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1. Introduction
THE purpose of this paper is to investigate the asymptotic behaviour,
as k -*• oo, n -> oo, of the following functions in number theory:

p(n, k), the number of partitions of n into exactly k positive integral
parts;

P(n,k)= 2 *(»»»•);

q(n, k), the number of partitions of n into exactly k positive unequal
parts.

We do not need to consider each one of these functions separately.
It follows from the identities

P(n,k) = p(n+k,k) =

that once we have an asymptotic expression for, say, P(n,k), then a
trivial change in the variables will immediately furnish an expression
for p(n, k) or q(n, k), and conversely. Actually we shall find it more
convenient to use a fourth arithmetical function R(N, k) defined by

R(N,k) = P{N-lk(k+l),k]

whose generating function can be managed more easily. From the
asymptotic expression for R{N, k) we obtain the corresponding expres-
sions for P(n, k), p(n, k), q(n, k) by putting

N = n+lk(k+l), N = n+lk(k-2), N = n-Jfc(fc+l)
respectively.

The problem of this paper was considered previously by Erdos and
Lehner, * who investigated P(n,k) in the neighbourhood of k = ^cn^logrc,
c = Gin'1, which is the 'normal' number of summands in the partitions
of n. They found that

P(n,k)IP(n) = {l+o(l)}exp(-ce-*) (1.2)

* P. Erd6s and J. Lehner, Duke Math. Journ. 8 (1941), 335-43.
Quart. J. Math. Oxford (2), 2 (1951), 85-108
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for k = ^craUogfi+cAra*, where P(n) =• P(n,n) is the number of un-
restricted partitions of n. Using their method, Auluck, Chowla, and
Gupta* proved

nip(n,k)/P(n) = ( l+o( l )}exp(-A-ce-A )

for k = £cw}logK.+cAn*. Erdos and Lehnerf also investigated P(n,k)
for small values of k and proved that

P(n, k), p(n, k), q(n, k) s I | j ~ j) (1.3)

uniformly for k = o(wJ). This result can be obtained easily from the
elementary inequalities

k-1

and

which follow from the recursive formula
[ n / ]

q(n,k)=Zq(n-rk,k-l). (1.4)

To prove, for example,
, , , . 1 / n - l

assume induction on k:

(n—rk—l\ . 1
v ' r

- r - l
(^T)!2 t 2 M2

' r>0 v ' r>0

The first inequality for q(n, k) can be proved similarly, and the inequali-
ties for p(n, k) and P(n, k) follow at once from (1.1)4

In the present paper I shall obtain an asymptotic formula for B(N, k)
which holds in a much wider range than (1.3), namely for N > Ck2,
where the constant C has the value 0-385 approximately.§ More pre-
cisely, I shall prove the following theorem:

* F. C. Auluck, S. Chowla, and H. Gupta, J. Indian Math. Soc. 6 (1942),
105T12.

t P. ErdCs and J. Lehner, Duke Math. Journ. 8 (1941), 335-45.
X Essentially the same proof was given by H. Gupta for p{n, k), Proc. Indian

Acad. Sci. (A) 16 (1942), 101-2, and by F. C. Auluck for P(n,k), J. Indian
Math. Soc. 6 (1942), 113-14.

§ The best possible value for C is 0-25, since N >
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THEOREM 1. Let

u = u(t) = t+&1*+riy*+... (\t\ < 4)
be defined as the inverse function of

= v*U (2-£zcot£c) dx\ \

a?id Ze< p = 2-598... be the radius of convergence of v = v(l) defined by
V

I

t

Write ex = (k+l)2/N. Then, for every m > 0,

log B(N,k) = k\2-^- — log{2 sinh £w(a)} 1—logN-f-

m-l
+ 2 &-^(a) + 0(fc-m) (1.6)

uniformly for <x ^ p0 < p, where

(1.6')

and the functions t/t^t) are analytic for \t\ < p.
Although I can prove (1.6) only for a < p0 < 2-598..., and hence for

N — (k-\-^)2joc ^ 0-385&2, it seems very likely that it holds uniformly
for every N ^ Ck2 with C > £. The following argument suggests that
(1.6) is valid even in the critical neighbourhood of C = J (or a = 4),
at least for m = 1 if O(k~x) is replaced by o (1). For, let us make this
assumption and take the function P(n, k) at k = n. We have

hence, from (1.5) at t = a,

hidx = \~\ = (*-

and

2-_lOg(2sinhi«) = 2Mp
a. \a 4

Also, from (1.5),
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and hence «'(«) = jfec-Wfl +o (k-1)}.

Putting these in (1.6), (1.6'), we easily obtain

P(n,n) = {l+o(l)}4-13-*7i-1exp(2c-1»i),

which is the asymptotic term of the Hardy-Ramanujan formula. By
a somewhat lengthier computation we can also derive (1.2) from the
formula if we assume its validity in the region a. = 4—8/log2fc, 8 > 0.

The formula (1.6) remains valid if a ->• 0 as k -> oo: that is, if k = o (n*).
We then have , w , ,, s ,

tt(a)/a-»-l, i i (a)-*l ,

and

logR(N,k) =

Notably, if k = O(n*-*), 8 > 0, then, for q(n, k),

(k-l)logN = (i—

(
Hence

q(n,k) ^ ^-i{i!(A_

by StirUng's formula. Similarly

p(n,k), P(n,k) ^ n^klik-iy

Finally, if k = O(n*), then

q(n,k) s rafc-1

and p(n, k), P(n, k) ^ nfc-1{/fc!(A;-

Generally, it follows from (1.6) that p(n, k) and P(n,k) are asymptoti-
cally equal if k = 0(71*). This was proved by Erdos and Lehner for
k = o (TO*) and conjectured for k = 0 («*).

2. A conjecture of Auluck, Chowla, and Gupta
For a fixed n, p(n, k) has a maximum at a certain k = ko(n). Erdos

proved* that

k0 = £crc*log?i+clogcra*+o(TO*) (c = 6*/w). (2.1)

He also stated that, if g(ra, fc) has its maximum (for a fixed n) at k0, then

&0 = (2*log2)cn*+d»*+o(»*) (2.2)

for a certain constant d which he did not specify. Auluck, Chowla, and

* P. Erd6s, Bull. American Math. Soc. 52 (1946), 185-8.
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Gupta conjectured* that p(n, k) is a monotonous function of k: that is,
p{n,kx) <p(n,k!l.)iik1 < fc2 <A&ndp(n,kx) > p(n,k2)i£k0 < h^ < k2.
I shall now show that the analogous conjecture for q(n, k) is true if n is
sufficiently large and 0-635&2 ^ n.~\

For a fixed n,

is a function of k. We have

A** = «*-«*_! = tf(P+4)k-*+O{k-*), (2.3)
where j3 = k2{n+Jg—Ik2)-1.

Also, if (f>(t) is analytic at t = j3, then

and
From (1.6) and (1.6') we have, if

a = N-^k+ft* = {»—IJfc^+lJJ-M^+i)2 < Po < 2-598..., n
\ogq{n,k) =

log q(n, k) —log g(w, fc— 1)

where u, u', u" are to be taken at the place j3. If we introduce the
expression (1.7) for u', we obtain

fcH^ J ) l ) . (2.4)
* F. C. Auluck, S. Chowla, and H. Gupta, J. Indian Math. Soc. 6 (1942),

10&-12.
t These restrictions on n and k are not really important. The first condition

(that n be large) can probably be discarded if we replace the O-notations through-
out the proof of Theorem 1 by explicit constants and check the conjecture for
smaller values of n. But, if we know that the conjecture is true for every n, k
satisfying, say, 0-9fcs < n, then its validity for &2 > n can easily be established
by induction on n, using the recursion (1.4).
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This cannot be zero unless

Iog{e«<0>-1}= Oik-1),

P = {(2c2log22)-1 — 1}

since I —— dx = i(^2—Iog22) = l(c~*—Iog22).*
n

Note that {(2c2log22)~1—I}-1 < 0-7, and hence /3 is well within the
region of validity of (1.6).

From (1.7) we have

Hence for t — fl,
u' = log2{2/5(l~}/5)}-i+0(Jfe-1),

Therefore the right-hand side of (2.4) cannot be zero unless

with

(2.5)

If u(P) < log(2+6/A), the right-hand side of (2.4) is certainly positive

«(/?) = log(2+6/fc)+0(fc-«),
log 2+6/2*

b \~z r x
£lc] J c — l

0

= a-l-b(a-l)(klog2)-1+O(k-*). (2.6)

Similarly (2.4) is negative for u(fi) > log(2+6/&) unless (2.6) holds.

* See D. Bierens de Haan, Nouvelles Tables <TIntigrales difinies (New York,
1939), 151, formula (104, 5).
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Suppose now that /? satisfies (2.6) and let k0 be defined by

P = (fco+mi+A-Ki-o+i) 8}- 1- (2-7>
Then, if k\ < k0 and acr = i"f(n+-^- —Ji'f)"1, we have

which shows that (aj)"1 does not satisfy (2.6) if k0 is large. Hence
Alogq(n,l\) > 0. Similarly we can show that, if k2 7^ ko-\-l, then
Wogq(n,k2) < 0. This proves the conjecture for large values of
n ^ 0-63oifc2.

From (2.6) and (2.7) we obtain for the maximum k0

n = o^o+i^-ft^-lKAo+iJ/log 2 + 0(1),

*0 = a-»n»+&/l_iW21og2-|+0(n-»)
= 0-764304.. .nJ-0-008428...+ O(n-J). (2.8)

This improves the result of Erdos and shows that the constant d in
(2.2) is zero. The error term in (2.8) tends to zero. Hence the position
of the maximum is exactly known for large values of n.

It is interesting to compare the value of k0 calculated from (2.8) with
data obtained from a table of Todd's* containing all the values of
p(n,k) for n ^ 100. We obtain for n = 100, calculated from the table

by means of q(n, k) = pin— I \,k\,

3(100,6)= 65827, 3(100,7) = 108869,

3(100,8) = 116263, 3(100,9) = 79403,

whereas (2.8) gives k0 ~ 7-63. But even for small values of n the formula
gives the correct value of k0. For n = 16,

3(16,2) = 7, 3(16,3) = 1 4 , 3(16,4) = 9,

whereas (2.8) gives k0 ~ 3-05.
Another result which follows easily from my formula is an asymptotic

expression for Q(n), the total number of partitions of n into unequal
parts. The function ~. , , ^ . ,

r<k

is not connected in a simple manner with R(N,k); we therefore have
to use the formula „. . ^- . ,. / i n .

Q(n) = Jiq(n,k). (2.9)
* J. A. Todd, Proc. London Math. Soc. (2) 48 (1945), 229-42.
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Let us first consider those terms which belong to k's in the neighbour-
hood of k0.

Write u(<xk) = {1+A(£)}log2, A = A(Jfc) = 0(n-»), and put

By an easy calculation

1 _]__ 1
a <xk 4

o
= a—\—2(a-l)A+(3a—3—log2)A2+0(A3),

2w(a)/a—log{2 sinh \u{<x)}

= 21og2{a-(a-l)A+(a-l-Jlog2)A2+0(A3)},

{«»'(«)}* = (a-J){2(a-l)}-»log2+0(A),

Hence

<l(n,k) = ^(««')-»exp{(t+i)/2|-log(2Biiihi«)JJ{l + 0(i-»)}

o log2 f f / 1 / 1\ \^
= ——{2(tt— l)}~^exp{ 3~̂ 777iM 1 11 1 A21 }{l-j-o (I)}.

2irn \ \ 2a\ a] ]\

The condition A = 0(»-*) is certainly satisfied if kx < i < k2, where
kx = a~in*—n*, kz = o-*n*+»*. Therefore

A(fct)
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since A& = (&+$)—(fc—£) = {l+o(l)}o-*(l — -k* dX,

by (2.10). Writing

and, noting that, for k = kt and k = fc2> \Kty\ > C^w"* for a certain
positive constant Cx, and hence that ni{A(A;i)}

8 -> oo (i = 1, 2), we obtain

J1 q(n, k) = {l+o (l)fta* log 27T-»«,-«3i f e""1 <fy exp(3~W)J q

Now it is easily seen that the terms with k < kx and k ^ fc2 in (2.9) do
not contribute essentially to the value of Q(n), for »i1A2(fc<) >
where i = 1, 2. Hence

exp[-3~W J-ll-i

for a positive constant C2, and

g(n,ti)<g(n,i0)exp(-Cin«10),

T ?(
k<ki

which implies Q(n) ̂  4-13-1«-*exp(3-*7m1).

This is the asymptotic term of the Hardy-Ramanujan formula for Q{ri).
The above proof is entirely independent of the theorem of residues and
the transformation properties of elliptic modular functions, which seem
to be indispensable for the proof of the exact formula of Hardy-
Ramanujan-Hua.*

For q{n,k0) = m&xq(n,k) we obtain

q(n,k0) ^

Hence Q{n)jn*q{n, k0) -> 3*2*(1 — l/o)* = 1-200....

Except for the explicit value of the constant on the right, this result
was also found by Erdos.t

If we assume the validity of (1.6), (1.6') at a = 4—S/log2Jfc (S > 0)

* L. K. Hua, Trans. American Math. Soc. 51 (1942), 194-201. There is a
misprint in the main formula on p. 195 of the paper. $(n+-jij) should read Kn

t P. Erd6s, Bvll. American Math. Soc. 52 (1946), 185-8.
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and do not care about the error terms, then also (2.1) can be obtained
from the formula. I t seems likely that

k0 = \cnMogn+c\ogcv>+d+o(l) ~ 0-38985...wUogra—0-19403n*+d

for a certain constant d. Data taken from Todd's table suggests that
the value of d must be near to 1-7.

3. Proof of the main theorem
The proof of Theorem 1 is based on two results. One is the classical

theory of 'waves' of Sylvester.* Let £ denote a primitive <jth root of
unity (q ^ k) and write Ptfn, k) for the coefficient of t~l in

f(U) = C-"c"*n (l-C'e-*)-1. (3.1)

Then P(n, k) = | £ PAn, k) = PJn, k)+ | I PAn, k), (3.2)
9 = 1 { * a = 2 £

where the summation is to be taken for every primitive qih root of unity
(q Ĉ k). This remarkable formula splits P(n, k) into two parts: a prin-
cipal term P^n, k) which governs the asymptotic behaviour of P(n, k),
and a circulatory part £ ' P^(n, k) which depends on the arithmetical

properties of n.
It may seem surprising that the Sylvester formula has never been

used for the purposes of an asymptotic evaluation. Hardy and Rama-
nujan, in their famous paper on partitions,f came to a rather unfavour-
able conclusion with regard to this possibility. I quote from their
footnote on p. 76: 'These (cf. Sylvester's) formulae do, of course, furnish
incidentally asymptotic formulae for the functions in question. But
they are, from this point of view, of a very trivial character: the interest
which they possess is algebraical.' The asymptotic formulae to which
Hardy and Ramanujan refer here are those which hold for fixed k when
n tends to infinity: p(n,k) ^ nk-Ylk\ (k—\)\, which incidentally follows
easily from the elementary formula (1.3). But there is really no need
to confine ourselves to that trivial situation (when k is fixed), since
Sylvester's theorem expresses an identity which holds for every n and k.
As a matter of fact, the Hardy-Ramanujan formula itself is composed
of expressions which strongly suggest a close relationship to the corre-
sponding Sylvester waves for P(n,n).

* See e.g. L. E. Dickson, History of the theory of numbers (Washington, 1920),
2, 119.

t G. H. Hardy and S. Ramanujan, Proc. London Math. Soc. (2) 17 (1918),
75-115.
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The other theorem on which my proof is based is the following
asymptotic expansion which I obtained quite recently* for the co-
efficients of certain power series.

THEOREM 2. Let f(z) = V -cvz
v

v = l

be a given power series with positive radius of convergence and constant
term zero, h an integer, a a complex parameter, a, T real constants
(0 < a < 1). Write

1 / 7 ' i. (3.3)

Let u = u(t) = u(o, t) denote the inverse function of

t= a+uf (u)

and let v = v(a, t) be defined by

v = t(o+f \cv\v").
Then

= {h-\)\ogK-K [

fc.vA, (3.4)

*) (3-5)

for every m > 0 and certain functions <^(a), analytic for |a| < p, where
p denotes the radius of convergence ofv(t). The expansion (3.5) is uniformly
valid for |a| ^ p0 < p.

THEOREM 3. Suppose that the coefficients of f(z) are not constants but
have an asymptotic expansion of the form

m - l

where Cv, E^, a ( ^ 0) are constants (independent of k) and \SV\ < 1.
Then Theorem 2 still holds if we form u(t) with coefficients Cv independent
of k viz. x

= t(a+ Y Cvu
v).u

* G. Szekeres, ' The asymptotic behaviour of the coefficients of certain power
series', Acta Sci. Math. Szeged, 12 (1950), 187-98, Theorems 1, 2.
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COROLLARY. If the coefficients off(z) have the form

cv = Cv{l+Sv(v+l)K-i} (\8V\ < 1, Cv constant),

and u = t(o+ 2 Cvu")>
a

then \ogAh_1 = (h-l)logK-K (^t^dt+O(l). (3.7)
o

I shall obtain the proof of Theorem 1 by applying the asymptotic
expansions of Theorems 2, 3 to the coefficients of/(£,*) in (3.1). Write

so that B^(N, k) is the coefficient of t-1 in

/(£ 0 = £-"+**»+%"' n
Sylvester's theorem states that

R(N, k) = R^N, k)+2 2 B$N, k). (3.9)

4. The principal t e rm R^N, k)
I shall prove in this section that R^N.k) satisfies the asymptotic

expansion (1.6), (1.6'). From (3.8),

/(1,0 = LePUr* Y[ Msinh^)-1. (4.1)
Hence, writing

^(1, t) = erp[Nt- 1 logf^vt)-1 sinh ̂ }] = ̂  V"^'k ) t"' (4-

we have R^N, k) = {jfc!(i— l ) ! } - ^ . ^ ^ , k). (4.3)
From (4.2),

- y
where JBP denotes the pth Bernoulli number {B0=l,B1 = ^,BZ = ^,...).

k
To evaluate 2 v2j>» w e u s e a modified form of the Euler-Bernoulli

v—1

formula. Let the numbers D& be defined by

° (s=lf 2>-)- (4>6)

[See Norlund,* where it is shown that A,, = (-1)"(22»-2)5S.]

* N. E. Norlund, Differenzenrechnung (Berlin, 1924), 27-8.
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Then, for m > 0, p > 0,

k

v=l

( | 8 | < 1 ) . (4.6)

The formula is a direct consequence of a formula given by Norlund
[loc. cit. 31].

Combining (4.6) and (4.4), we obtain

g(l,t) =

- 2 2-2"A, 5 (-D^
0 l

or equivalently, introducing

z =

p=l J-

^ v "' ( 4 - 7 )

where

and Av(oc, k) = bv(N, k)[^\ =bv(N,

We apply Theorem 3 to <?(1,2), writing in (3.6)

a = 1, T = £, h = k,

3095.2.2 H
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We have

/ V

C {u(t)—t}t-2 dt = 2—2-^—loga+log{2sinh|t

by (1.7). Hence Theorem 3 gives
logAk_t{*,k) = (*-

a
): (4.10)

that is, by (4.9),

log &*_!(#, fc) = (k-l)iog{k+^-(k-l)\ogoL+logAk.1(oi,k)

Stirhng's formula implies

Hence, by (4.3),

+logcx-log(27r)+ilog{«tt'(a)}+

+ 2 (-1)v^T)2
v—l

a
m - 1

This proves the statement. The range of validity of the expression is
given by the radius of convergence of v(t) defined by
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Since the coefficients Bpj(2p-\-l)\ are positive,

f [2—\zcoi\z) dz < f {2-\xcot\x) dx
'o o

on the circle \v\ = r. Hence the minimum of \t(v)\ on \v\ = r is

= r2f J (2-Joot Jx) dx]~\

It follows from the Burmann-Lagrange theorem* that v(t) is certainly
convergent in a circle with radius M(r). The maximum p = M(R) of
M(r) is where

R

i.e. at R = 4-2048.... Hence

\"1 )"1 = 2-5984....= i?2( J ( 2 -

5. The circulatory part
I have to show now that the circulatory part has a smaller order of

magnitude than the principal term B^N, k). This corresponds to the
fact (which, however, I shall not use) that z = 1 is the 'strongest'
singularity of the generating function

{(l-«)(l-««)...(l-a*)}-1 = 1 + 1 P(n,k)z\
n=l

In fact, I shall prove that

0 = 2 £

for every m > 0.
We first consider the dominating term B^N, k), which can be treated

very similarly to BX(N, k). We have from (3.8)

w n { h } 1 nn
h = [P], h' = [i*+i],

and i?_1(i^,i) = (-l)-^+W*+D2- fc{A!(A-l)!}-16A_1(-l,iV>i) ( (5.1)

• See Hurwitz-Courant, Funktionentheorie, 2. Aufl. (Berlin, 1925), 139.
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where

J

v (_I)P-I

CO r ft'

2 [2 ̂ -
P - 1 L K - 1

it

The Euler formula is used here in the form

2 (v-i)*, I ^ ^ n i r l K H t t ^ + ^ H i r (|S|<i).

We change the variable t into

2 —

and apply the corollary of Theorem 3 to

We obtain as in the previous section that
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Hence, by (5.1) and Stirling's formula,
N.k)}
= -klog2-\og{h\(h-l)\}+\ogbh_1(-l,N,k)

Since

2 ̂ i — log{2 sinh £u(a)

u) u) e*—
o

and h ̂  \k, it follows that R_X(N, k) has a smaller exponential order
than Rx(N,k) and that R^N.k) = o{k-mR1(N,k)} for every m > 0.

6. The circulatory part (continued)
Suppose now that q > 2 and write

-C2)...(l-Sr) if 0 < r < g , 7r(0,C)= 1. (6.1)
Then

and, from (3.8),

/(£,*) = '

X IT ( C O f W ' ^ * * ) A
v = l

IT' (l-COfeW'-^e-**)"1 A
3 = 1 v = l

Here II' signifies that the product index j takes only those values
which are not multiples of q. A similar remark applies to 2 ' below.

Write

I g t ^ ] ) . (6.2)
Then

' " •
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Hence \R^N,k)\ < g - ' W A - l ) ! } - 1 ^ . ^ , ^ , * ) ! . (6.3)

To obtain an estimate for 6A_! we have to study the function in the
exponent of (6.2). Let us write, for jS =£ 1,

We have

^ , W « ? (C > 0).
where the numbers Z^,, are positive integers satisfying the recursion

and <f>lf+V(p,t) = (p-e?)-»-*p(? £ L^/S-e*-* (/* > 0),

as is easily verified by induction.
Writing < = (/J— l)a; and making f$ -> 1 in (6.4) and (6.5), we obtain,

since

i.e. Z-

Heiice for an arbitrary primitive gth root of unity £ (q ̂  3)

Next I show that

I . ^ - I ) = 0, ^B{VM = (-l)vp(q2v-l) (v = 1, 2,...).
' - 1 3 = 1 2 " (6.8)
Using the identity
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we obtain

1—£? ^—i 1 —
3 - 1 * 3 = 1

Then (6.8) follows from this and (6.4).
Finally we note the following formula:

Let 0 < j < q, h' = [{k—j)/q], then

i ^ (|S|<1). (6.9)

This follows from Euler's formula or simply by comparing

V , . . , WMk+i)
N Iv+-I with XP dx.

Now we can develop the function in the exponent of (6.2) into a
power series. For the first sum we have

2

2 htv 2 B(U'p) 2 {qv+j )p
P"V^' 3=1 v=0

2 jitP 2 w
V=\ 3=1

~1) 2 8i
P=I "

.7), (6.8).



104 G. SZEKERES

For the second sum we have

2
h 00

2
since Bp/(2p)\ < (g/3V3)2".

Combining these results with (6.2), we have

_^±i f (-

Changing t into

and noting that

a < p = 2-5984...

we obtain

/x-0

• As a matter of fact, p = 2-5984... is slightly bigger than J3V3 and the above
inequality is not true if h = 1 and q is very near to k. But, if q > 4, then obviously
3V3 can be replaced by 4V2 in (6.7), and the inequality becomes a < 2V2 = 2-8....
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where

(6.10)
Hence

Let us put K = (&+£)/<Z and apply Theorem 2 to the coefficients

A,_lt l = oK (a < 1).

We have, for u = ii(or, t),

and, from (3.5),
a

log4-i = (l~l)logK-K f *fog-°*

j
(6.12)

aa

, (6.13)

since, by (6.12), ^ f £

StirUng's formula gives

). (6.14)

The expression in the brackets {} has a maximum (at fixed a) if

8 lnu{c7,a) , u(cr, a) , / 2 . , . , ,\) .
_ 2-^-i-a-fflog-i-i-i-log — -sinhiu(a,a) = 0,
oo\ a. a. \u(a,a) J)

— -H |coth^M = 1+log- .
j a

I a
— H
off (at ?i
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Here the left-hand side is 1, as is easily seen from (6.12). Hence (6.14)
is maximum if u(a, a) = a, i.e., by (6.12), if

oo

For this value of a, the expression in (6.14) becomes
a

2—(7—logl-sinh^Ml = - ^xcoth^da;—log(-sinh|a),
o

and „

logL ...-4/-i} < K - I \xcoth\xdx—logf-sinh£a) .
U{—1^! ) [a J »a /J

Combining this with (6.11) and (6.3), and noting that

in (6.11), we obtain

+ (q+h)log(q+h)—qlogq—h\ogh+

If /2 \ |
\x coth \x dx—logf- sinh |aj J

o
o

f^th^da;—log(2sinh£a) —

+qlog(l+hlq)+te+0(logh).
Here h\og(l+q/h) = 0(4*), g-log(l+%) =

TAl _ i

1 _|_ I f \x coth ̂ a; da;-log(2 sinh \<x) —

since

Hence

i r )
- £ccoth|a; da;—log(2sinh £a)+ | —
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In § 4 we have proved that

log-R^tf, £) =

sin

Hence we have finished the proof if we can show that

3 1 f I u(cx)
- - } - - ^xcoth^x dx—log(2 sinh i_a) < 3J2—— — log[2si
2 <x J y a

o

(2 f ]
= 3 - \xcoth\xdx—log[2sinh£w(a)]}. (6.15)

[u{ J
Now, if u > 0, then

(i) - £z coth ^x dx is monotone increasing,
o
u

(ii) - -Jxcoth^xdx—log/- sinh ^ti) is monotone decreasing,
o
u

(iii) — -Jxcothixifx—log/-sinh iw I is monotone increasing with u.u J \u I
0

For,
U

I \ I \

(i) -j-l- iarcothizda;) = -l iucothiu ia; coth \x ix I > 0
du\uj z J uV 2 «J /

x 0 ' v 0 '

( u

if u > 0,

1 f \
1 fxcothixdx < 0 if u > 0,

o '

(iii) 3~I - i*°oth£xdx—logl-sinh%u\\

( u .

^tt2coth^M+«—2 ^xcoth^xdx)
I I



108 ON THE THEORY OF PARTITIONS

and the last expression is positive for u > 0, since

d

o '
Hence a

3 1 f /2 \ 5
- + - £xcoth£xix—log(-s inh^a) < - by (ii),
2 a J \tx I 2

o

{ u >

2 /• /2 \ I
- I £xcoth£xdx—log(-sinh|M)} ^ 6 by (iii),
wj \U j \

o
and (6.15) is true if

§—log a < 6— 3logtt(a), 3logtt(a)—log a < g.
u

Now —— = - \ ix coth Ax dx
a uj

o
is increasing with u (and a) by (i). Hence 3log«(a)—log a is monotone
increasing with a. But, if «(a) = 3*5, then

/ 3*5 \ i

a = 3-52( J ^xcoth^x dx\ = 2-68... > p,

31ogii(a)—log a < 3 log 3-5—log 2-68 < g,

which proves (6.15).

[Note added 14 July 1950.]

From this point of view it is interesting to compare by a numerical example
the Sylvester terms for P(n, n) and the Hardy-Ramanujan terms for P(n). For
q < n, write Pq(n) = 2 Pj(n» i)» where £ runs through the primitive gth roots

of unity. Taking n = 8 we obtain
Pj(8) = 21-4127, Ps(8) = 0-4112, P3(8) = -00566, P4(8) = 0-1016,

PB(8) = 0, P6(8) = 0-0278, P7(8) = 0-0408, Pe(8) = 0-0625,
whereas the first five terms of the modified exact Hardy-Ramanujan-Rade-
macher series are

21-7092+0-3463—00896+0-0500—00192+....
Of course, the sum of both series is P(8) = 22.

For large values of n, I suspect a very close approximation of the Pq{n) by
the corresponding Hardy-Ramanujan-Rademacher terms. Unfortunately, it is
not easy to obtain data for comparison since the computation of the Sylvester
waves becomes almost prohibitive for large values of n. In one instance I have
calculated P2(40) and found + 7-4784, whereas the second Rademacher term for
P(40) is +7-4311. In the computation I was kindly assisted by the Mathe-
matical Statistics section of the Commonwealth Scientific and Industrial Re-
search Organization.


