
equivalence class is used in a similar way as when we consid-
ered the distribution over partitions in the CRP. Taking the 
limit yields
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where Zr  denotes the left-ordered equivalence class, Kr  the 
number of nonempty features, and HN  denotes the N th har-
monic number [17]. Since this defines a distribution over an 
infinite size feature matrix of which only a finite subset of the 
features are used, the construction makes it possible to infer 
the number of features best suited to model the data. Com-
pactly, we write ~ IBP( ) .Z Ar

[Fig8]  Examples of existing latent class models. (a) IRM model 
assumes arbitrary interactions between clusters. (b) Model 
proposed in [21] has two parameters specifying the within group 
link probability and between group link probability. (c) One of 
the models described in [36] uses an individual within-cluster link 
probability and same between cluster link probability. (d) BCD 
model of [36] strictly imposes that within group link probability 
be larger than between group link probability here given for 

.0 5kc =  for all the ten clusters. (e) BCD using .0 1kc =  for all the 
ten clusters. (f) SIRM model [23] where nodes are divided into 
relevant (first seven clusters modeled by IRM) and irrelevant (last 
clusters modeled as noise).

(a) (b) (c)

(d) (e) (f)
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Latent feature relational model
In [34], the binary matrix factorization model [32] based on an 
IBP is considered for network data. The following generative 
model embodies the latent feature relational model (LFRM)

	 ~ IBP( ),Z Ar 	 (59)

	 ~ Normal( , ),0,k w
2z v, 	 (60)

	 ~ Bernoulli ,x z z,
,

, , ,i j
k

i k j kv z
,

, ,/c m; E 	 (61)

where [ ]xv  is a sigmoid function such as the logit or probit. 
This model is inspired by the IRM in its parameterization but 
the model admits the nodes to belong to multiple groups, i.e., 
for each node to possess multiple features.

Infinite latent attribute model
In [43], the infinite latent attribute model (ILAM) is proposed 
in which each of the nodes have a number of associated binary 
feature, and within each feature the nodes belong to an individ-
ual subcluster. The model can be summarized by the genera-
tive process

	 Z ~ IBP( ),Ar 	 (62)

	 ~ CRP( ),c(m) c 	 (63)

	 ~ Normal( , ),0,
( )
k
m

w
2z v, 	 (64)

	 ~ Bernoulli .x s z z, , ,
( )

i j
m

i m j m c c
m
( ) ( )
i
m

j
mv z+/c m; E 	 (65)

For each feature ,m  the nodes that possess that feature 
are clustered according to a CRP. Here, s  is a bias term and 

c( )
i
m  is the cluster assignment of the i th node in the mth 

latent feature.
Both the LFRM and ILAM have been demonstrated to 

perform better than the IRM on a variety of link-prediction 
tasks [34], [43]. An important property of these models is that 
they allow for the membership of nodes in one group to inhibit 
the probability of linking to nodes in other groups as z  may 
include negative (i.e., antagonistic) elements. This property 
may indeed be an important reason for the models’ superior 
link prediction performance over IRM.

Infinite multiple-membership relational model
In [37] and [38], the infinite multiple-membership relational 
model (IMRM) was proposed. Here the probability of observing 
a link between vertex i  and j  is generated independently given 
the (multiple) groups that vertex i  and j  belongs to and 
their interactions .z  The generative model for the IMRM is 
given by

	 Z ~ IBP( ),Ar 	 (66)

	 ~ Beta( , ),a b,kz , 	 (67)

	 ~ Bernoull ( ) .x 1 1,
,

,i j
k

k
z z, ,i k jz- -

,

,
,%c m 	 (68)

If, for example, node i  possesses feature k  and node j  possess 
feature , , the quantity ,kz ,  denotes the probability of a link 
being generated between node i  and j  on account of that pair 
of features. The expression ( )1 1

, ,k k
z z, ,i k jz- -

, ,
,%  defines the 

probability of observing a links between vertex i  and j  as the 
total probability of one or more of the pairs of features 
possessed by the two nodes to independently generate the link. 
This construction is referred to as a “noisy or process.” Notably, 
the IRM model is recovered when nodes belong to one and only 
one group.

Contrary to the LFRM and ILAM, the IMRM scales computa-
tionally in the number of observed links in the network rather 
than the number of potential links in the network that admits 
large-scale analysis (see [38] for the details). However, scalabil-
ity comes at the price of not being able to model antagonistic 
interactions between groups as for LFRM and ILAM. The LFRM 
and IMRM are illustrated in Figure 9.

Latent factor models
The IBP is useful for defining nonparametric representations of 
binary latent variable models and both the LFRM and ILAM can 
be considered nonparametric latent variable models within the 
exponential random graph formulation. One approach for 
model order selection within framework of exponential random 
graph models is to impose sparse priors. The IBP can here be 
considered a nonparametric sparse prior for latent variable 
modeling in general as also proposed for factor analysis in [27]. 
As such, the IBP works in a similar manner as a slab-and-spike 
type prior, where a feature is either present or not according to 
the IBP while its contribution if present can be drawn 

[Fig9]  Illustration of the LFRM and IMRM models. (a) The LFRM 
model assumes arbitrary interactions between latent features, 
i.e., both positive [given by the interaction within the first five 
features) and negative (given for the interaction within the last 
two features)]. (b) The IMRM model assumes features act as 
independent causes of links such that the link densities 
monotonically increase by the number of latent features the 
nodes possess.

zLFRM

zIMRM

XLFRM

XIMRM

Z
_

(a)

(b)



	 IEEE SIGNAL PROCESSING MAGAZINE  [125]  May 2013

separately. This can be used to extend existing sparse latent 
variable models within the exponential random graph model 
framework to form nonparametric models.

For instance, a nonparametric version of a latent factor 
model [20] can be defined by the following generative process 
using the IBP as a nonparametric sparsity promoting prior:

	 Z ~ IBP( ),Ar 	 (69)

	 ~ Normal( , ),u 0,i k u
2v 	 (70)

	 ~ Bernoulli ( ) ( ) .x z u z u, , , , ,i j
k

i k i k j k j kv /c m; E 	 (71)

Latent hierarchical models
Many complex networks are believed to be hierarchically 
organized such that a latent hierarchy plays an important role 
in accounting for the structure of the network connectivity 
[53], [44], [47], [50], [7], [48], [33], [19] (see Figure 10). Bayes-
ian nonparametrics can be used to define flexible priors over all 
conceivable hierarchical structures and from data infer the 
particular hierarchical structure that is supported by the data 
in a similar manner as the CRP and IBP is used to infer latent 
clusters and features, respectively.

Hierarchical random graphs
In [7], perhaps the most simple nonparametric model for 
hierarchical organization is proposed. This model imposes a 
uniform prior over all binary trees, which in the following 
we refer to as UBT. The probability of generating a link 
between two nodes is defined by a parameter located at the 
level of their nearest common ancestor in the binary tree. A 
model for network with N  nodes thus has N 1-  such 
parameters associated with each of the internal nodes in the 
tree. The generative model for the hierarchical random 
graph is given by

	 ~ UBT( ),T N 	 (72)

	 ~ Beta( , ),a bnz 	 (73)

	 ~ Bernoulli ( ),x ,i j t ,i jz 	 (74)

where t ,i j  denotes the index the nearest common ancestral 
node of vertex i  and .j  In [47], a related generative model for 
binary hierarchies is proposed where each edge in the tree has 
an associated weight that defined the propensity in which the 
network complies with the given split.

The Mondrian process
One way to view the hierarchical random graph models is by 
first considering the top level of the hierarchy. Here the set of 
nodes is split into two partitions, and a single parameter is 
assigned to model the probability of observing a link between 
nodes in the two partitions. Next, the process continues recur-
sively on the two partitions until each node is in a partition for 
itself. This framework was generalized and extended to the 

Mondrian process [48] which can be seen as a distribution over 
a k -dimensional tree. Used as a prior in a nonparametric 
Bayesian model of a bipartite network, at the top level the Mon-
drian process splits either of the two sets of nodes (chosen by 
random) into two partitions and continues this random bisec-
tioning of the nodes until a stopping criterion is met. Parame-
ters are then assigned to model the probability of links between 
each of the resulting pairs.

Infinite tree-structured model
In [19], the uniform prior over binary trees of [7] where replaced 
by a uniform prior over multifurcating trees and the leafs of the 
trees rather than terminating at each vertex of the graph termi-
nate at the levels of clusters generated from a CRP based on the 
following generative model: 

	 ~ CRP( ),z Ar 	 (75)

	 ~ UT( ),T Kzr 	 (76)

	 ~ Beta( , ),a bnz 	 (77)

	 ~ Bernoulli ( ) .x ,i j t ,z zi jz 	 (78)

Here Kzr  denotes the number of clusters in zr  and UT defines a 
uniform prior over multifurcating trees. A benefit of this model is 
that it can be used to detect the presence of hierarchical structure 
as it includes the IRM model in its hypothesis space defined by a 
split at the root of the tree directly into all K clusters (i.e., forming 
a flat hierarchy). The model of [7] can on the other hand be con-
sidered the special case where the CRP only generates singleton 
clusters while the tree structure is strictly binary. As the leafs ter-
minates in clusters rather than singletons the complexity of the 
model is in general substantially reduced compared to the models 
of [7], [47], and [48] while the CRP defines the level at which to 
terminate the tree.

[Fig10]  Example of networks with hierarchical structure. (a) 
In the binary hierarchical relational models [7], [47], link 
probability parameters are shared in a binary hierarchy. (b) In 
the multifurcating hierarchical model [19], [52], the hierarchy 
at each level can make an arbitrary number of splits. The 
model is thereby able to infer whether or not hierarchical 
structure is present and includes the infinite relational model 
and the binary hierarchical model as special cases. (c) In the 
Mondrian process [48], the link probabilities are shared in a 
binary k -dimensional tree, corresponding to a series of axis 
aligned cuts.

(a) (b) (c)
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Gibbs fragmentation trees
In [52], the Gibbs fragmentation tree (GFT) was used as prior over 
multifurcating trees terminating at the vertex level of the network 
according to the following generative model:

	 ~ GFT( , ),T a b 	 (79)

	 ~ Beta( , ),a bnz 	 (80)

	 ~ Bernoulli ( ) .x ,i j t ,z zi jz 	 (81)

The GFT is closely related to the two parameter nested CRP [2] 
differing in explicitly accounting for the occurrence in the nested 
CRP of trivial nonsplits. The GFT has several attractive properties. 
It is 1) exchangeable in that the distribution does not depend on 
the labeling of the leaf nodes, 2) Markovian in that a subtree of the 
full tree is in turn a GFT, and 3) consistent in that marginalizing 
over all leafs not considered in the subtree has the same 
distribution as only considering the 
GFT of the subtree; see also [31] 
and [52]. Apart from these attrac-
tive properties, the GFT gives 
explicit control of the prior over 
multifurcating trees by its two 
parameters a and ,b  that makes it 
possible to bias the model toward 
deep versus flat hierarchies. The 
probability of a given GFT can be 
calculated using a simple recursive 
formula; see also [31] and [52].

Modeling side-information
The Bayesian modeling framework readily extends to the 
modeling of side-information, i.e., exogenous predictors. The 
side-information can be used either for providing further data in 
support of the latent structure or directly for modeling the 
network links.

Information about latent structure
In [26] and [58], multiple data sources were used in the IRM 
model to both model dyadic relationships as well as side informa-
tion such that the partitioning of the nodes in the graph and the 
corresponding side-information available were identical.

Information about the network
Instead of having the side information inform about the latent 
variables, it can be used to directly model the links. This approach 
was used in the LFRM model [34] modifying the Bernoulli likeli-
hood function in the LFRM model according to
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where rij  denotes a vector of various between node similarities, si  
and ti  denotes vectors of features (i.e., side-information) for node 

i  and ,j  respectively. , ,w c y are parameters specifying the effect 
of the side-information in predicting links and ,a b specify node 
specific biases whereas c  is a global offset that can be used to 
define the overall link density. This formulation is closely related 
to the way in which exogenous predictors are included in the 
exponential random graph model.

These frameworks readily generalizes to the nonparametric 
latent class, feature, and hierarchical models described above and 
makes it possible to include all the available information when 
modeling complex networks. In particular, including side informa-
tion may improve the identification of latent structure [26], [58] as 
well as the prediction of links [34].

Outlook
The nonparametric models for complex networks use latent vari-
ables to represent structure in networks. As such, they can be 
considered extensions of the traditional exponential random 

graph models. The nonparametric 
models here provide a principled 
framework for inferring the num-
ber of latent classes, features, or 
levels of hierarchy using nonpara-
metric distributions such as the 
CRP, IBP, and GFTs. A benefit of 
these nonparametric models over 
traditional parametric models of 
networks is that they can adapt to 
the complexity of the networks by 
defining an adaptive parametriza-
tion that can account for the 

needed level of model complexity. In addition, the Bayesian mod-
eling approach admits a principled framework for the statistical 
modeling of networks and enables to take parameter uncertainty 
into account. In particular, the Bayesian modeling approach 
defines a generative process for networks which in turn can be 
used to simulate graphs, validate the models ability to account for 
network structure and predict links [34], [38], [43] while Bayesian 
nonparametrics bring an efficient framework for the inevitable 
issue of model order selection. The nonparametric Bayesian mod-
eling of complex networks have many important challenges that 
are yet to be addressed. Below we outline some of these major 
challenges to point out some avenues of future research.

Scalability
Many networks are very large and efficient algorithms for 
inference in these large systems of millions to billions of 
nodes and billions to trillions of links will pose important 
challenges for inferring the parameters of the models. Here it 
is our firm belief it will be very important to focus on models 
that grow in complexity by the number of links rather than 
the sizes of the networks as well as inference procedures that 
can exploit distributed computing. As such, models will have 
to be carefully designed to be scalable and parallelizable. 
While the latent class models described all scale by the 
number of links the LFRM and ILAM models explicitly have to 

A benefit of these 
nonparametric models over 

traditional parametric models 
of networks is that they can 
adapt to the complexity of 

the networks by defining an 
adaptive parametrization that 

can account for the needed 
level of model complexity. 
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account for both links and nonlinks which makes them scale 
poorly compared to the more restricted IMRM model. Thus, 
flexibility here comes at the price of scalability. In particular, 
existing models that are scalable do not include the modeling 
of side-information for the direct modeling of links. Thus, 
future work should focus on building flexible scalable models 
for networks.

Structure emerging at multiple levels
Network structure is widely believed to emerge at multiple scales 
[53], [44], [47], [50], [7], [48], [33], [19]. A limitation of latent 
class models are that they define a 
given level of resolution in which 
structure is inferred. Whereas 
latent feature models can generate 
features defining clusters at 
multiple scales [43], this property 
can be explicitly taken into account 
by the latent hierarchical models. 
An important future challenge will 
be to define models that can oper-
ate at multiple scales while effi-
ciently accounting for prominent network structure by 
combining ideas from the latent hierarchical models with existing 
latent class and feature models. This includes hierarchical models 
that explicitly account for community structure and models that 
allow for the nodes to be part of multiple groups on multiple hier-
archical levels.

Temporal evolution
Many networks are not static but evolve over time [39], [22], [51]. 
Rather than modeling snapshots of graphs as independent, taking 
into account the timing in which links are generated, when 
nodes emerge and vanish etc. potentially brings important infor-
mation about the structure in these systems. The ability to for-
mulate nonparametric Bayesian models that can model networks 
exhibiting time-varying complexity, such as clusters that emerge 
and disappear and hierarchies that expand and contract, poses an 
important future challenge for the modeling of these time evolv-
ing networks.

Generic modeling tools
As of today, nonparametric Bayesian models for complex networks 
often have to be implemented more or less from scratch to accom-
modate the specific structure of the networks at hand. In the 
future, it will be very useful to develop generic modeling tools in 
which general nonparametric Bayesian models can be specified, 
including how parameters are tied, various distributions invoked, 
and side-information incorporated. Publicly available nonparamet-
ric Bayesian software tools for complex networks that can well 
accommodate the needs of researchers modeling complex net-
works will be essential for these models to fully meet their poten-
tials and be adopted by the many different research communities 
that today use models and analysis of complex network as an 
indispensable tool.

Testing efficiently multiple hypotheses
Despite the very different origin of complex networks, it is widely 
believed generic properties exist across the domains of these sys-
tems. What are the generic properties of networks and how can 
they be best modeled is an important open problem that needs to 
be addressed. Nonparametric Bayesian modeling forms a frame-
work for inferring structure across multiple hypothesis. For exam-
ple, the IRM model itself encompasses the hypotheses of the 
Erdő s-Rényi random graph (an IRM with a single cluster) as well 
as the limit of the network itself (an IRM with a cluster for each 
node). Here Bayesian nonparametrics can, in general, be used to 

infer structure across multiple 
hypotheses both including model 
order as in latent class models, fea-
ture representation as in the latent 
feature models, and types of hierar-
chies as in the latent hierarchical 
models.

Nonparametric Bayesian models 
for complex networks is emerging 
as a prominent modeling tool that 
both provides a principled frame-

work for model order selection as well as model validation. As the 
nonparametric Bayesian models also can give an interpretable 
account of otherwise complex systems it is our firm belief these 
models will become essential to deepen our understanding of the 
structure and function of the many networks that surrounds us. 
There is no doubt the future will bring many new nonparametric 
Baysian models for complex networks and that these models will 
find important new application domains. We hope this article will 
facilitate researchers to tap into the power of Bayesian nonpara-
metric modeling of complex networks as outlined in this article to 
address the major challenges we face in our effort to understand 
and be able to predict the behaviors of the many complex systems 
we are an integral part of.
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