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Detection ofn:m Phase Locking from Noisy Data: Application to Magnetoencephalography
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We use the concept of phase synchronization for the analysis of noisy nonstationary bivariate data.
Phase synchronization is understood in a statistical sense as an existence of preferred values of the
phase difference, and two techniques are proposed for a reliable detection of synchronous epochs. These
methods are applied to magnetoencephalograms and records of muscle activity of a Parkinsonian patient.
We reveal that the temporal evolution of the peripheral tremor rhythms directly reflects the time course
of the synchronization of abnormal activity between cortical motor areas. [S0031-9007(98)07333-5]

PACS numbers: 87.22.Jb, 05.45.+b, 87.22.As

Irregular, nonstationary, and noisy bivariate data abound In particular, we find that the phase locking between the
in many fields of research. Usually, two simultaneouslyactivity of primary and secondary motor areas is related to
registered time series are characterized by means of tréhe coordination of antagonistic muscles.
ditional cross-correlation (cross-spectrum) techniques or Our approach is based on the notion of phase synchro-
nonlinear statistical measures like mutual information omization. Classically synchronization of two periodic non-
maximal correlation [1]. Only very recently a tool of non- identical oscillators is understood as adjustment of their
linear dynamics, mutual nonlinear prediction, was used forhythms, or appearance phase lockingdue to interac-
characterization of dynamical interdependence among sysion. The locking condition reads
tems [2]. In this Letter we use a synchronization approach _ _
to the analysis of such bivariate time series and introduce lf””"(t)l < const  whereg,,(1) = nd:(1) md’z(ti,
new method to detect alternating epochs of phase locking (1)
from nonstationary data. By doing so we extract informa- and m are some integersp;, are phases of two os-
tion on the interdependence of weakly interacting systemesillators, ande, ,, is the generalized phase difference, or
that cannot be obtained by traditional methods. relative phase; all phases are divided Zay for normal-

Our technique, based on theoretical studies of phase syization, ande,, ,,, as well as¢ ,, are defined not on the
chronization of chaotic oscillators [3], can be fruitfully circle [0, 1] but on the whole real line. In this simplest
applied, e.g., in neuroscience, where synchronization pragsase condition (1) is equivalent to the notionfirefquency
cesses are of crucial importance, e.g., for visual patterfocking nQ); = m{),, whereQ,, = (¢1,) and brackets
recognition [4] and motor control [5]. Recent animal ex- mean time averaging. Note that for the determination of
periments have led to the conclusion that the control oBynchronous states it is irrelevant whether the amplitudes
coordinated movements is based on a synchronization aff both oscillators are different or not.
the firing activity of groups of neurons in the primary The definition of synchronization imoisy and/or
and in secondary motor areas [5]. Synchronization is alschaotic systemss not so trivial. Recently it has been
assumed to be involved in the generation of pathologishown [3] that the notion of phase can generally be
cal movements, e.g., resting tremor in Parkinson’s diseasatroduced for chaotic systems as well, and phase locking
(PD) [6]. Although experimental studies indicate whichin the sense of (1) can be observed. The amplitudes of
parts of the nervous system are engaged in generatimgynchronized systems remain chaotic and effect the phase
tremor activity, the dynamics of this process is not yet un-dynamics qualitatively in the same way as external noise
derstood [7]. [3]. Therefore in the following we consider noisy and

Here we study synchronization between the activity ofchaotic cases within a common framework, i.e., by the
remote brain areas in humans by means of noninvasivierm “noise” we denote both random and purely determin-
measurements. This is possible because a group of syistic perturbations to phases. If this noise is weak (and
chronously firing neurons within a single area generates bounded) then in the synchronous state the relative phase
magnetic field which can be registered outside the head bjuctuates around some constant value, and the condition
means of multichannel magnetoencephalography (MEG)f frequency locking is fulfilled. Strong noise can cause
[8]. Accordingly, synchronization of neuronal activity be- phase slipsi.e., rapid unit jumps of the relative phase. In
tween remote areas is reflected as phase locking betwednis case the question “synchronous or not synchronous”
MEG channels. Our analysis reveals phase synchroniz&annot be answered unambigously, but can be treated
tion (a) between the activity of certain brain areas andnly in a statistical sense. Following the basic work of
(b) between the activity of these areas and the muscle a&tratonovich [9] we understand synchronization of noisy
tivity detected by electromyography (EMG). systems as appearance of peaks indis¢ribution of the
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cyclic relative phaseéb, ,, = ¢,.,,» modl, that enables us 28
to detect preferred values of the phase difference irrespec-
tive of the noise-induced phase jumps. The probability of ;5 |
these upward and downward jumps may either be equal or -
different, i.e., the relative phase performs either unbiased®-
or biased random walks. In the first case the averaged
frequencieqd);, = (¢1,) coincide, whereas in the second

case they are different. However, in a statistical sense 2 g ‘ 2000 Time 4000 ‘ 6000
synchronization is characterized by the existence of one g 4q
or a few preferred values oF, ,,, no matter whether the (b) (©) d)

oscillators’ averaged frequencies are equal or different.
For illustration we consider two coupled nonidentical %05

Roéssler systems subject to noisy perturbations: WWWWWW

Xip = —wipyip — 212 + 12 + el — x12), -05 00 05-05 00 05-05 00 05

V12 = wi2x12 + 0.15y1, (2)  FIG.1. The relative phases;, (a) and distribution of
=02 + ~10) P, = @11 modl[(b),(c)] for system (2). If the noise is weak,
212 = Y z12(x12 : D = 0.2, the phase difference of two synchronized oscillators

Here we introduce the parameters = 1 + 0.015 and (e = 0.04) fluctuates around some constant value (curve 1),

. . nd its distribution is obviously sharp (not shown). In the
e which govern the frequency mismatch and the Strengﬂ&esence of strong noisB, = 1, the phase difference performs

of coupling, respectively£,, are two Gaussian delta- 3 piased random walk (curve 2,= 0.04), as well as in the
correlated noise terms¢;(r)¢;(¢')) = 2D&(t — t')8; ;. nonsynchronous case (curve 8,= 0.01). The distributions

The system is simulated by Euler’s technique with the timeof W1, [(b),(c)] clearly distinguish these states. The phase
stepAt = 247/1000. If the noisy perturbations are rather difference [(a), curve 4] computed fromandw that are linear

_ . . combination (see text) of outputs from uncoupled oscillators
weak, D = 0.2, the phase difference oscillates aroundand its distribution (d) do not lead to a spurious detection of

some constant level, and its distribution obviously has &ynchronization, although cross-spectrum analysis by means of
sharp peak. Therefore we can speak of frequency and/eich technique with the Bartlett window reveals significant

phase locking here (Fig. 1a, curve 1). If the noise iscoherencey® = 0.43 betweenu and w; parameters ar® =
stronger,D = 1, the relative phase performs a biased?-2: # = 0.02.
random walk, so there is obviously no frequency locking
(Fig. 1a, curve 2). Nevertheless, the distribution of therelative phase from a uniform one. For this purpose, we
phase definitely indicates locking in the statistical sens@ropose two measures, atm synchronization indices
(Fig. 1b), in contrast to the nonsynchronous case (Fig. 1dj) Index based on the Shannon entrogydefined as
curve 3 and Fig. 1c). Pum = (Smax — 5)/Smax, Wheres§ = —Zszl piInpy is

It is very important to emphasize that synchronization isthe entropy of the distribution o¥, ,, andSp.x = In N,
not equivalent to correlation. Hence, our analysis revealhere N is the number of bins. Normalized in this
different characteristics of the systems’ interdependencavay, 0 < p,, = 1, where p,,, = 0 corresponds to a
To illustrate this, we consider signals= (1 — u)x; +  uniform distribution (no synchronization) ang,, = 1
uxy andw = ux; + (1 — w)x,. By doing so we imitate corresponds to a Dirac-like distribution (perfect synchro-
the real situation: each MEG sensor measures signalt§zation). (ii) Index based on conditional probability:
originating from more than one area of neuronal activity.Suppose we have two phases(s;) and ¢,(¢;) defined
Nevertheless, this mixture of signals does not lead to an the interval[0,n] and [0, m], respectively; index;
spurious detection of synchronization, althouglandw  corresponds to time. We divide each interval into
are correlated (Fig. 1). bins. Then, for each bird, 1 =[ = N, we calculate

Now we use our approach to extract information aboutr;(t;) = M 'S ei) for all j, such thatp,(z;) belongs
the underlying dynamics of the system from bivariate datdo this bin/, and M, is the number of points in this bin.
at its output. With this aim in view we compute the If there is a complete dependence between two phases,
instantaneous phase; of each observed signal by meansthen|r,(¢;)| = 1, whereas it is zero if there is no depen-
of the Hilbert transform (see [3], and references therein)dence at all. Finally, we calculate the average over all
A straightforward approach to search fern locking is  bins, X,,m(tj) =1/N vazl [ri(z;)|. Thus, A,m Measures
to pick n andm by trial and error, plot the relative phase the conditional probability fokb, to have a certain value
enm VS time, and look for horizontal plateaus in this providede isin a certain bin [11]. To fine andm we try
presentation [10]. Because of phase fluctuations and slidifferent values and pick up those that give larger indices.
this can be misleading for noisy data (cf. Fig. 1). Thus, Here we analyze MEG and EMG data from a PD
the above described statistical approach is needed. patient who had a tremor of the right hand and forearm

To characterize the strength of synchronization, we havevith a principal frequency component between 5 and
to quantify the deviation of the actual distribution of the 7 Hz (Fig. 2). We registered EMG from two antagonistic
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muscles, namely, the right flexor digitorum superficialis Our analysis reveals the brain areas with MEG activity
muscle and the right extensor indicis muscle; standarghase locked to tremor activity (Fig. 4), while the tradi-
preprocessing (cf. [7]) was used so that the resulting signdional cross-spectrum technique fails here. Contralateral
represents the time course of the muscular contractiorsensorimotor MEG signals are coherent with EMG, in ac-
Next, MEG and EMG were filtered with a bandpasscordance with the concept of Volkmae al. [13] which
corresponding to the principal EMG frequency components based on their MEG study, animal experiments, and
(5—-7 Hz). MEG signals were additionally filtered with recordings during neurosurgery in PD patients. Never-
a bandpass corresponding to the tremor’s first harmonidheless, we also found tremor coherent MEG activity ex-
(10-14 Hz). As the data are nonstationary, we perform &ended over the right hemisphere in contradiction to this
sliding window analysis and compute for every time point concept [7]. Inefficiency of the coherence technique can
the distribution of¥,, ,, within the window[s — 7/2,¢ + additionally be seen from the fact that MEG channels

T /2] and synchronization indices [12]. overlying sensorimotor and premotor areas are coherent
To avoid spurious detection of locking due to noise andwith practically all other MEG channels.
bandpass filtering, we derive significance Iev,e;%n and To conclude, we proposed a method to deteot

A3, for eachn:m synchronization indeg, ,, andA,,, by ~ phase locking and quantify the strength of synchronization
applying our analysis to surrogate data (white noise filteredrom noisy bivariate data. A very important feature of our
exactly as the original signals). The 95th percentile of theapproach is that we can avoid the hardly solvable dilemma
distribution of then:m synchronization indicesp( , or  “noise vs chaos”. irrespective of the origin of the observed
A.m) Of the surrogates serves as significance Iepélm( signals the approach and techniques of the analysis are
or )lfgm). Only relevant values of the:m synchronization unique. In this way we addressed a fundamental problem
indices are taken into account by introducing the significantn neuroscience whether cortico-cortical synchronization
n:m synchronization indiceg,,, = maxp,, — p,f,n,o} is necessary for establishing coordinated muscle activity.
anda,,, = maxi,,, — A,,,0}. Forour data, computa-
tion of both indices gives consistent results.

»

Let us summarize our results. Pronounced tremor ac )>f‘“ ittt atebitin bbb o
tivity starts after~50 s (Fig. 3a). During this epoch, (b); - : - .
besides the expectgrbripheral coordinationij.e., 1:1 an- o Ogl; e ———
tiphase locking of EMG's of flexor and extensor muscles, = 1 |
(Fig. 3b), we also findorticomuscular (CMS) as well as o 05[\ //\\/-M/\/\/w«w
cortico-cortical synchronizatiofCCS). Namely, the ac- (g g
tivity of both sensorimotor cortex and premotor areas are _- o5 |., - i ——— ——— 11
1:2 phase locked with the EMG activity of both flexorand | 0;
extensor muscles (Figs. 3¢ and 4), whereas the activitie < 0:(1)F A ST AN AN
of these two brain areas atel locked (Fig. 3d). Itisim- © 0_5L /\W-JW /1
portant that when the strength of peripheral coordination ~ o) A
decreases during the last50 s, the strength of CMS and & o_aF A/\MA’M A 1

CCS is also reduced. We find that MEG activity in the (g . . . . . .
range of 10-14 Hz is responsible for both CMS and CCS. = o.;l»c\ AL SVIALYIN NN A 1,

50 100 150 200 250 300
Time (s)

@)E 20f ' ' ' ]
E_ZSWWWWNWWWM FIG. 3. (a) EMG of the right flexor muscle (RFM, upper
S . . .

trace) and an MEG over the left sensorimotor cortex (LSC)

0 \/\/\/\/V\/V\/\/V\/\/\/\/\/\/\/\/\/\/\/\/\ (lower trace). (b) 1:1 synchronization between right flexor and

extensor muscles: the distribution of the cyclic phase difference
(b), 002 ' ' ' W, computed in the running windof¢ — 5,7 + 5] is shown
< 001p ﬂE M. o ﬂ M Mﬁ ,Mn !M WL as a gray-scale plot, where white and black correspond to
0 T ; T minimal and maximal values, respectively (upper plot); the
0.00 J\/\/\/\/\/\/\/\/\/\/\ lower plot shows the corresponding significant synchronization

) index p;;. (c) 1:2 corticomuscular synchronization: time
100 100:5 Time (s) 101 1015 102 course of the distribution of the cyclic phase differenge,
©) 10 (d) .10 between MEG signal from the LSC and EMG of the RFM
n _mww n _7M (uppermost plot) and of the corresponding indiges, and
10 4 6 8 10 12 10 42 6 8 10 12 A1 for comparison, 1:1 synchronization index ; between
LSC and RFM is shown below. (d) 1:1 cortico-cortical
frequency (Hz) frequency (Hz)

synchronization between LSC and a premotor MEG channel.
FIG. 2. An original and filtered MEG signal (from a channel The dashed line indicates the value p{, corresponding
over the left sensorimotor cortex) (a) and its power spectrunio 99.9th percentile of the surrogates. Significance levels
(c). The EMG signal of the right flexor digitorum muscle (b) are pr, = 0.03, A7, = 0.26, pt; = 0.07 [(b) and (c)], and
and its power spectrum (d). plS,l = 0.03 (d).
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FIG. 4. Time dependence of the significant synchronization inglexcharacterizing 1:2 locking between the EMG of the right

flexor muscle (reference channel, plotted in the lower right corner) and all MEG channels. Each rectangle corresponds to an MEG
sensor, time axis spans 310 s andxis scales from 0 to 0.25. The head is viewed from above, “L” and “R” mean left and right

(see the “head” in the upper right corner). The upper and lower gray regions correspond to premotor and contralateral sensorimotor
areas, respectively. The results are similar for the extensor muscle. Significanc)eﬁgevelom and window lengtil” = 10 s.
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for the following parameters: bandpass of EMG signals:
5-7 Hz, bandpass of MEG signals: 5—7 and 10-14 Hz
(for quantification of1:1 and 1:2 locking, respectively).
Our findings were additionally confirmed by analyzing
the data filtered with two-band filters (e.g., 5—7 Hz plus
10-14 Hz).

Volkmannet al. [7] suggested that rhythmic thalamic ac-
tivity drives premotor areas (premotor cortex and sup-
plementary motor area) which drive the primary motor
cortex. The latter drives the spinal motoneuron pool
which gives rise to rhythmic bursts of the muscles’ ac-
tion potentials detected by means of EMG. The periph-
eral feedback reaches the motor cortex via the thalamus.



