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A Split-Merge Markov Chain Monte Carlo
Procedure for the Dirichlet

Process Mixture Model

Sonia JAIN and Radford M. NEAL

This article proposes a split-merge Markov chain algorithm to address the problem of
inef� cient sampling for conjugate Dirichlet process mixture models. Traditional Markov
chain Monte Carlo methods for Bayesian mixture models, such as Gibbs sampling, can
become trapped in isolated modes corresponding to an inappropriate clustering of data
points. This article describes a Metropolis-Hastingsprocedure that can escape such local
modes by splittingor mergingmixture components.Our algorithmemploysa new technique
in which an appropriate proposal for splitting or merging components is obtained by using
a restrictedGibbs sampling scan. We demonstrateempirically that our method outperforms
the Gibbs sampler in situations where two or more components are similar in structure.

Key Words: Gibbs sampler; Latent class analysis; Metropolis–Hastings algorithm.

1. INTRODUCTION

Mixture models are often applied to density estimation, latent class analysis, and clas-
si� cation problems, as discussed, for example, by Everitt and Hand (1981), McLachlan
and Basford (1988), and Titterington,Smith, and Makov (1985). The Bayesian approach to
mixture models has recently generated interest due to advances in statistical computation,in
particular Markov chain Monte Carlo (see Tierney 1994; Gilks, Richardson, and Spiegel-
halter 1996). In this article, we consider Bayesian mixture models in which a Dirichlet
process prior on the mixing distribution is used to handle a countably in� nite number of
mixture components.Computational techniques for Dirichlet process mixture models were
explored previously by Escobar (1994), Escobar and West (1995), MacEachern (1994),
Bush and MacEachern (1996), Neal (1992, 2000), and Green and Richardson (2001).
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When conjugate priors are used, a Gibbs sampling procedure can easily be constructed

for the Dirichlet processmixturemodel.Here, we fully exploit the conjugacyin the model by

analyticallyintegratingaway the mixing proportionsfor the componentsand the parameters

for each component. As a result, the Gibbs sampling procedure updates only the latent

indicator variables associating mixture components with data observations. This particular

Gibbs sampling method was � rst discussed by Neal (1992) for models of categorical data

and MacEachern (1994) for normal mixture models.

Although the Gibbs sampling approach is straightforward and easily implemented, it

can be slow to converge and mix poorly. When two or more mixture components have

similar parameters, the Gibbs sampling method may become trapped in a local mode that

corresponds to an incorrect clustering of data points. Celeux, Hurn, and Robert (2000) at-

tributed this mixing problem to the incremental nature of the Gibbs sampler, which is unable

to simultaneously move a group of observations to a new mixture component. Incremental

updates are unlikely to move a single observation to a new mixture component because

such an intermediate state has low probability.A sampling scheme which allows a group of

observations to be updated simultaneously may remedy this problem, because neighboring

observations would support the formation of a new component if appropriate.

Split-merge updates were previously proposed by Green and Richardson (2001). They

introduced a complex split-merge scheme in the reversible jump framework. The split-

merge proposals are based on conserving speci� c moment conditions and are evaluated by

a Metropolis acceptance probability. Green and Richardson provided general guidelines in

constructing split proposals, but it is not clear whether adequate split proposals are simple

to construct or compute in high-dimensional multivariate mixture problems.

This article introduces a new Metropolis-Hastingsmethod that avoids the problems as-

sociated with the Gibbs sampling procedure and is suitable for high-dimensionaldata. Typ-

ically, Metropolis-Hastingsupdates involve simple parametric distributionsas the proposal

distribution. To split mixture components, our method employs a more complex proposal

distributionobtainedby using a restricted Gibbs sampling scan for the latent class variables.

This method is able to quickly traverse the state space and frequently visit high-probability

modes because it splits or merges a group of observations in each update, thereby bypassing

the incremental updates of the Gibbs sampler. Furthermore, although the proposal distribu-

tion used is complex, it does not need to be specially tailored to each model, since the same

scheme can be applied to any model with a conjugate prior.

Section 2 introduces notation and terminology for the Dirichlet process mixture model

and a Gibbs sampling algorithm suitable for conjugate priors. Section 3 presents our split-

merge Metropolis-Hastingsprocedure and its variants. Section 4 empirically compares our

split-merge method to the Gibbs sampler and demonstrates its improved performance for

a categorical data problem. We conclude, in Section 5, by discussing possible extensions

of the split-merge algorithm and the general applicability of our new Metropolis-Hastings

technique.
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2. GIBBS SAMPLING FOR THE DIRICHLET PROCESS
MIXTURE MODEL

This section presents the Dirichlet process mixture model (for early references, see

Ferguson 1983 and Antoniak 1974) and describes a Gibbs sampling algorithm to sample

from the posterior of this model. This procedure completely uses the conjugacy in the

model to integrate away model parameters and mixing proportions, eliminating them from

the algorithm. Section 4 compares this version of the Gibbs sampler to the new split-merge

Metropolis-Hastings algorithm.

2.1 THE DIRICHLET PROCESS MIXTURE MODEL

We consider a hierarchical mixture model in which the observations, y1; : : : ; yn, are

modeled by a mixture of distributions having the form F ( ³ ). There is no restriction on

the dimensionality of the yi, and the data may be categorical or quantitative. For each

observation, yi, the model parameters, ³ i, are considered to be independent draws from

some mixing distribution, G. Rather than requiring G to take some parametric form, a

Dirichlet process prior, a distribution over the space of distribution functions, is placed on

G. This yields a mixture model of the following form:

yi j ³ i ¹ F ( ³ i)

³ i j G ¹ G

G ¹ DP(G0; ¬ )

; (2.1)

where G0 de� nes a baseline distribution for the Dirichlet process prior, and ¬ is a total

mass parameter that takes values greater than zero. The usual conditional independence

assumptions for a hierarchical model apply, so that the only dependencies are those that are

explicitly shown. Equation (2.1) represents the most basic Dirichlet process mixture model.

Further stages may be added to this hierarchy by placing priors on ¬ and the parameters of

G0 (e.g., see MacEachern 1998).

This model may be regarded as a countably in� nite mixture model (Ferguson 1983),

a view that is adopted in the remainder of this article. When G is integrated over its prior

distribution in Equation (2.1), the ³ i follow a generalized Polya urn scheme (Blackwell and

MacQueen 1973). The prior distribution for the ³ i may be represented in this way by the

following conditional distributions:

³ 1 ¹ G0

³ i j ³ 1; : : : ; ³ i¡1 ¹ 1
i ¡ 1+ ¬

i¡1X

j = 1

¯ ( ³ j) +
¬

i ¡ 1+ ¬
G0;

(2.2)

where ¯ ( ³ j) is the distribution which is a point mass at ³ j . The model of Equation (2.1) has

been simpli� ed by integrating away the random distribution, G. We can represent the fact
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that (2.2) results in some of the ³ i being identical by setting ³ i = ¿ ci
, where ci represents

the “latent class” associated with observation i. The Polya urn scheme for sampling the ³ i

is equivalent to the following scheme for sampling the latent variables, ci, and associated

¿ c

P (ci = c j c1; : : : ; ci¡1) =
ni;c

i ¡ 1 + ¬
; for c 2 fcjgj<i

P (ci 6= cj for all j < i j c1; : : : ; ci¡1) =
¬

i ¡ 1 + ¬
;

(2.3)

where ni;c is the number of ck for k < i that are equal to c. The labeling of the indicator ci

is irrelevant in the above probabilities; all that matters is which ci are equal to each other.

2.2 A GIBBS SAMPLING PROCEDURE

If G0 is a conjugate prior for F , it is straightforward to sample from the posterior

distribution of the above model using Gibbs sampling. There have been several Gibbs

sampling approaches proposed in the Dirichlet process mixture model literature, but we

consider the procedure in which conjugacyis fully exploited,which was introducedby Neal

(1992) and MacEachern (1994). This procedure integrates away the model parameters, ¿ ci .

Eliminating ¿ ci simpli� es the algorithm considerably, so that the state of the Markov chain

for the Gibbs sampler consists only of the class indicators, ci, on a discrete state space.

The Markov chain is initializedby setting the ci to some initial state. The ci are then up-

dated via Gibbs samplingby repeatedlydrawing a new value for each ci from its conditional

distributiongiven the others, which is proportional to the product of its conditionalprior and

likelihood.Because the observationsare exchangeable, the conditionalprior can be derived

from Equation (2.3) by considering observation i to be the last of the n observations. This

yields the following conditional probabilities:

P (ci = c j c¡i; y) = b
n¡i;c

n ¡ 1+ ¬

Z
F (yi; ¿ ) dH¡i;cj ( ¿ );

for c 2 fcjgj<i

P (ci 6= cj for all j 6= i j c¡i; y) = b
¬

n ¡ 1+ ¬

Z
F (yi; ¿ ) dG0( ¿ );

(2.4)

where c¡i represents the cj for j 6= i, n¡i;c is the number of cj for j 6= i that are equal to c,

n is the number of observations, H¡i;c is the posterior distribution of ¿ based on the prior

G0 and all observations yj for which j 6= i and cj = c, F (yi; ¿ ) is the likelihood, and b

is the appropriate normalizing constant so that the probabilities sum to one. When G0 is

a conjugate prior for F , the integrals
R

F (yi; ¿ ) dG0( ¿ ) and
R

F (yi; ¿ ) dH¡i;c( ¿ ) can be

analytically computed.
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3. SPLIT-MERGE METROPOLIS-HASTINGS UPDATES

When two or more mixture components have similar parameters, Gibbs sampling can

be inef� cient. The Markov chain can become trapped in a local mode, in which two distinct

mixture componentsare merged and assigned parameters which are a compromise between

the two separate components. Because the Gibbs sampler incrementally updates each ob-

servation, the Markov chain must pass through a low-probability intermediate state in order

to split such a component. This leads to slow convergence to the true posterior distribution

and slow movement between posterior modes when the data are not suf� cient to determine

whether one componentor two is appropriate.Here, we introducea nonincrementalMarkov

chain sampling method based on the Metropolis-Hastings algorithm that avoids this prob-

lem. Our algorithm also splits or merges groups of data points, but avoids the need to pass

through a low-probability intermediate state in order to make major changes.

We begin by reviewing Metropolis-Hastings updates. We then discuss two possible

proposal distributions for Metropolis-Hastings updates for the Dirichlet process mixture

model, based on a simple random split and on a more complex restricted Gibbs sampling

scan. Even though these algorithms are ergodic, performance may be further improved by

combining the split-merge updates with a regular Gibbs sampling scan.

3.1 METROPOLIS-HASTINGS UPDATES

Our algorithm is a form of the Metropolis-Hastings algorithm (Metropolis et al. 1953;

Hastings 1970). This algorithm samples from a distribution with density º (x) by � rst

drawing a candidate state, x¤ , according to a proposal density q(x¤ jx). This proposed state,

x ¤ , is evaluated by the Metropolis-Hastings acceptance probability which is calculated as

follows:

a(x ¤ ; x) = min

·
1;

q(xjx¤ )

q(x¤ jx)

º (x ¤ )

º (x)

¸
: (3.1)

The next state will be set to this candidate state with probability a(x ¤ ; x). Otherwise, the

new state is the same as the current state, x. These Metropolis-Hastings updates leave the

posterior distribution, º , invariant and produce a valid Markov chain Monte Carlo sampling

scheme provided the chain is ergodic.

As discussed by Tierney (1994), when constructing Markov chains, it is acceptable

to select a transition probability at random from a set of appropriate transition probabili-

ties. In particular, we may randomly choose among valid Metropolis-Hastings algorithms

by randomly selecting a proposal distribution, q(x ¤ jx). Note that when calculating the

Metropolis-Hastings acceptance probability, the ratio q(xjx ¤ )=q(x ¤ jx) may be calculated

for the particular proposal distribution that was chosen, rather than by summing over all

possible proposal distributions. Both lead to valid Metropolis-Hastings updates, but the

latter calculation may be computationally infeasible.
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3.2 RANDOM SPLIT-MERGE PROPOSALS

First, we introduce the split-merge algorithmwhen the proposal distributionis based on

a simple random split of the subset of observations associated with one mixture component

into two separate components,without reference to the properties of the observed data. This

is the simplest versionof the split-mergealgorithm,which we do not expect to work well, but

which illustrates the basic construction. A more elaborate version of this procedure, based

on a restricted Gibbs sampling proposal, produces more sensible splits and is discussed in

Section 3.3.

This split-merge approach will be applied to the conjugate Dirichlet process mixture

model, in which the random distribution, G, and the model parameters, ¿ ci , are integrated

away. The state of the Markov chain consists only of the mixture component indicators,

ci. The Markov chain is initialized by assigning each observation to a mixture component.

Typical initial states we have used are placing all the data in the same component and

assigning each observation to a different component. Below, we outline the steps for the

simple random split-merge procedure.

Simple Random Split-Merge Procedure

1. Select two distinct observations, i and j, uniformly at random.

2. Let S denote the set of observations, k 2 f1; : : : ; ng, for which k 6= i and k 6= j,

and ck = ci or ck = cj .

3. If items i and j belong to the same mixture component, that is, ci = cj , then:

(a) Propose a new assignment of data items to mixture components,denoted as csplit,

in which componentci = cj is split into two separate components,csplit
i and c

split
j .

We de� ne each element of the proposal vector, csplit, as follows:

° Let c
split
i be a new component such that c

split
i =2 fc1; : : : ; cng

° Let c
split
j = cj

° For every observation k 2 S, let c
split
k be randomly set, independently with

equal probability, to either component csplit
i or csplit

j

° For observations k =2 S [ fi; jg, let csplit
k = ck

(b) Evaluate the proposal in (a) by the Metropolis-Hastings acceptance probability

a(csplit; c). If the proposal is accepted,csplit becomes the next state in the Markov

chain. If the proposal is rejected, the original vector, c, remains as the next state.

4. Otherwise, if i and j belong to different mixture components, that is, ci 6= cj , then:

(a) Propose a new assignment of data items to mixture components, denoted as

cmerge, in which components, ci and cj , are combined into a single component.

Each element of the proposal vector, cmerge, is assigned as follows:
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° Let cmerge
i = cj

° Let c
merge
j = cj

° For every observation k 2 S, let c
merge
k = cj

° For observations k =2 S [ fi; jg, let c
merge
k = ck

(b) Evaluate the proposal in (a) by the Metropolis-Hastings acceptance probability

a(cmerge; c). If the proposal is accepted, cmerge becomes the next state. If the

merge proposal is rejected, the original con� guration, c, remains as the next

state.

Note that because the numerical values of the ck are irrelevant, it does not matter in Steps

3(a) and 4(a) which item, i or j , remains � xed at its original mixture component. The

labels are signi� cant only in that they distinguish which items are grouped in the same

mixture component. Also note that the vectors csplit, cmerge, and c designate which mixture

component is assigned to each observation in the data—not just to observations that are

involved in the split or merge steps. However, items not associated with i, j , or set S remain

unchanged and unaffected during the Metropolis-Hastings update.

The Metropolis-Hastings acceptance probability (Equation (3.1)) used in Steps 3 and

4 of this procedure takes the form

a(c ¤ ; c) = min

·
1;

q(cjc ¤ )

q(c ¤ jc)

P (c ¤ )

P (c)

L(c ¤ jy)

L(cjy)

¸
; (3.2)

where c ¤ is either the vector csplit or cmerge dependingon the type of proposal. The posterior

distribution, º (c), in Equation (3.1) has beenexpanded into a productof its factors: the prior,

P (c), and the likelihood, L(cjy), where y = (y1; : : : ; yn) is the vector of observations.

Note that factors not involving c may be ignored.

The prior distribution, P (c), for the entire vector c will be a product over distinct

c 2 fc1; : : : ; cng of the factors presented in Equation (2.3). This product yields the prior

distribution

P (c) = ¬ D

Q
c 2 fc1;:::;cng(nc ¡ 1)!
Qn

k = 1( ¬ +k ¡ 1)
; (3.3)

where D is the number of distinct mixture components contained in vector c and nc is the

count of items belonging to mixture component c in c.

Notice that the ratio of the prior distributions in Equation (3.2) simpli� es considerably

because the denominator in Equation (3.3) will cancel, as well as factors in Equation (3.3)

associatedwith componentsthatare not directly involvedin the Metropolis-Hastingsupdate.

For the split proposal, the prior distribution ratio reduces to

P (csplit)

P (c)
= ¬

(nc
split
i

¡ 1)! (nc
split
j

¡ 1)!

(nci ¡ 1)!
; (3.4)

where c represents the original state in which i and j belong to the same mixture component.

Here, nc
split
i

and nc
split
j

represent thenumberofobservationsthatbelongto the two splitmixture

components. The factor of ¬ in the ratio arises from D being one greater in csplit than in c.
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Similarly, for the merge proposal, the prior ratio simpli� es to

P (cmerge)

P (c)
=

1
¬

(nc
merge
i

¡ 1)!

(nci
¡ 1)! (ncj

¡ 1)!
; (3.5)

where c represents the original state in which items i and j belong to separate components.

The likelihood for the vector of component indicators will be a product over the n

observations

L(cjy) =

nY

k = 1

Z
F (yk; ¿ ) dHk;ck ( ¿ ); (3.6)

where Hk;ck is the posterior distribution of ¿ based on the prior G0 and all observations

yg for which g < k and cg = ck. We assume that the integral
R

F (yk; ¿ ) dHk;ck ( ¿ ) is

analytically tractable, which is the case if G0 is a conjugate prior. Note that when k is the

� rst item observed from a particular component, then Hk;c will be the prior distribution,G0,

because no data from that mixture component precedes item k. Alternatively, L(cjy) may

be expressed as a doubleproduct over components,c, and items, k 2 f1; : : : ; ng, associated

with each component

L(cjy) =

DY

c = 1

Y

k : ck = c

Z
F (yk; ¿ ) dHk;c( ¿ ); (3.7)

where D is the number of distinct components.

Because factors involving items associated with components not directly involved in

the split proposal will cancel, the ratio of likelihoods in Equation (3.2) reduces to

L(csplitjy)

L(cjy)
=

Y

k : c
split
k = c

split
i

Z
F (yk; ¿ ) dHk;c

split
i

( ¿ )
Y

k : c
split
k = c

split
j

Z
F (yk; ¿ ) dHk;c

split
j

( ¿ )

Y

k : ck = ci

Z
F (yk; ¿ ) dHk;ci ( ¿ ):

(3.8)

Similarly, for the merge proposal, the ratio of likelihoods is

L(cmerge jy)

L(cjy)
=

Y

k : c
merge
k = c

merge
i

Z
F (yk; ¿ ) dHk;c

merge
i

( ¿ )

Y

k : ck = ci

Z
F (yk; ¿ ) dHk;ci ( ¿ )

Y

k : ck = cj

Z
F (yk; ¿ ) dHk;cj ( ¿ ):

(3.9)

In the � rst step of this procedure, the selection of observations, i and j, decides which

Metropolis-Hastings proposal will be used. As a result, when calculating the acceptance
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probability, i and j are � xed. The probability of proposing a particular split of the items in

set S from the merged state is

q(csplitjc) =

µ
1
2

¶n
c

split
i

+ n
c

split
j

¡2

: (3.10)

Notice that q(csplitjc) is equivalent to q(cjcmerge).

The probability of proposing a merge move for the items in S from a split state is

q(cmergejc) = 1; (3.11)

because there is only one way to assign all items in S to the same component. Note that

q(cmergejc) is equivalent to q(cjcsplit).

It follows from Equations (3.10) and (3.11) that the appropriate ratio of transition

probabilities for the split proposal is

q(cjcsplit)

q(csplitjc)
=

1
¡

1
2

¢n
c

split
i

+ n
c

split
j

¡2
:

(3.12)

Similarly, the appropriate ratio of transition probabilities for the merge proposal is

q(cjcmerge)

q(cmergejc)
=

µ
1
2

¶nci + ncj ¡2

: (3.13)

Therefore, the resulting acceptance probability (3.2) for a split proposal is based on

the product of Equations (3.4), (3.8), and (3.12). Likewise, the acceptance probability for a

merge proposal is based on the product of Equations (3.5), (3.9), and (3.13). By employing

the Hastings (1970) version of the Metropolis et al. (1953) algorithm when calculating the

acceptance probability, we correct for the fact that the probability of proposing a particular

split is smaller than the probability of proposing to merge the two resulting components.

This basic form of our procedure illustrates how we may nonincrementally update

groups of observations. If a proposed split is appropriate for the data, it will likely be

accepted, since neighboring observations will lend support for the creation of a new com-

ponent, bypassing the problem of being trapped in a local mode. Unfortunately, as stated

earlier, we do not expect the simple random split version of this algorithm to perform well.

Because components are split without reference to the observed data, the split proposals

are unlikely to be appropriate, and hence are unlikely to be accepted.

3.3 RESTRICTED GIBBS SAMPLING SPLIT-MERGE PROPOSALS

Next, we describe a proposal distribution in which properties of the observed data are

used to decide how to split mixture components via a restricted Gibbs sampling scan. This

yields a method in which reasonable splits of components are more frequently proposed.

First, as a way to validate the main algorithm, we introduce the Gibbs sampling split-merge
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proposal when the state immediately prior to the Gibbs sampling scan is � xed. This pre-

Gibbs state will be referred to as the launch state. We then present a generalized version in

which the launch state is itself randomly selected; in particular, we can select the launch

state by conducting several “intermediate” restricted Gibbs sampling scans.

3.3.1 Restricted Gibbs Sampling Proposals From a Fixed Launch State

Here, we replace the simple random split step in our earlier procedure by a restricted

Gibbs sampling scan on the component indicators, ck , starting from a predetermined � xed

launch state. The � xed state version of this algorithm is not expected to be of any particular

use, except as a method to prove the validity of the subsequent random launch state algo-

rithm. The restricted Gibbs sampling proposal distribution is more elaborate than typical

Metropolis-Hastings proposals, but the proposal probabilities can still be explicitly com-

puted. Each � xed launch state for the Gibbs sampling scan de� nes a particular Metropolis-

Hastings algorithm, all of which are valid, since they satisfy the usual requirements, such

as independence of proposals from past states.

For the split proposal, once observations i and j have been assigned to different compo-

nents, other observations (i.e., those in S) that belong to the merged component will � rst be

assigned to one of these two split components in some deterministic manner. This con� gu-

ration assigning observations to mixture components is the launch state, claunch. From this

launch state, one restricted Gibbs sampling scan is conducted to reallocate the observations

in S randomly between the two split components. The Gibbs sampling scan is restricted in

that it is performed only on a subset of the data (set S) and can assign these items to only

two of the mixture components. To update a ck in S via restricted Gibbs sampling, a new

value of ck is drawn from its (restricted) conditional distribution as follows

P (ck j c¡k; yk) =

n¡k;ck

Z
F (yk; ¿ ) dH¡k;ck ( ¿ )

n¡k;ci

Z
F (yk; ¿ ) dH¡k;ci ( ¿ ) + n¡k;cj

Z
F (yk; ¿ ) dH¡k;cj ( ¿ )

:

(3.14)

To simplify notation,we refer to component indicators for the launch state as ck in Equation

(3.14). However, throughout the Gibbs sampling scan, these values (as well as the values

for the other terms) are continually modi� ed as the ck are incrementally updated and used

for the next computation leading to csplit. Here, c¡k represents the cg for g 6=k in S [fi; jg,

n¡k;c is the number of cg for g 6=k in S [fi; jg that are equal to c, F (yk; ¿ ) is the likelihood,

and H¡k;c is the posterior distribution of ¿ based on the prior G0 and data observations yg

such that cg = c where g 2 S [ fi; jg, for which g 6= k. Again, when G0 is a conjugate

prior for F , the above integrals may be analytically computed.

In general, the transition probability for a full sequential Gibbs sampling scan is a

product of the conditionalprobabilitiesof each individualupdate. The probability that csplit



168 S. JAIN AND R. M. NEAL

will be produced by a restricted Gibbs sampling scan starting from claunch is the product of

the probabilitiesof assigningeach observationk 2 S to a particularsplitmixture component

via Gibbs sampling from the � xed launch state as givenby Equation(3.14). In our algorithm,

this product is the Metropolis-Hastings proposal probability, q(csplitjc).

For the merge proposal, as in the simple random split-merge procedure, there is still

only one way to merge items in two components to one component, so q(cmergejc) = 1.

However, to obtain the corresponding probability, q(cjcmerge), we need to calculate the

probability of generating the original split state from the � xed launch state in one Gibbs

sampling scan. This is done in the same way as for the split proposal, except that no actual

sampling is performed since the “split” state is already known.

As in the simple random split case, to obtain the Metropolis-Hastingsacceptanceprob-

ability, the appropriate split or merge proposal distribution ratio (now based on restricted

Gibbs sampling) is substituted into Equation (3.2). The prior and likelihood ratios in Equa-

tion (3.2) remain as shown in Section 3.2.

Because only one scan of Gibbs sampling is conducted, we do not expect that the

allocation of items between the two components has reached equilibrium. Because the

Metropolis-Hastings proposal distribution can take any form and still produce a valid algo-

rithm, lack of convergence will not invalidate this algorithm. However, it is quite likely that

the proposed splits using a single iteration of Gibbs sampling may not be that sensible. We

would like to improve the proposals further so that the splits proposed are appropriate for

the data.

3.3.2 Restricted Gibbs Sampling Proposals From a Random Launch State

Every � xed launch state for the algorithm of the previous section produces a valid

Metropolis-Hastings update. As was discussed in Section 3.1, we may select a Markov

chain transition at random from the set of valid transitions (Tierney 1994). Therefore, a

launch state for the restricted Gibbs sampling scan may be chosen at random from the set

of all � xed states. We could, for example, choose the launch state uniformly at random.

However, if only a single scan of Gibbs sampling is performed from a random launch

state, it may still lead to an unreasonable assignment of observations to the two mixture

components.

To achievemore reasonablesplits, several intermediaterestricted Gibbs samplingscans

are performed before the � nal scan. When calculating the split proposal probability, the re-

sult of the last intermediate Gibbs sampling scan is considered the random launch state,

from which the restricted Gibbs sampling transition probability is explicitly calculated.We

would prefer to incorporate all of the intermediateGibbs sampling scans in the proposal dis-

tribution, but summing probabilitiesover all of these intermediate states is computationally

infeasible. Although equilibrium will probably not be reached after only a few restricted

Gibbs sampling scans, the clustering of observations between the two mixture components
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will be a better re� ection of the actual attributes of the data than is produced by a single

scan of Gibbs sampling.

Split proposal probabilities are calculated in the same way as for the � xed launch state

Gibbs sampling proposals (Equation (3.14)). For the merge proposal, to obtain q(cjcmerge),

the same intermediateGibbs samplingoperations that are performed when proposing a split

must be conducted here to arrive at a launch state, even though no actual split is performed.

The Gibbs sampling transition probability is calculated from the launch state (which is

the last intermediate Gibbs sampling state) to the original split state. These operations are

necessary in order to produce the correct proposal ratios.

We could modify the algorithmby replacing the intermediate restricted Gibbs sampling

scans by Markov chain updates of some other type. However, replacing the � nal Gibbs

sampling scan (from the launch state) with some other update would be possible only if

the transition probability for this update could be calculated. Below, the procedure for the

restricted Gibbs sampling split-merge update with a random launch state is summarized.

Restricted Gibbs Sampling Split-Merge Procedure

1. Select two distinct observations, i and j, uniformly at random.

2. Let S denote the set of observations, k 2 f1; : : : ; ng, for which k 6= i and k 6= j,

and ck = ci or ck = cj .

3. De� ne the launch state, claunch, that will be used to compute Gibbs sampling proba-

bilities. If ci = cj , then let claunch
i be set to a new component such that claunch

i =2 fc1;

: : : ; cng and let claunch
j = cj . Otherwise, if ci 6= cj , then let claunch

i = ci and

claunch
j = cj . For every k 2 S, set claunch

k to either of the distinct components, claunch
i

or claunch
j , as follows:

° Select an initial state by randomly setting, independentlywith equal probability,

claunch
k to either claunch

i or claunch
j .

° Modify claunch by performing t intermediate restricted Gibbs sampling scans or

some other type of Markov chain update.

4. If items i and j are in the same mixture component, that is, ci = cj , then:

(a) Propose a new assignment of data items to mixture components,denoted as csplit,

in which componentci = cj is split into two separate components,csplit
i and c

split
j .

De� ne each element of the proposal vector, csplit, as follows:

° Let csplit
i = claunch

i (note that claunch
i =2 fc1; : : : ; cng)

° Let csplit
j = claunch

j (which is the same as cj)

° For every observation k 2 S, let c
split
k be set to either componentcsplit

i or c
split
j

by conducting one � nal Gibbs sampling scan from the launch state, claunch

° For observations k =2 S [ fi; jg, let c
split
k = ck
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(b) Calculate the proposal probability,q(csplitjc), by computing the Gibbs sampling

transition probability from the launch state, claunch, to the � nal proposed state,

csplit. The Gibbs sampling transition probability is the product, over k 2 S, of

the probabilitiesof setting each c
split
k to its � nal value in the � nal Gibbs sampling

scan.

(c) Evaluate the proposal by the Metropolis-Hastingsacceptanceprobabilitya(csplit;

c). If the proposal is accepted, csplit becomes the next state in the Markov chain.

If the proposal is rejected, the original vector, c, remains as the next state.

5. Otherwise, if i and j are in different mixture components, that is, ci 6= cj , then:

(a) Propose a new assignment of data items to mixture components, denoted as

cmerge, in which components, ci and cj , are combined into a single component.

Assign each element of the proposal vector, cmerge , as follows:

° Let cmerge
i = cj

° Let cmerge
j = cj

° For every observation k 2 S, let c
merge
k = cj

° For observations k =2 S [ fi; jg, let c
merge
k = ck

(b) Calculate the proposal probability,q(cjcmerge), by computing the Gibbs sampling

transition probability from the launch state, claunch, to the original split con� gu-

ration, c. The Gibbs sampling transition probability is the product, over k 2 S,

of the probabilitiesof setting each ck in the original split state to its original value

in a (hypothetical) Gibbs sampling scan from the launch state.

(c) Evaluate the proposal by the Metropolis-Hastings acceptance probability

a(cmerge; c). If the proposal is accepted, cmerge becomes the next state. If the

merge proposal is rejected, the original con� guration, c, remains as the next

state.

3.4 CYCLING METROPOLIS-HASTINGS AND GIBBS SAMPLING UPDATES

The split-mergeMetropolis-Hastingsalgorithmproducesa Markovchain that leaves the

posteriordistributioninvariant.The Markovchain is also irreducible,since for any statistical

model in which the data have nonzero prior probability, there is a nonzero probability that

the chain started from any initial state will assign every observation to a separate mixture

componentas a result of a series of split moves. Further, except for some degeneratemodels,

the Markov chain is aperiodic, because there is a nonzero probability that the chain will

remain in its current state (i.e., at least some split or merge proposals have a nonzero

probability of being rejected). The split-merge algorithm is therefore ergodic.

Even though the above procedure is ergodic and produces nonincremental splits or

merges of components, further improvements in convergence may be obtained by combin-
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ing this algorithm with traditional Gibbs sampling. This procedure addresses the problem

of making major changes in the allocation of items by moving observations as a cluster

during a single iteration. However, it may take longer to move a single observation between

components. In this situation, a “� ne tuning” approach is required, which the regular Gibbs

sampling scan can provide. Consequently, we propose combining these two algorithms by

alternately performing a Metropolis-Hastings update and a full scan of Gibbs sampling. By

doing this, we exploit the nonincremental (major) changes from the Metropolis-Hastings

step, and the incremental (minor) re� nement from the Gibbs sampling step.

Tierney (sec. 2.4, 1994) notes that if Markov chain transition kernels are applied in

cycles, and one of the kernels is ergodic, then the cyclekernel is not guaranteed to be ergodic

due to possible periodicity. However, in our case, since both the Metropolis-Hastings and

Gibbs sampling steps have a nonzero probability of leaving the state unchanged, applying

each transition in turn will produce an ergodic Markov chain.

We can tune this algorithm by modifying the number of Metropolis-Hastings updates

and the number of � nal Gibbs sampling scans in each full iteration.As expected,by increas-

ing the values for both of these tuning parameters, convergence (measured in full iterations)

is improved, but at the cost of computationtime per iteration.Section 4 examines the effects

of these modi� cations and provides guidelines for setting these tuning parameters.

4. EXAMPLE: BERNOULLI DATA WITH A
CONJUGATE BETA PRIOR

This section empirically compares the split-merge procedure (and its variants) to Gibbs

sampling. We consider a categorical mixture model, in which the data, y = (y1; : : : ; yn),

are independent and identically distributed, such that each observation,yi, has m Bernoulli

attributes, (yi1; : : : ; yim). Given the class, ci, that observation i belongs to, the item’s at-

tributes are independentof each other. This type of model is common in latent class analysis

(see, e.g., Everitt 1984), in which the mixture componentsare considered latent classes that

represent heterogeneous mechanisms which underly or produce the observed data. Neal

(1992) considered a similar model when examining the performance of the Gibbs sampling

procedure discussed in Section 2. For simplicity of exposition, we consider only dichoto-

mous attributes, but the model and algorithms easily generalize to categorical attributes

with more than two values.

4.1 THE STATISTICAL MODEL

In the Bayesian framework, the Bernoulli data can be modeled as a Dirichlet process

mixture model. The observations,yi = (yi1; : : : ; yim), are multivariate Bernoulli, such that
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each yihj ³ i ¹ Bernoulli(³ ih), giving the following likelihood:

F (yi; ³ i) =

mY

h = 1

³ yih

ih (1 ¡ ³ ih)1¡yih : (4.1)

The parameter ³ ih of component i gives the probability that attribute h has the value one.

Each such probability is given a Beta distribution prior with parameters (­ 1;h, ­ 0;h). Under

G0, which is the prior over the vector µ = ( ³ 1; : : : ; ³ m), the ³ h are independent. (Note that

here we use subscripts to denote different attributes rather than different observations.) The

density for G0 is

P ( ³ ) =

mY

h = 1

µ
¡ (­ 1;h + ­ 0;h)

¡ (­ 1;h) ¡ (­ 0;h)
³

­ 1;h¡1
h (1 ¡ ³ h)

­ 0;h¡1
¶

; (4.2)

where ­ 0;h and ­ 1;h are greater than zero.

Because this is a conjugate prior for F (yi; ³ i), the model parameters may be integrated

away. To update ci via Gibbs sampling, a new value of ci is drawn from its conditional

distribution (Equation (2.4)), which for this model is the following, when the Beta prior and

Bernoulli likelihood are substituted

P (ci = c j c¡i; yi) = b
n¡i;c

n ¡ 1+ ¬

mY

h = 1

P
k 6= i ¯ (ck; c) ¯ (ykh; yih) + ­ yih;h

n¡i;c + ­ 0;h + ­ 1;h
;

for c 2 fcjgj 6= i (4.3)

P (ci 6= cj for all j 6= i j c¡i; yi) = b
¬

n ¡ 1+ ¬

mY

h= 1

­ yih ;h

­ 0;h + ­ 1;h
:

The delta function ¯ (x; y) is equal to one if x = y and zero otherwise. The termP
k 6= i ¯ (ck; c) ¯ (ykh; yih) counts the number of observations associated with component

c that match yi with respect to attribute h. The second formula gives the probability for set-

ting ci to a new mixture component that is currently not assigned to any other observation.

In both equations, b is the factor that normalizes the distribution to sum to one.

For the Metropolis-Hastings acceptance probability in Equation (3.2), the prior is cal-

culated as shown in Equation (3.3). The appropriate ratio of the transition probabilities

based on restricted Gibbs sampling is obtained by using the � rst formula in Equation (4.3).

The likelihood (Equation (3.7)) based on the Bernoulli-Beta model is as follows

L(cjy) =

DY

c = 1

Y

k : ck = c

mY

h= 1

P
i<k ¯ (ci; c) ¯ (yih; ykh) + ­ ykh ;h

nk;c + ­ 0;h + ­ 1;h
: (4.4)

If we interchange the products over k and h, Equation (4.4) simpli� es and can be
computed as

L(cjy)

=

DY

c=1

mY

h=1

[¡ (
P

k
¯ (ck ; c) ¯ (ykh ; 0) + ­ 0;h)= ¡ (­ 0;h)] [¡ (

P
k

¯ (ck ; c) ¯ (ykh ; 1) + ­ 1;h)= ¡ (­ 1;h)]

¡ (nc + ­ 0;h + ­ 1;h)= ¡ (­ 0;h + ­ 1;h)

(4.5)
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Table 1. True Mixture Distribution for Example 1

c P(ci = c) P(yih = 1j ci = c), h = 1,: : :,6

1 0.2 0.95 0.95 0.95 0.95 0.95 0.95
2 0.2 0.05 0.05 0.05 0.05 0.95 0.95
3 0.2 0.95 0.05 0.05 0.95 0.95 0.95
4 0.2 0.05 0.05 0.05 0.05 0.05 0.05
5 0.2 0.95 0.95 0.95 0.95 0.05 0.05

When calculating the prior ratios and performing Gibbs sampling, counts of obser-

vations associated with each mixture component are required. To improve ef� ciency, it is

useful to maintain these counts incrementally in an array, by decrementing and increment-

ing appropriate counts when observationsare moved between components.Similarly, when

computing likelihoods (Equation (4.5)), ef� ciency is further improved by maintaining a

count of items associated with each mixture component having particular values for each

attribute.

4.2 THE SYNTHETIC DATASETS

AlthoughDirichletprocessmixturemodelsconsider the numberof mixture components

to be countably in� nite, the model can nevertheless be applied to � nite mixtures. The

prior chosen ensures that some of the in� nite number of components are given signi� cant

probability, so over� tting does not occur. The model will assign a small probability to

observations being from one of the in� nite number of additional components, but this does

not cause serious problems. For simplicity,we will therefore test the algorithmson synthetic

data from a � nite mixture.

Our primary goal is to partition observations into appropriate latent classes using the

Bernoulli-Beta Dirichlet process mixture model. Computationally, this classi� cation prob-

lem becomes more dif� cult as the dimensionality increases and as the sets of attributes that

distinguish the various components become more similar in structure. We illustrate this dif-

� culty by considering two simulated datasets, in which the number of attributes is increased

so that the different components appear more alike as the dimensionality increases.

The data are composed of � ve equally probable mixture components, in which each

component produces a distribution over m dichotomous attributes. To maintain uniformity

between the examples, n = 100 observations were produced for each example, and 20

observations were generated from each of the � ve mixture components.

Data for the two simulated examples were randomly generated from the mixture distri-

butions shown in Tables 1 and 2. The mixture components are distinguishedby the � rst four

attributes, which for consistency, have been kept constant in both examples. The examples

differ in the number of additional attributes. Dimensionality is increased by simply repli-

cating the distribution for the last attribute, which makes the components more similar, and
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Table 2. True Mixture Distribution for Example 2

c P(ci = c) P(yih = 1jci = c), h = 1,: : :,18

1 0.2 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
2 0.2 0.05 0.05 0.05 0.05 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
3 0.2 0.95 0.05 0.05 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
4 0.2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
5 0.2 0.95 0.95 0.95 0.95 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

thereby, more dif� cult to distinguish. Note the intentional asymmetry in the construction

of the mixture components, in which the � rst three components are more similar than the

last two components.This is intended to test whether the split-merge algorithms can handle

“three-way” splits.

For the following demonstrationsof the algorithms, the Dirichlet process parameter, ¬ ,

is set to one. A small value of ¬ implies that the number of mixture components present in

the data is likely to be small. The ­ 0;h and ­ 1;h parameters for the Beta prior distribution

have also been set to one. These priors may not be realistic, but for consistency, these values

are � xed at one during the simulations. In actual problems, ¬ and the ­ ’s would be set by

prior knowledge or given higher-level priors.

4.3 PERFORMANCE OF THE ALGORITHMS

For each example, the Gibbs sampling algorithm was compared to � ve versions of

the split-merge algorithm: Simple Random Split, Split-Merge (0,1,0), Split-Merge (0,1,1),

Split-Merge (5,1,0), and Split-Merge (5,1,1). The � rst number in parentheses is the number

of intermediate Gibbs sampling scans to reach the launch state, the second is the number of

Metropolis-Hastings updates in a single iteration, and the third is the number of complete

Gibbs sampling scans after the � nal Metropolis-Hastings update. For each algorithm, all

observations were assigned to the same mixture component for the initial state, and each

algorithm was run for 2,000 iterations. All simulations were performed in Matlab, Version

5.3, on a SGI system with a 200 MHz MIPS processor.

The performance of these algorithms was evaluated by examining trace plots (Figures

1 and 2) and the computation time per iteration (Table 3). In each trace plot, the � ve values

plotted are the fraction of observations associated with the most common, two most com-

mon, three most common, four most common, and � ve most common mixture components.

Because each of the � ve components appear equally in the samples, if the true situation

were captured exactly, the � ve traces would occur at values of 0.2, 0.4, 0.6, 0.8, and 1.0.

4.3.1 Example 1

The � rst example is the simplest. It is relatively low-dimensional (six attributes) and

has � ve well-separated mixture components. All of the algorithms except for the Simple
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Table 3. Time Per Iteration in Seconds for Algorithms Tested

Algorithm Example 1 Example 2

Gibbs Sampling 1.1 1.6
Simple Random Split 0.2 0.5
Split-Merge (0,1,0) 0.3 0.9
Split-Merge (0,1,1) 1.1 2.2
Split-Merge (5,1,0) 0.9 2.5
Split-Merge (5,1,1) 1.6 4.0

Random Split appropriately separated the data into the � ve mixture components.We found

that, as expected, Simple Random Split did not work well, failing to converge within the

2,000 iterations done. By inspection, Gibbs sampling, Split-Merge (0,1,1) and (5,1,1) have

short burn-in times and mix equally well. Similarity in performance is also con� rmed by

approximately equal autocorrelation times.

In this simple problem, Gibbs sampling is successful in correctly splitting the items

among the � ve components, so the split-merge algorithms are not necessary. Compar-

ing Split-Merge (0,1,1) and (5,1,1), we see that the addition of several intermediate Gibbs

Figure 1. Trace plots of four of the six algorithms used in Example 1 with six attributes.
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Figure 2. Trace plots of four of the six algorithms used in Example 2 with 18 attributes.

sampling scans does not improve autocorrelation times and are not worth the extra compu-

tation time. Split-Merge (0,1,0) and (5,1,0), which do not include the � nal complete Gibbs

sampling scan, also separate the data into � ve components, but mixing is poor.

4.3.2 Example 2

Example 2 is a high-dimensional problem (18 attributes), in which the posterior dis-

tribution, given the priors assigned, gives substantial probability to con� gurations with

(mainly) four or � ve components. The trace plots (Figure 2) show that Gibbs sampling

remains in an incorrect split that is not typical of the true posterior distribution for the entire

2,000 iteration run. This happensbecause the mixture components in this example are quite

similar, so incremental creation of a new component via Gibbs sampling is quite rare. If

each item is initially assigned to a different mixture component (plot not shown), Gibbs

sampling splits the data into � ve components immediately, but takes roughly 1,000 itera-

tions to move to the four-component con� guration, showing that it mixes poorly between

the four and � ve component con� gurations.

Split-Merge (5,1,1) separates the observations into the proper con� guration immedi-
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ately and mixes well between the four and � ve components. Split-Merge (5,1,0) also mixes

between four and � ve components, but the minor adjustments are slow. The two split-merge

algorithmswithout any intermediateGibbs sampling scans � nd the four and � ve component

con� gurations, but are stuck in the four-component split for a long time. This is a result

of nonoptimal Metropolis-Hastings split proposals. Again, the Simple Random Split was

unable to separate the data adequately and performs the worst.

4.3.3 Summary of Results

Both the Gibbs sampling and split-merge methods seem to work reasonably well in

low-dimensional cases. However, as the classi� cation task becomes increasingly dif� cult,

Gibbs sampling mixes exceedingly poorly. The cycled split-merge version that includes

both intermediate Gibbs sampling scans and a full overall Gibbs sampling scan is the most

successful split-merge variation. Its split proposals are more appropriate, yielding better

mixing between different major con� gurations,while the � nal Gibbs sampling scan handles

the necessary minor adjustments. The split-merge algorithms that include intermediate

Gibbs sampling scans are successful in handling three-way splits, even though this must

be done by two two-way splits. Computation time per iteration is greater than for Gibbs

sampling, but in situationswhere Gibbs sampling is unable to arrive at the correct stationary

distribution in any reasonable length of time, this burden is clearly acceptable.

4.4 TUNING PARAMETERS

This section examines the role that the tuning parameters play in our split-merge algo-

rithm. There are three adjustable parameters: the number of intermediate Gibbs sampling

scans, the number of Metropolis-Hastings updates conducted in a single iteration, and the

numberof completeGibbs samplingscansconductedafter the Metropolis-Hastingsupdates.

We examine the effect of varying each tuning parameter holding the other two parameters

constantby consideringdata similar to Example2, butwith only15 (insteadof 18) attributes.

The last three attributes in Table 2 have been discarded to speed up computations.

To examine the effect of adjusting the tuningparameters, the autocorrelationtimes were

computed for the � rst trace on the plots (corresponding to the fraction of items associated

with the most common mixture component) and for the indicator variable, called I13;42,

which codes if observations 13 and 42 are assigned to the same mixture component. Items

13 and 42 were generated from components 3 and 2, respectively. However, due to random

noise, item 42 differs in one of the four distinguishing attributes from its true distribution,

which makes it as likely to have come from component 3 as from its actual component, 2.

Consequently,the mean of this indicator function is approximately0.5 (i.e., these two items

should be grouped together half of the time).

The autocorrelation time is de� ned as one plus twice the sum of the autocorrelations
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Table 4. Effects of the Tuning Parameters

Time per iteration Autocorrelation Autocorrelation
Algorithm in seconds time for Trace 1 time for Indicator I13,42

Split-Merge (1,1,1) 2.2 57.4 1.5
Split-Merge (3,1,1) 2.7 40.5 1.5
Split-Merge (5,1,1) 3.2 31.9 1.6
Split-Merge (10,1,1) 4.6 26.7 1.6
Split-Merge (20,1,1) 7.0 24.2 1.6
Split-Merge (100,1,1) 28.8 18.4 1.4

Split-Merge (1,1,1) 2.2 57.4 1.5
Split-Merge (1,2,1) 3.1 48.0 2.0
Split-Merge (1,3,1) 4.1 19.5 1.8
Split-Merge (1,4,1) 5.1 19.2 1.8
Split-Merge (1,5,1) 6.2 17.6 1.9

Split-Merge (1,1,0) 1.0 165.8 41.7
Split-Merge (1,1,1) 2.2 57.4 1.5
Split-Merge (1,1,2) 3.3 63.5 1.7
Split-Merge (1,1,3) 4.5 35.9 1.0
Split-Merge (1,1,5) 6.7 35.3 1.0

for a quantity at lags one up to in� nity. This is the factor by which the sample size is ef-

fectively reduced when estimating the expectation of that quantity, when compared to an

estimate based on independentdraws from the posteriordistribution (Ripley 1987, sec. 6.3).

Autocorrelation time was estimated by one plus twice the sum of the estimated autocorre-

lations up to the lag where the autocorrelations are approximately zero. Table 4 displays

the computation time per iteration and autocorrelation times for trace 1 and indicator I13;42

for various settings of this algorithm.

The most critical tuningparameter is the number of intermediateGibbs sampling scans,

since this controls the quality of the Metropolis-Hastings split proposals. Better splits are

expected when more intermediate Gibbs sampling scans are performed, since the proposed

splits will be closer to the restricted equilibrium distribution. From trace plots (not shown),

we observe improved mixing when the number of intermediate Gibbs sampling scans used

to arrive at the launch state is increased. The autocorrelation times for trace 1 are lower

(compare � ve vs. one-hundred intermediate scans), but there is an increased cost of compu-

tation time per iteration (3.2 vs. 28.8 seconds). However, after � ve intermediate scans, the

improvement is fairly minimal. With respect to the Metropolis-Hastings acceptance rate,

there is only minor improvement in the acceptance rate after � ve scans. When these simu-

lations were repeated with different pseudo-random seeds, we found that, on occasion, � ve

intermediate Gibbs sampling scans would appear as good as 20 or 100 intermediate scans

(in terms of rejection rate and autocorrelationtimes). Therefore, it seems that improvements

level off after only a few intermediate Gibbs sampling scans, and additional scans are not

worth the increased computation time.

Autocorrelationtimesdecrease and mixingbetween four and � ve componentsimproves

when the number of Metropolis-Hastings updates is increased. However, these improve-
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ments seem to taper off after three Metropolis-Hastings updates, while the computational

cost continues to increase. Three updates per iteration seem to be the best number in this

particular example. This suggests that a full Gibbs sampling scan is not imperative after

each Metropolis-Hastings update and may be a waste of computation time. Instead, it is

better to perform a � nal Gibbs sampling scan after multiple Metropolis-Hastings updates,

which are relatively faster.

Metropolis-Hastings updates need to be supplemented by some complete Gibbs sam-

pling scans in order to make minor clusteringchanges (see Figures 1 and 2). Improvement is

also evidentfrom the autocorrelationtimes for I13;42, which drop from 41.7 to 1.5 when a full

scan of Gibbs sampling is included. Splitting or merging these two particular observations

is most easily done by a small-scale incremental update.

The autocorrelation time for trace 1 also decreases as the number of � nal scans is

increased. However, from the trace plots, it appears that differences in mixing are minimal.

The time per iteration grows when the number of � nal Gibbs sampling scans is increased,

and beyond one Gibbs sampling scan per iteration, it does not appear that the improvements

in autocorrelation times offset this.

5. DISCUSSION

The split-merge Metropolis-Hastingsprocedure has been shown to be an improvement

over traditionalGibbs sampling inhigh-dimensionalproblemsinwhich mixture components

are similar.The nonincrementalclusteringchangesof ourmethodavoid theproblemof being

trapped in local modes, allowing the posterior distribution to be fully explored. The quality

of the proposals can be controlled by varying the number of intermediate Gibbs sampling

scans. Implementing this method is relatively simple and does not become more dif� cult

in higher dimensions. It is straightforward to apply this method to any conjugate model,

including normal mixture models for real-valued data with the conjugate normal-inverse

gamma priors for the mean and variance. We have implemented the split-merge algorithm

for conjugate normal mixture models when the variance is known and observed similar

improvements as described here.

The method by which the random selection of i and j determines a split or merge

operation introduces an inef� ciency into the algorithm. If i and j are initially in the same

component (hence, a split is proposed), the probability that the “correct” split con� guration

will be proposed can be as low as 25%, even when the split should be into components of

equal size. After i and j are set to different mixture components, their component labels

cannot change.Two types of problems may arise from this restriction.First, if i and j should

actually belong to the same mixture component, then these two items have unnecessarily

been separated. If this problem does not occur (so i and j should be separated), a labeling

problem is still possible.The initial random split of the other items in the merged component

could assign labels biased towards a split that is opposite to the � xed labels of i and j . The
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intermediate Gibbs sampling scans for observations other than i and j may not overcome

this initial bias, leaving i and j in the “wrong” mixture components.

A quick way to � x this nuisance labeling problem would be to perform a Metropolis

update before reaching the launch state that evaluates a proposal to swap the labels of

the items associated with each split component (equivalent to switching the component

indicatorsof i and j). As mentioned in Section 3.3.2, any valid Markov chain update can be

used to arrive at a launch state. We recommend use of the swap proposal immediately after

the intermediate Gibbs sampling scans, so that this is the last step to reaching a particular

launch state. Empirical trials show that the addition of the swap proposal will, as expected,

improve the overall Metropolis-Hastings acceptance rate by up to a factor of two.

When the data is very high dimensional, or there are very many observations, it is

possible that our algorithm may only rarely accept the splits and merges that are proposed,

even if they are appropriate. This potential problem is most easily seen for merge proposals,

whichwill have a highprobabilityof beingacceptedonly if the current split con� gurationhas

a high probabilityof being produced from the launch state in a single Gibbs sampling scan.

For dif� cult problems, however, the distance that can be traversed in one Gibbs sampling

scan may be small compared to the extent of posterior variation. Determining whether a

split or merge proposal should be accepted is analogous to the problem of Bayesian model

choice, for which the introduction of intermediate models has been found to be useful (see

Gelman and Meng 1998). Some analogous technique may be useful if a low acceptance

rate for split and merge proposals proves to be a problem in practice.

Recently,we extended the split-merge algorithm to handle nonconjugatemixture mod-

els, in which the model parameters cannot be analytically integrated away (Jain 2002). This

version of our split-merge algorithm also performs better than Gibbs sampling in situa-

tions where mixture components are similar. Note that when the model is conjugate, the

algorithm that we have described in this article is both simpler and more ef� cient than the

nonconjugate version of our method. We plan to discuss the nonconjugate technique in a

future article.

Finally, the technique we use of producing Metropolis-Hastings proposals using re-

stricted Gibbs sampling scans may be applicable in other contexts as well. Simple Gibbs

sampling often fails to work well when dependenciesbetween variables prevent one of them

from changing much (or at all) when the others are � xed. This can be overcome by perform-

ing Gibbs sampling on blocks of several variables, provided that the conditionaldistribution

for all variables in a block can be sampled from. When sampling for all variables in a block

is infeasible, one might propose to change all the variables in a block simultaneously using

a Metropolis-Hastingsupdate, but � nding a suitablemultidimensionalproposal distribution

can be dif� cult. An alternative that seems worth exploring is to initially propose a change

to only one (or a few) of the variables in the block, and to � nd appropriate proposed values

for the other variables in the block using restricted Gibbs sampling updates, from some

randomly chosen initial state. It should be possible to compute a suitable acceptance prob-
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ability to make this a valid Markov chain update, as in the algorithms we have presented in

this article.
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Statistics, 1, 353–355.

Bush, C. A., and MacEachern, S. N. (1996), “A Semiparametric Bayesian Model for Randomised Block Designs,”
Biometrika, 83, 275–285.

Celeux, G., Hurn, M., and Robert, C. P. (2000),“Computational and Inferential Dif� culties With MixturePosterior
Distributions,” Journal of the American Statistical Association, 95, 957–970.

Escobar, M. D. (1994), “Estimating Normal Means With a Dirichlet Process Prior,” Journal of the American
Statistical Association, 89, 268–277.

Escobar, M. D., and West, M. (1995), “Bayesian Density Estimation and Inference Using Mixtures,” Journal of
the American Statistical Association, 90, 577–588.

Everitt, B. S. (1984), An Introduction to Latent Variable Models, London: Chapman and Hall.

Everitt, B. S., and Hand, D. J. (1981), Finite Mixture Distributions, London: Chapman and Hall.

Ferguson, T. S. (1983), “Bayesian Density Estimation by Mixtures of Normal Distributions,” in Recent Advances
in Statistics, eds. H. Rizvi and J. Rustagi, New York: Academic Press, pp. 287–303.

Gelman, A., and Meng, X.-L. (1998), “Simulating Normalizing Constants: From Importance Sampling to Bridge
Sampling to Path Sampling,” Statistical Science, 13, 163–185.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (eds.) (1996), Markov Chain Monte Carlo in Practice,
London: Chapman and Hall.

Green, P. J., and Richardson, S. (2001), “Modelling Heterogeneity With and Without the Dirichlet Process,”
Scandinavian Journal of Statistics, 28, 355–375.

Hastings, W. K. (1970), “Monte Carlo Sampling Methods Using Markov Chains and Their Applications,”
Biometrika, 57, 97–109.

Jain, S. (2002),“Split-MergeTechniques forBayesian MixtureModels,”unpublishedPh.D.dissertation,University
of Toronto, Department of Statistics.

MacEachern, S. N. (1994), “Estimating Normal Means With a Conjugate Style Dirichlet Process Prior,” Commu-
nications in Statistics: Simulation and Computation, 23, 727–741.

(1998), “Computational Methods for Mixture of Dirichlet Process Models,” in Practical Nonparametric
and Semiparametric Bayesian Statistics, eds. D. Dey et al., New York: Springer-Verlag, pp. 23–43.

McLachlan, G. J., and Basford, K. E. (1988), Mixture Models: Inference and Applications to Clustering, New
York: Marcel Dekker.



182 S. JAIN AND R. M. NEAL

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953), “Equation of State
Calculations by Fast Computing Machines,” Journal of Chemical Physics, 21, 1087–1092.

Neal, R. M. (1992), “Bayesian Mixture Modeling,” in Maximum Entropy and Bayesian Methods: Proceedings of
the 11th International Workshop on Maximum Entropy and Bayesian Methods of Statistical Analysis, eds.
C. R. Smith, G. J. Erickson, and P. O. Neudorfer, Seattle, 1991, Dordrecht: Kluwer Academic Publishers,
pp. 197–211.

(2000), “Markov Chain Sampling Methods for Dirichlet Process Mixture Models,” Journal of Computa-
tional and Graphical Statistics, 9, 249–265.

Ripley, B. D. (1987), Stochastic Simulation, New York: Wiley.

Tierney, L. (1994), “Markov Chains for Exploring Posterior Distributions” (with discussion), The Annals of
Statistics, 22, 1701–1762.

Titterington,D. M., Smith, A. F. M., and Makov, U. E. (1985), Statistical Analysis of Finite Mixture Distributions,
Chichester, New York: Wiley.


