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Networks are used to represent relationships between entities in many complex systems, spanning from
online social networks to biological cell development and brain activity. These networks model relationships
which present various challenges. In many cases, relationships between entities are unambiguously known:
are two users friends in a social network? Do two researchers collaborate on a published paper? Do two
road segments in a transportation system intersect? These are unambiguous and directly observable in
the system in question. In most cases, relationship between nodes are not directly observable and must be
inferred: does one gene regulate the expression of another? Do two animals who physically co-locate have a
social bond? Who infected whom in a disease outbreak?

Existing approaches use specialized knowledge in different home domains to infer and measure the good-
ness of inferred network for a specific task. However, current research lacks a rigorous validation framework
which employs standard statistical validation. In this survey, we examine how network representations are
learned from non-network data, the variety of questions and tasks on these data over several domains, and
validation strategies for measuring the inferred network’s capability of answering questions on the original
system of interest.

1. INTRODUCTION
“Networks are too easy to create, and too difficult to validate” – Ancient
Proverb

Networks are used to represent relationships between entities in many complex sys-
tems, spanning from online social networks to biological cell development and brain ac-
tivity. These networks model relationships which present various challenges. In many
cases, relationships between entities are unambiguously known: are two users friends
in a social network? Do two researchers collaborate on a published paper? Do two road
segments in a transportation system intersect? These are unambiguous and directly
observable in the system in question [Kramer et al. 2009]. In most cases, relationship
between nodes are not directly observable and must be inferred: does one gene regu-
late the expression of another? Do two animals who physically co-locate have a social
bond? Who infected whom in a disease outbreak?

Networks are mathematical representations (i.e. models) used to answer these types
of questions about data collected on individual entities. There are a broad range of the
questions asked, and a variety of ways in which networks are used to answer these
questions. However, how do we know if a particular network representation of the
data is the most useful in answering a given question? What is the “right” network
representation, and how do we compare the utility of many possible representations
for our particular question? Finally, how can we measure whether a network is the
appropriate model to answer a question of interest on the original system or data?

Existing approaches use specialized knowledge in different home domains to infer
and measure the goodness of inferred network for a specific task. Current research
lacks a rigorous validation framework which employs standard statistical validation:
significance/uniqueness (“How unique is a well-performing network in the space of
possible solutions?”), sensitivity (“how does the performance of the network change to
changes in the underlying data measurement or model parameters?”), and robustness
(“how accurate is this network over different methods or tasks?”).
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In this survey, we examine how network representations are learned from non-
network data, the variety of questions and tasks on these data over several domains,
and validation strategies for measuring the inferred network’s capability of answering
questions on the original system of interest.

1.1. Motivation: Networks Model Complex Relationships
Networks are a natural choice of data representation across many domains. Networks
naturally represent higher-order structure which emerge from dyadic relationships,
and serve as units of further analysis. These structures include neighborhoods, ego-
nets, communities/modules, and connected components. For example, in the computa-
tional biology domain, clusters and motifs often represent shared biological roles of
proteins. The collective connectivity over these proteins provides stronger evidence for
roles than individual pairwise relationships. Depending on the question of interest,
individual, dyadic, or aggregate population analysis may be the most appropriate and
effective.

Second, networks naturally represent heterogeneity among entities by virtue of lo-
cal network topology. Rather than analysis on population aggregates (e.g. histograms),
networks enable local querying of complex, non-metric attribute spaces. Non-metric
properties of networks can be conceptualized through homophily, which tends to yield
autocorrelation in attributes among entities close in the network. However, these cor-
relations also tend to be non-monotonic: the most similar node to a query entity may
be arbitrarily distant in the network. Due to this autocorrelation, network topology
often represents local subspace clusters as overlapping, heterogeneous relationships.
For example, a user’s ‘friends’ in an online social network often clusters into functional
units: friends from work, school, from the user’s hometown etc. where each cluster are
correlated in some–often unknown–attribute (e.g. my cycling friends). The effective-
ness of simple heuristics such as counting common neighbors in the link prediction
problem [Liben-Nowell and Kleinberg 2007] demonstrates the latent local information
within social networks.

Third, networks are interpretable models for further analysis and hypothesis gener-
ation. Researchers can visualize small networks and examine relationships between
nodes to compare against their knowledge and intuition in the domain. Furthermore,
descriptive network measures enable researchers to compare networks according to
density, degree distribution, clustering coefficient, centralities, diameter, average path
length, triangle counts [Itai and Rodeh 1978; Tsourakakis et al. 2009] and graphlet dis-
tributions [Pržulj et al. 2004]. Many higher-level network measures have also been de-
veloped including robustness [Chan, Tong, and Akoglu Chan et al.; Purohit et al. 2014]
local information efficiency [Babaei et al. 2016], and routing efficiency [Leskovec and
Horvitz 2014; Watts and Strogatz 1998]. Using these shared measures, researchers
can reason about the network through this comparison.

Finally, networks are common models for data, and can be re-used in multiple stud-
ies. The breadth of tools and support for network analysis allows researchers of various
disciplines to apply sophisticated off-the-shelf analysis and visualization techniques,
as well as easier storage, querying and portability in off-the-shelf graph databases.
Finally, researchers have a common vernacular and skill-set developed in the area of
“network science,” despite originating from various domains such as biology or physics.

When inferring networks from non-network data, researchers ought consider
whether higher-order structures are meaningful and informative, and which of these
descriptive measures are appropriate on the inferred network. Arguably, available
tools and convenience can motivate researchers to translate their problem into a net-
work formulation, whether or not a network is the best model for the question of inter-
est.
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1.2. Inferring Networks from Non-Network Data
We define inferred networks as a class of network where the node and/or edge defini-
tions are inferred from non-explicitly relational data. Work in machine learning and
network mining typically focuses on applications of explicit networks: network repre-
sentations where the meaning of nodes and edges is unambiguous and categorical,
or weighted with low uncertainty. For example, in the (explicit) Facebook network,
two adjacent users are categorically “friends.” In weighted networks such as a road
transportation network, nodes represent road intersections, and edges the road seg-
ments between them. These edges change with low probability (e.g. repair and con-
struction) and are unambiguous. Measuring weights (e.g. travel time) is a matter of
sensing/measuring traffic over the network, but these measurements are constrained
to adjacent nodes on the known topology. In general estimating weights in these appli-
cations is a matter of accurately measuring a known relationship on a known topology,
rather than learning a hypothesized relationship on an unknown topology.

Researchers routinely construct networks from attributes or other data to evalu-
ate against their explicit network. Furthermore, much of the work in scientific do-
mains (including biology, ecology, chemistry) learn interaction networks in the absence
of ground truth, and have developed varied strategies to evaluate the quality of net-
works for prediction, classification, or the discovery of new relationships unknown in
the domain.

1.3. Challenges
Inferring networks from non-network data provide several unique challenges:

– The relationships of interest within real datasets are often noisy, and confounded
by overlapping relational structure at varying scales (e.g. temporal, spatial).

– Determining whether a particular method accurately encodes the relationship of
interest in the network requires: (1) ground truth data, (2) model assumptions
(e.g. Exponential Random Graph Model), or (3) some stability assumption (e.g. pre-
dictability over time). In many instances, no such assumptions or data are available,
and researchers are left to tuning an interaction threshold.

– Many network topology inference methods with thresholds or other parameters de-
fine a continuous space of possible networks, often leading to ad-hoc selection or
parameter-space sampling (see: Section 2.5.1). Although sensitivity analysis is rou-
tine for the model parameters of the subsequent task on the network (e.g. predic-
tion, classification), most predictive models do not allow incorporating the inferred
network topology into the model.

– The validity of descriptive interpretation of edges, paths, and modules is increas-
ingly challenging with model complexity. For example, a social network defined via
thresholding on who-calls-whom mobile call record data is more interpretable than
a linear regression model on a feature vectors of mobile users. Determining the
validity and interpretability of these higher-order features is crucial to the many
analyses that use them.

1.4. Contributions
This survey organizes recent work focusing on inferring networks from non-network
data in the construction of inferred networks, drawing from several domains where
these methods are being applied as well as general methods in machine learning. This
survey has two distinct contributions: (1) this work proposes a data science-focused
formal description for the network topology inference problem, unifying work across
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Network Structure 
Inference
[Kolaczyk 2009]

Temporal Networks
[Aggarwal and Subbing 2014]
[Holme and Saramaki 2012]

[Holme 2015]

Relational Learning
[Kimmig et al. 2015]

[Sen et al. 2008]         
[Xiang and Neville 2008]

Link prediction
[Hasan and Zaki 2011]

[Liben-Nowell and Kleinberg 2007]

Joint Inference/Prediction

Predictive Inference

Network Modeling
[Goldenberg et al. 2010]

Parametric Inference

Domains
[da Fontoura Costa et al. 2011]

[Havlin et al. 2012]

Neuroscience
[Bielza and Larrañaga 2014]
[Bullmore and Sporns 2009]
[Rubinov and Sporns 2010]

[Simpson et al. 2013]

Ecology
  [Krause et al. 2013]

[Farine and Whitehead 2015]
[Pinter-Wollman et al. 2013]

Computational 
Biology  

[Hecker et al. 2009]
[Marbach et al. 2012]

 [Sima et al. 2009]
[Yu et al. 2013]

…

Epidemiology 
[Danon et al. 2010]

[Keeling and Eames 2005]
[Welch et al. 2011]

Fig. 1: An overview of related areas in machine learning and network science for this
survey, several surveyed domains, and principle surveys and introductory work for
these sub-areas.

many domains, and (2) we provide a taxonomy and shared vocabulary to organize the
problem space in order to direct future research under a shared problem description.

1.5. Meta-Review: Comparison to Existing Surveys
In this section, we provide a brief meta-review of existing surveys and work which is
related but distinct from the Network Structure Inference Problem. See Section 2.3 for
how these areas relate to our proposed taxonomy of related work within this problem.

Figure 1 provides a map of research in related but distinct network science prob-
lems. The most similar work to this survey is [Kolaczyk 2009]. The author organizes
related work in three different categories: (1) the link prediction problem, where some
edges and all nodes are known and the task is to infer new edges, (2) interaction net-
works where all nodes are known, and the task is to infer edge relationships (e.g. by
correlation), and (3) network tomography, where some edges and nodes are known, and
the task is to infer ‘interior’ (unobserved) node and edge topology [Haddadi et al. 2008;
Ni et al. 2010; Zhou et al. 2011]. Of these, (2) is primarily within the scope of what we
define as the network inference problem; we focus with greater depth on the network
inference procedure where no edge definition is known a-priori and must be learned.

We define the ‘network structure inference problem’ distinct from the large body
of work in relational learning.1 One branch within this area is attribute inference

1Within this area, our problem is broadly referred to as ‘information extraction.’
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and prediction on (explicit) networks. Given a network, these methods infer missing
attributes using local estimates [Sen et al. 2008; Xiang and Neville 2008], or predict
edges at a later time-step or by node attribute similarity [Hasan and Zaki 2011; Liben-
Nowell and Kleinberg 2007; Lü and Zhou 2011]. Link prediction is one particular task
of our general task-oriented framework.

A second branch in this area focuses on inferring probabilistic relational models
from data [Getoor et al. 2007; Kimmig et al. 2014]. While graphical models are one
strategy applied to our problem, generally these models treat attributes or variables
as entities and are suited for semi-structured, often transactional data. Previous work
in probabilistic relational models have learned relationships between an explicit input
graph, and a learned output graph using node attribute inference, entity resolution,
and link prediction tasks in a supervised setting [Namata et al. 2015].

Our survey draws on several application areas, however, we focus on comparing
methodologies and challenges in these areas. da Fontoura Costa et al. [2011]; Havlin
et al. [2012] span a more exhaustive range of application domains and their study
of complex networks. Other recent surveys cover broad statistical network modeling
[Goldenberg et al. 2010] and multilayer networks [Boccaletti et al. 2014; Kivelä et al.
2014]. Our survey draws on parametric network models, which is one class of inference
method trying to infer the model parameters. Research in network fusion on multi-
layer networks for a particular task (e.g. prediction) is one case of network structure
inference where our input data is also relational. Recent surveys also outline work on
temporal networks [Aggarwal and Subbian 2014; Holme 2015; Holme and Saramäki
2012]. Many network structure inference applications define edges by association mea-
sures over time (e.g. correlation in time series), so dynamics are an important aspect of
network models for prediction tasks. These surveys cover each of these complimentary
aspects in greater depth, and typically focus on explicit networks.

Our survey covers several different application areas. Recent domain-focused meta-
studies [Marbach et al. 2012] and surveys in computational biology [Hecker et al.
2009; Li et al. 2008; Sima et al. 2009; Yu et al. 2013], ecology [Farine and Whitehead
2015; Krause et al. 2013; Pinter-Wollman et al. 2013; Proulx et al. 2005], neuroscience
[Bielza and Larrañaga 2014; Bullmore and Sporns 2009; Rubinov and Sporns 2010;
Simpson et al. 2013], political science [Lazer 2011] and epidemiology [Danon et al.
2011; Keeling and Eames 2005; Welch et al. 2011] all have significant discussion of
network topology inference specific to the domain. However, none of these have net-
work structure inference as a methodological focus and are limited to discussion of the
single domain. Our survey focuses on challenges across each of these areas. We pro-
vide value to domain researchers both within and across fields, as well as researchers
in machine learning interested in model development on networks.

2. PROBLEM DESCRIPTION
2.1. Preliminaries
We define a network G = 〈V,E,A〉 as a tuple containing a set V of n nodes, |V| = n,
a set E of m node pairs eij ∈ E, |E| = m, and set A containing node or edge attribute
sets. A particular attribute, the weight of an edge wij is a scalar value, |wij | ≤ 1, where
wij = 0 denotes the absence of an edge. An unweighted network is a special case of
a weighted network where wij ∈ {0, 1}. Edge and node features are a particular type
of attribute, derived by a kernel function measuring some local edge or node property
(e.g. node degree). Time-varying network definitions are simply a t-length sequence of
static network snapshots: G = (G1, ...Gk, ...Gt).
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Symbol Definition
D A dataset for input to a network inference method,(temporal, spatial, multi-

variate etc.)
G,E,V,A G = 〈V,E,A〉, an attributed network with nodes V, edges E, and attribute-set A
n,m n number of nodes and m number of edges on network G.
vi, eij , wij node vi ∈ V, edge eij ∈ E, edge weight wij

R(), T () A network data model function R(D, •)→ G producing graph G from input data
D, a task model T (G, •) → (p1, p2...) producing a stream of responses from input
graph G.

e() An error function e() evaluating a task T ().
τ Edge similarity threshold for inclusion in the inferred network, τ ≤ wij ⇔ eij ∈ E

Table I: Table of symbol definitions used throughout this survey.

2.2. Data Science Motivations for Network Structure Inference
Data science has been a growing and somewhat contested2 field of study in recent
years. Under the name ‘Data-intensive science,’ Jim Gray argues that data and compu-
tation enable a new ‘fourth’ paradigm of science. These data-driven models enable the
investigation of questions beyond the capability of science utilizing theoretical model-
driven (the second) or model-driven simulation (the third) paradigms [Hey et al. 2009].
The scope of what can be called ‘data science’ is heavily overloaded, ranging from high-
performance computing and computing at scale, to visualization, to blog posts analyz-
ing political census data or networks of characters in film scripts. ‘Data science’ in some
of these numerous contexts arguably inverts the traditional process of science, with a
strong focus on exploratory analysis rather than hypothesis testing and experimen-
tal design. In this exploratory setting, data scientists discover surprising relationships
and hidden business value in large, complex datasets, or focus on predictive modeling
without a motivating question on the underlying system.

We organize the network inference problem through a lens of hypothesis-driven data
science. Under this perspective, the value of a network can be stated simply: for a
scientific question of interest, and its relevant (non-network) data, are networks an
informative and useful data model for better answering our question?

Figure 2 gives an overview of this data science workflow, and all the relevant terms
to our taxonomy. As researchers, we start with a broad question of interest, and try to
locate or collect the data relevant to answering our question. There are several possible
data sources and modalities for analysis, coupled with several possible representations
(including networks). Our choice of data representation informs and constrains our
hypotheses about the question of interest, and typically domain science (orange, top)
and machine learning (purple, bottom) generate complimentary results for hypothesis
generation. Novel computational models are developed to test these hypotheses. Re-
sults from this data-driven paradigm have closed the gap in understanding for many
questions in novel ways. Data-driven science has also developed novel methodologies,
enabling new, large-scale experimental design [Backstrom and Kleinberg 2011; Gui
et al. 2015] and randomization techniques [Efron and Tibshirani 1993; Kleiner et al.
2014], two key methodologies across scientific domains.

Figure 2 pinpoints several levels of modeling which can impact the final performance
at answering our question of interest. Often different teams will be responsible for gen-
erating and collecting the underlying data, inferring or defining the network, or devel-
oping the predictive models. For example, machine learning researchers will rarely
control the underlying sampling rate of very specialized data collection workflows in

2With several disciplines claiming ownership or criticism.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January XXXX.



Network Structure Inference, A Survey: Motivations, Methods, and Applications 1:7

Gap

Data Modeling

Question

Data

Data Model

GPS,
Proximity

Social,
Photos, 
Video

Tensors Time Series,
Sequences

Available Tools,
Data, Expertise

Intuition,
Observation,

Statistical Analysis

Patterns, Clusters,
Models, Optimization

Hypothesis Generation

Statistically Testable, 
Parsimonious,

Predictive or Descriptive

Answer

Experiments,
Model Development

Model/Hypothesis Testing
Visualization 

Networks
Explicit, Discrete, Inferred Relationships

Known or Inferred Entities

Genomics

Plausible Explanations
Supported Hypotheses

Problem

Computational Science
Process

Fig. 2: A general framework for computational science and data science, with a fo-
cus on networks as data models for non-network data. A researcher typically (1) uses
relevant data and appropriate data models to formalize a particular question. Tradi-
tional domain science (top, orange) typically combines direct observation and simple
statistical models. Data-driven science with machine learning (bottom, purple) aug-
ments this intuition, hypotheses and statistical models with sophisticated features
and patterns, yielding additional challenges for visualization, hypothesis testing and
generation. The output of this analysis is a plausible explanation or some supported
hypothesis. The result of data-driven science are considered to be shrinking this ‘gap’
in understanding, toward robust and verifiable answers to the original question, in
novel ways (see: [Hey et al. 2009]).

bioinformatics, geophysics and climate, or neuroscience. In the machine learning com-
munity, there is a great deal of sensitivity analysis for the subsequent predictive model
parameters, without testing the parameters of the underlying network representation.
This strategy is effective at producing sophisticated models “given a network,” but is
less suited at answering our scientific questions on the original data.

2.3. A Taxonomy for Network Structure Inference
We taxonomize work in the network inference problem according to (1) the varying
‘difficulty’ of defining edges and nodes given the nature of the underlying data of the
network, (2) the type of method (e.g. regression, correlation, novel interaction mea-
sures) used for inference, and (3) the types of questions and hypotheses which are
studied using the network representation.

2.3.1. Explicit, Discrete, and Inferred Edge Definitions. Networks model three broad types
of relationships (i.e. edges), typically based on a measure of interaction between enti-
ties. Categorical, explicit relationships are unambiguously known in the system–such
as the ‘friend’ relation in Facebook. Discrete interactions denote unambiguous trans-
actions occurring between two entities–such as phone calls or text messages in mobile
device data. The primary task of defining edges on these interactions is to select an
appropriate threshold to measure the strength of the relationship. Inferred interac-
tions denote some statistical measure of similarity, beyond simple transaction counts.
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For example, the definition of a spatiotemporal co-location interaction between two
entities can be simply inferred by specifying “how close” for “what duration.” This is
generally a more challenging measure of relationships relative to discrete interactions.

2.3.2. Explicit and Inferred Node Definitions. Similarly, inferring nodes is of varying diffi-
culty in different domains. In most applications, the nodes are explicit in two ways:
(1) the node definition is unambiguous (e.g. a ‘user’, ‘animal’ or ‘gene’ is a node), and
(2) there is a node correspondence between time-steps in the data (e.g. this particu-
lar node corresponds to user ‘Ivan’ at each time step). Functional brain networks, and
climate networks are two examples of domains where the node definition is not explic-
itly given–e.g. a group of two-dimensional earth surface pixels, or three-dimensional
brain voxels. The scale of node definition can dramatically change the performance of
predictive models, or the stability of descriptive statistics derived from the network
[Cammoun et al. 2012].

2.3.3. Hypotheses and Tasks on Inferred Networks. Before discussing data models, we
should first have some intuition of what a researcher wants to do with the network.
Figure 2 (right) illustrates the core novelty in machine learning and data science in
hypothesis generation, model development, and testing. In machine learning, there
is typically a bias toward evaluating these hypotheses using a novel prediction task
model. However, typically these models do little to explain the underlying system, and
are more useful for generating new hypotheses. In the statistics domain, there is a
bias toward descriptive modeling, where the ‘task’ is parameter inference on an as-
sumed parametric (or “non-parametric,” [Wasserman 2006]) statistical model on the
data. These parameters are useful at interpreting the underlying system, such as fit-
ting the exponent of degree distributions, or reporting other aggregate statistics on a
network.

Applications driven by descriptive models aim to reconstruct and describe the un-
derlying relational structure with the greatest fidelity, relative to the domain knowl-
edge base. A typical example in this area are gene regulation networks (GRNs). These
networks are inferred on data measuring individual genetic expression over different
experimental settings. In these networks, nodes represent genes or functional gene
families, and edges represent inferred positive or negative gene expression relation-
ships (e.g. “gene ‘A’ reduces the expression of gene ‘B’ under some context”). Inference
of these networks typically identifies new, high quality candidate regulation relation-
ships given high accuracy of inferring known edges. These interactions can be exper-
imentally tested to build greater understanding of cellular processes and to develop
potential personalized medical treatments.

In contrast, predictive methods aim to discover topology within the network which
maximizes predictive performance, and may not reconstruct the underlying process
with the highest fidelity, but with a focus on those aspects or modalities which are
most predictive. Modeling the predictive aspects of the data allows researchers to learn
regular relationships between modalities (e.g. call, SMS, and location in mobile phone
data) or over time (e.g. periodicities) and aids further hypothesis generation to explain
the predictive relationships. However, often highly predictive relationships are also
uninteresting and can drive the structure of the inferred network. Domains such as
climate tend to subtract known periodic dynamics as preprocessing on the underlying
data, prior to inferring the network structure.

2.3.4. Methods for Network Structure Inference. We organize related work broadly along
the type of network structure inference model used, including parametric, non-
parametric and various thresholded interaction/correlation measures. Within these
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groupings, we categorize the type of task performed on the network, including edge
and attribute prediction, descriptive analysis, or model selection.

Table II summarizes work across several domains, introducing the basic scientific
question driving the analysis, and the network structure inference model used to re-
alize the network. In Table II (Column ‘Model’), we label these models under two
broad categories. First, parametric models allow interpretable, descriptive statistics.
We identify graphical models (GM) and other network models fit with maximum like-
lihood methods (ML), relative to some assumption on the input data such as informa-
tion flow between nodes [Gomez-Rodriguez et al. 2012]. Causal models (CM) typically
generate causal networks–a special case of graphical models–using Granger causality
[Granger 1969] or other causal definitions [Mani and Cooper 2004; Meek 1995]. These
networks represent strong relationships between nodes which control for confounding
factors caused by other (possible) adjacent nodes.

Second, non-parametric models tend to directly measure interactions between nodes
and use statistical tests to determine appropriate edge weights. Section 2.5.1 covers
this category in greater detail. We categorize work related to novel and ‘ad-hoc’ in-
teraction measures (I) between the data associated with pairs of nodes, correlation
networks (IC) which measure linear, cross, or some other correlation, entropy (IE),
frequency domain measures (IF), and regression (R).

Table II (Column ‘Task’) categorizes rows within each domain by the type of task
performed, under the caveat that one study may use several evaluation strategies, or
that the actual task could only loosely be described as the canonical task (e.g. edge
prediction).

First, we denote predictive tasks, including edge prediction (PE) and attribute pre-
diction (PA). Attribute prediction can also describe prediction of the original data, i.e.
by simulating/generating data through the network model [Papalexakis et al. 2014].
Predictive models are relatively rare across domains because researchers are very in-
terested in expressive models which give insight into the underlying system. We ob-
serve some specialization in both information networks (in the machine learning liter-
ature) and epidemology, which aims to predict the extent or timing of an epidemic over
a population in varying contact models.

Second, descriptive analysis is broken into node-oriented statistics (DN), this in-
cludes reporting distributions of simple node statistics including degree distribution,
clustering coefficient, correlation distributions, etc. This often constitutes the base-
level exploratory analysis. Role-oriented analysis (DR) aims to characterize nodes us-
ing network features, by the structural roles they play in the system (i.e. bridges in-
between social communities). Other high-order analysis (DH) examines communities
or other larger subgraph structures beyond node and edge-based descriptive statistics.

In both descriptive and predictive cases, we observe a good deal of work in model
selection (MS). These varying models correspond to different hypotheses to how the
network might have been generated.

2.3.5. Evaluating Networks and Tasks. Evaluation strategies over the entire workflow of
Figure 2 measure the performance of the final task (prediction or statistical inference).
In this context, the network serves as a model of the data, but the fidelity of this model
in terms of fitting error, or evaluation against partial ground truth network data does
not measure the network’s usefulness at answering questions on the original input
data. For any non-trivial data or domain, it is perhaps more appropriate to think of the
space of networks as possible representations with some utility for answering a specific
question. ‘The network’ is typically seen as uncovering the true relational structure of
the data with some error [Wang et al. 2012].
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Most scientific domains agree with an evaluation strategy focused on final task (a
network for location prediction, brain activity response etc.), because there is no eval-
uation network for comparing the inferred network structure. For example, we simply
cannot survey baboons [Farine et al. 2016] as we can humans [Eagle et al. 2009] to
discover their real friendships. Furthermore, uncovering the general, robust network
from complex data may not appropriately model the overlapping modalities of the data.
For example, a multitude of complex contexts might mean that functional brain net-
works are inherently probabilistic. Discovering the underlying, robust network model
will be less informative in the general case because it does not account for this com-
plexity.

2.4. Problem Definition
The Network Topology Inference problem represents some input data as a network
and validates this network relative to performance on some task(s). This is an active
area of research across many application domains, but lacks a general framework for
evaluation, typically using domain rules-of-thumb and application-specific evaluation
schemes. This is an initial work formalizing this problem, particularly in the absence
of ground-truth network data.

The network topology inference problem combines two basic models: first, a network
model R(D, •) → G constructs network G on input data D. This model may be para-
metric statistical models (e.g. ERGMs) or non-parametric and threshold-based inter-
action networks. Second, the problem uses a task model T (G, •) → (p1, p2...) on input
G under some parameters, which emits task responses (e.g. prediction ‘pi’). These re-
sponses approximate the hidden, ideal function T ∗(G) of a particular network task
(e.g. classification, prediction) with error e().

This formulation may seem underspecified. However, it succinctly clarifies the re-
lationships between data input, the network model, and the task model. It explicitly
formulates network G as a model on data D for task T ∗, approximated by T . This
formulation captures simple interaction network workflows (see: Section 2.5.1) which
separately infer the network (often by expertly-tuned thresholds) and validate task
performance, as well as parametric inference methods which learn the network model
parameters (and possibly, jointly the task model parameters). To our knowledge, all
network inference models can be formulated in this pattern, and all network inference
models should be formulated relative to a particular task or hypothesis. In much of
the existing work, the network model or task model will not be formulated explicitly,
or the space of possible model combinations may be under-explored.

We can instantiate several tasks within this framework. In the context of net-
work prediction tasks, our predictive model can output predictions of (1) edges, (2)
attributes, or (3) the original data. For one instantiation, on a validation edge-set E∗,
we can evaluate:

argmin
G

e(T (R(D, α), β),E∗) (1)

This is a joint optimization of G over parameters α and β, for edge prediction. In this
context, the suitability of both the network and task models (and the appropriate error
function) will determine the performance of the inferred network. This joint model
may an EM-like formulation, where the task and network models share information
iteratively to re-learn their parameters.

This formulation also demonstrates two key challenges in the network inference
problem. First, the parameter space of possible G from R(D, •) may be large, and
the joint optimization with the parameters of a given task is likely to be non-convex.
Furthermore, well-performing local solutions in the task parameter-space may have
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different network topologies. Summarizing and reconciling these differences may be
important in interpreting where the network is most robust. It is unclear how to rec-
oncile differences and summarize this space of plausible networks into a single, inter-
pretable, effective model. This proliferation of possible task and network model combi-
nations makes further hypothesis generation and testing daunting for the researcher,
who has diminishing confidence in empirical statements about the system of interest.

2.5. Formulating Data-to-Task Workflows with Network Data Models
Our problem definition is flexible enough to incorporate the varying types of network
models (e.g. regression, parametric network models) and tasks (e.g. prediction, descrip-
tive statistics and hypothesis testing). Below, we describe several formulations for net-
work structure inference, according to their network model and task model.

2.5.1. Interaction Networks. The most prevalent class of network topology inference is
measuring pairwise interactions (e.g. correlations) between nodes, and choosing a
threshold to define a sufficient degree of interaction. This threshold may be chosen
by some statistical test, by tuning on some desired criteria (e.g. assumed network den-
sity), or in an ad-hoc way with prior domain knowledge.

This has been discussed in the context of discrete interactions as described above:

“Inferring networks from pairwise interactions of cell-phone call or email
records simply reduces down to selecting the right threshold τ such that
an edge (u, v) is included in the network if u and v interacted more than τ
times in the dataset. Similarly, inferring networks of interactions between
proteins in a cell usually reduces to determining the right threshold.” [Myers
and Leskovec 2010]

Researchers often make several application-specific decisions around these thresh-
olds:

“From this complete correlation graph, only the edges with significant corre-
lation (> 0.5) were retained. But using the same threshold for positive and
negative correlations is not appropriate as negative correlations are usually
weaker and many nearby locations have high positive correlation” [Kawale
et al. 2013]

“We let δ as a user-controlled parameter, where larger δ values correspond to
less predicted regulations, and only focus on designing a significance score
s(t,g) that leads to ‘good’ prediction for some values of δ” [Haury et al. 2012]

These methods typically produce a fixed network model but do not explore the space
of possible networks under varying interaction thresholds, except through offline trial-
and-error. Furthermore, subsequent sensitivity analysis on these outputted networks
G are often performed on the task model parameters alone, rather than jointly on both
models.

We can formulate the workflow for this analysis under our framework. Assume the
interaction threshold τ is given by hand-tuning or domain knowledge, we have some
feature matrix D that has some notion of similarity between features, and T () is an
edge prediction task evaluated on E∗. Then this workflow is expressed as:

R(D, τ)→ G; argmin
β

e(T (G, β),E∗) (2)

When these interaction networks are evaluated in the absence of ground truth, the
network may be measured through autocorrelation. In this case, the same network
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inference is applied, R(D∗, α) → G∗ for some hold-out data D∗ (e.g. at some later
time).

2.5.2. Parametric Inference and Model-Fit Networks. Maximum-likelihood methods assume
some parametric model family to represent relationships between nodes (such as time
between interaction, likelihood of information transmission over time) and infer the
best model parameters. For clarity, we work through one specific application, in epi-
demiology and information networks such as blogs, although the pattern is similar in
other applications. Structure inference methods on information networks share the as-
sumption that we are observing the ‘arrival’ of information or attribute value at nodes
(i.e. computers, blog pages, individuals) over time, but are unable to observe the topol-
ogy which transmitted the information. For an edge eij , the infection time difference
tj − ti can be fit against an infection model over time, measuring the likelihood that vi
infected vj [Myers and Leskovec 2010].

Where input data D are infection times of each node, we can formulate these work-
flows as:

argmin
α
R(D, α)→ G; argmin

β
e(T (G, β),E∗) (3)

In information network applications, E∗ is typically provided by a known network.
Processes are simulated on this network to generate input data for the maximum-
likelihood relational data model R(). This method is used to ‘reconstruct’ E∗ only from
input data D.

2.5.3. Jointly-Learned Network and Task Models. Previous work in statistical relational
learning on explicit networks has focused on jointly learning relationships between
(categorical) attributes and a predictive task, such as link prediction [Gong et al. 2014;
Namata et al. 2015], and distinguishing correlated effects between these processes [La
Fond and Neville 2010].

Previous work has also used a workflow approach to the network structure inference
problem which maximizes performance of particular task(s) on the inferred network
[De Choudhury et al. 2010; Farine et al. 2016]. Consider interaction networks over
varying thresholds τ . A naive solution for this type of approach is to explore the pa-
rameter space ofR(D, τ) and evaluate the task performance on each inferred network.
However, this is very costly, especially as R requires more parameters.

The joint optimization for network structure inference learns the features in D that
perform well at task T (). For example, previous work has learned network models
which jointly discovers features in a supervised LDA model, and the logistic regres-
sion weights which perform well for an edge prediction task [McAuley et al. 2015]. In
Equation 1, we have already formulated joint optimization network structure infer-
ence within our framework, repeated here:

argmin
G

e(T (R(D, α), β),E∗) (4)

The jointly optimized model may avoid discovering spurious relational model param-
eters which are not suitable for the intended task. Second, we may be able to learn a
more interpretable relationship between the original feature space and the task model.
However, this strategy has the added requirement that the output of each model can
be used to re-train the other. For example, McAuley et al. [2015] use a supervised
LDA model which uses the output of the edge prediction task to re-train the relational
model. Because of this added modeling complexity, joint models are relatively rare
compared with multi-step workflows.
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Fig. 3: From [Marbach et al. 2012]. A consensus gene regulatory network (GRN) of
Staphylococcus aureus generated from microarray data in the DREAM5 challenge en-
semble workflow (see: Figure 4). Network modules in agreement with Gene Ontology
(GO) database are colored and labeled according to their shared function (grey are not
coherent in GO). The detail (right) shows inferred gene regulation related to pathogen-
esis.

3. APPLICATIONS OF NETWORK STRUCTURE INFERENCE
Although the applications in ‘network science’ are far too broad to survey with any
meaningful focus, we look closely at a few applications where inferring networks from
non-network data is a particular focus. Alongside these inferred networks, several of
these applications have extensive work on networks from direct observation (e.g. in
ecology).3

3.1. Computational Biology: Discovering New Genetic Regulation
Networks are constructed in computational biology to model many different processes.
Protein-protein interaction (PPI) is the most common type of network in this domain,
constructed experimentally through yeast two-hybrid experiments which physically
test for binding of one protein to another. Metabolic networks are a process network
which models relationships between enzymes, metabolites (nodes) on processes (edges)
such as reactions or pathways (e.g. biologically meaningful paths through the net-
work). We focus only on gene regulation networks (GRNs) and gene co-expression net-
works (GCNs) which have focus on statistical inference of relationships between genes
under different experimental scenarios (for further reading, see: [Sima et al. 2009]).

3.1.1. Underlying Data in Gene Regulatory Networks. Next-generation high-throughput mi-
croarray technologies allow the sequencing of genomes and measuring the expression
of particular genes at a large scale and low cost [Shendure and Ji 2008]. ‘Expression’ is
the measurement of how groups of genes produce different phenotypic specializations
through the production of different proteins. In cellular development, different gene
co-expression can be responsible for RNA translation or nucleotide metabolism, yield-
ing many complex functions from gene interaction (see: [Barrett et al. 2013]). Figure 3
illustrates a small network with annotated functional clusters.

3All figures reprinted with permission and attribution.
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Domain Problem Sec. Model Task Citations

Computational
Biology

Discover
interactions
between
genes in
cellular
processes

3.1

I

DH, DR

Zhang and Horvath [2005]

IE Butte and Kohane [2000]; Faith
et al. [2007]; Meyer et al. [2007]

GM
Allen and Liu [2012]; Lebre et al.
[2010]; Mani and Cooper [2004];

Mukherjee and Speed [2008]; Toh
and Horimoto [2002]

R Haury et al. [2012]; Yuan and Lin
[2006]

CM PE Barzel and Barabasi [2013]; Feizi
et al. [2013]

Climate
Describe
relationships
in environ-
mental
system
dynamics

3.2

IC
DN, PA

Kawale et al. [2012]; Paluš et al.
[2011]; Steinhaeuser et al. [2011];

Tsonis and Roebber [2004];
Yamasaki et al. [2008]

IE Donges et al. [2009b]; Hlinka
et al. [2013]

CM
DN

Ebert-Uphoff and Deng [2012];
Kretschmer et al. [2016]; Runge

et al. [2013]
GM Zerenner et al. [2014]
R Zhou et al. [2015]

Neuroscience

Model
relationships
between
brain
regions,
physiological
structure,
and function

3.3

IC

DN, MS

Bialonski et al. [2011]; Zalesky
et al. [2012]

IF
Lachaux et al. [2002];

Pfurtscheller and Andrew [1999];
Ponten et al. [2016]; Zhan et al.

[2006]

CM
David et al. [2008]; Dhamala

et al. [2008]; Friston et al. [2011];
Ramsey et al. [2010]; Roebroeck
et al. [2005]; Rosa et al. [2012]

ML PA Papalexakis et al. [2014]

Epidemiology
Model hidden
networks
from
observed
infections

3.4
I

PA, MS
Adar and Adamic [2005]; Haydon

et al. [2003]

GM
Britton and O’Neill [2002];

Groendyke et al. [2011]; Stack
et al. [2013]

ML
Du et al. [2012]; Gomez-Rodriguez

et al. [2014, 2012]; Myers and
Leskovec [2010]; Netrapalli and

Sanghavi [2012]

Ecology
Describe and
predict
animal
behavior

3.5 I DH, MS
Aplin et al. [2012]; Haddadi et al.

[2011]; Psorakis et al. [2012]
IE Barrett et al. [2012]
R DN Whitehead and James [2015]

Mobile

Predict social
influence on
individual
mobility

3.6 I PE, DN
De Choudhury et al. [2010]; Eagle
et al. [2009]; Mastrandrea et al.

[2015]; Sekara and Lehmann
[2014]

Interaction, IC: Correlation, IE: Entropy, IF: Frequency, I: Novel measures
CM: Causal model GM: Graphical model, ML: Maximum likelihood, R: Regression

Prediction, PA: Attributes, PE: Edges
Descriptive Analysis, DN: Nodes, DR: Roles, DH: Other high-order, MS: Model Selection

Table II: A summary of related work, across domains
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The output of the microarray analysis (with notable simplification) is a 2D data
matrix of numeric values measuring the expression of a gene (row), on a particular
experimental design, subject, or time step (column) [Bar-Joseph et al. 2012]. Defining
edges between genes simplifies to comparing expression profiles across the different
columns of the data.

3.1.2. Discovering New Gene Interactions From Data. The high-level ‘task’ for gene regula-
tory networks is link prediction on the network learned from data, to discover unknown
gene regulation candidates which can be experimentally tested. The network model in-
ferred from data should agree with databases of biologically-known interactions and
function, while providing few verified false-positive regulations.

Table II illustrates that the inference of GRNs is very mature relative to other do-
mains. gene regulatory network inference is very mature relative to other domains,
since the inferred network has immediate value for future investigation and hypothe-
sis generation, and it is verifiable according to current domain knowledge. Researchers
in this area apply most categories of prediction task models including regression, cor-
relation, mutual information, and graphical modeling. One unique challenge in gene
regulation is the issue of confounding factors including indirect and transitive asso-
ciations which lead to many spurious edges. Recent work has measured these ‘direct’
(e.g. causal) edges in noisy expression datasets [Barzel and Barabasi 2013; Feizi et al.
2013].

Fig. 4: From [Marbach et al. 2012]. The general workflow design for the DREAM5 net-
work inference challenge. This workflow (1-2) generates one simulation dataset and
three experimental microarray datasets from three well-studied species. The 29 par-
ticipating inference methods all (3) generate inferred network output, (4) a consensus
network is constructed for each dataset, and then (5) validated against known edges
in synthetic networks, and against experimentally known edges in two of the real
datasets.

3.1.3. A Workflow From Gene Expression Data to Interaction Discovery. Marbach et al. [2012]
introduces an ensemble approach associated with the DREAM5 competition. The au-
thors present 29 different network inference methods across different model types,
including regression, mutual information, correlation (a.k.a. ‘relevance networks’ in
this domain), Bayesian networks, ensembles, and other novel approaches (e.g. random
forests, neural networks, Gaussian mixture models, etc.) This list demonstrates the
maturity and variety of methods applied to this problem. These methods use pairwise
(e.g. gene-to-gene correlation) or group-wise (e.g. many-to-one group LASSO) measures
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of interaction intensity, which yield a directed, unweighted network signifying “gene A
regulates gene B.”

Figure 4 illustrates an ensemble workflow for the DREAM5 network structure infer-
ence challenge. The authors (1) generate a ground truth network on three species using
experimental trials as well as synthetic network data. In (2), these experiments yield
four different datasets of biologically-tested networks of gene regulation, as well as
the raw (non-relational) gene expression. The collection of inference methods produce
(3) inferred networks on each of the four datasets. The authors (4) integrate these 29
different inferred networks to produce an ensemble network. This network is (5) val-
idated against the ground-truth networks generated in step (1). Finally, the authors
show that the ensemble method discovered 59 potential interactions, of which 29 show
some support, and 20 show strong support for being biologically significant.

We examine this process in such detail to demonstrate the ‘complete’ workflow for
network structure inference, from input data, to relational model, to a final output
(learning the regulatory network). Within our formulation, this workflow does not have
an explicit task model, as the network itself is the object of interest. Therefore, this
application is typically descriptive modeling against a known ground truth. Although
these models do ‘predict’ new potential gene regulation via previously unknown edges,
these interactions are usually checked manually through experimentation.

3.2. Environmental Science: Discovering New Climate Relationships and Predicting
Outcomes

Networks inferred to understand climate dynamics are among the most difficult to
model of any domain, and much of the work to formalize and validate these networks
is actively being developed. Within this domain, researchers are interested in discov-
ering robust, causal relationships between climatic variables, over different spatial
regions of earth. This modeling can improve prediction of changing hydrological pro-
cesses, land-cover, ecosystem productivity, and polar or sea ice cover, which are key
aspects for climate change mitigation. Two unique challenges exist for inferring cli-
mate networks: (1) input data is typically noisy, highly spatially-autocorrelated, mul-
tivariate time series of climatic variables collected under varying regimes and sensor
quality. Domain scientists produce “reanalysis” data products which attempt to miti-
gate these problems. However, inferring accurate networks from these data requires
significant understanding of the data ingestion workflows [Levitus et al. 2013; Saha
et al. 2014], and its introduced biases and variability. (2) the structure of climate net-
works is not well understood aside from a handful of climate indices–coarse spatial
locations on earth where dynamics are well-studied and regulate or correlate with
other environmental processes (e.g. El Niño and La Niña oscillation cycles). Therefore,
validating correctness of the inferred network is suitable for unsupervised strategies
such as relational or predictive modeling of the original data.

3.2.1. Network inference methods in climate and environmental science. Nearly all studies
constructing climate networks use some time series similarity as an underlying rela-
tional measurement. Previous work has used linear correlation [Donges et al. 2009a;
Steinhaeuser et al. 2011; Tsonis and Roebber 2004; Yamasaki et al. 2008] or mutual
information [Donges et al. 2009a; Hlinka et al. 2013], and use either a hand-picked
[Donges et al. 2009a; Tsonis and Roebber 2004] or simple statistical test [Yamasaki
et al. 2008] to set similarity threshold τ–where similarity greater than τ is considered
a binary edge in the network.

There is considerable focus on formulating these simple pairwise comparison meth-
ods, and often the ‘recipe’ of the network according to parameter settings and prepro-
cessing choices varies greatly from study to study. These networks are typically binary
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rather than weighted, because the final output of interest is a binary decision on the
similarity distribution: (e.g. {“significant”, “not significant”}). However, typically these
measures will have no ‘natural’ threshold which gives this binary classification. In-
stead, these networks can be gradually densified or sparsified by loosening or tighten-
ing the similarity threshold.

Descriptive statistical work has been very popular downstream from these vary-
ing network ‘recipes.’ Donges et al. [2009a] reports clustering coefficient, betweenness
centrality, closeness centrality. Tsonis et al. [2011] reports community structure which
tends to cluster in spatially-contiguous locations, on account of the autocorrelation
present in these networks. Little work focuses on evaluating these networks as predic-
tive models for the input data. Steinhaeuser et al. [2011] use both descriptive statistics
and predictive performance to evaluate the inferred network.

As work utilizing network models grows in this climate and environmental science,
researchers have developed more sophisticated techniques for determining edge signif-
icance [Kawale et al. 2012], or conditional dependencies using causality [Ebert-Uphoff
and Deng 2012; Kretschmer et al. 2016; Runge et al. 2013].

3.2.2. A Workflow from Environmental Sensing Data to Environmental Interaction Network. We
will step through a concrete example of constructing a climate network from spatially-
gridded time series data of global surface air temperature (SAT) [Donges et al. 2009a].
The authors measure the similar dynamics of pairwise earth locations (correspond-
ing to nodes ni, nj) and construct edges between locations with ‘significant’ similarity.
The authors use two standard measures, linear correlation and mutual information
between time series Xi and Xj :

Pij =

|Xi|∑
t=1

(Xi,t − X̄i)(Xj,t − X̄j)√
|Xi|∑
t=1

(Xi,t − X̄i)2

√
|Xj |∑
t=1

(Xj,t − X̄j)2

(5)

Mij =

|B|∑
b=1

pb(Xi, Xj)log
pb(Xi, Xj)

pb(Xi)pb(Xj)
(6)

Equation 5 is the sample Pearson correlation between two time series, where X̄i is
the sample mean of time series Xi. The denominator represents the product of the
sample standard deviations of Xi and Xj . This measures linear relationship of Xi and
Xj over the length of the time series. Equation 6 is the discrete mutual information
estimation between two time series, where pb(Xi, Xj) is the joint cumulative distribu-
tion of the b-th discretization window, and pb(X) the marginal cumulative distribution
of the b-th discretization window. This measure compares the shape of the joint and
marginal CDFs under the independence assumption. When the joint distribution is
equal to the product of marginal distributions: log(1) = 0 yields no mutual information
(e.g. Xi and Xj are independent).

Varying similarity threshold τ produces networks of varying edge densities ρ and
other network measures such as the size of the largest connected component. The
authors select thresholds for correlation and mutual information (τcorr = 0.682 and
τMI = 0.398) such that they produce the same network density (ρ = 0.005).

Figure 5 (a) shows the density of pairwise linear correlation measures (Pij) vs. ge-
ographic distance between nodes, on a logarithmic color bar scale. This illustrates a
strong spatial autocorrelation between nearby points. (b) shows the pairwise distri-
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(a) Pij vs. distance (b) Mij vs. distance (c) Pij vs. Mij

Fig. 5: From [Donges et al. 2009a]. On the input data of averaged global surface air
temperature (SAT) at different spatial regions, (a) shows the distribution of pairwise
linear correlation measures (Pij) vs. geographic distance between nodes, on a logarith-
mic color bar scale. This illustrates a strong spatial autocorrelation between nearby
points. (b) shows the pairwise distribution for mutual information pairwise calcula-
tion vs. geographic distance, showing less spatial autocorrelation. The horizontal bars
indicate thresholds on the Pij and Mij scales which produce the same network density
(ρ = 0.005). (c) shows the linear correlation vs. mutual information. The starred quad-
rant ((c) top-left) denotes edges defined by mutual information but not by correlation.

bution for mutual information pairwise calculation vs. geographic distance, showing
less spatial autocorrelation. The horizontal bars indicate thresholds on the Pij and
Mij scales which produce the same network density (ρ = 0.005). (c) shows the linear
correlation vs. mutual information. The starred quadrant ((c) top-left) denotes edges
defined by mutual information but not by correlation.

While several methods have been developed to test edge significance, little work has
focused on the validity of higher-order structures such as paths or communities. While
the graph definition of paths or communities are valid on these networks, no known
work measures the interpretation of these relationships with respect to the original
time series data, or domain knowledge.

Figure 6 explores the sub-spaces of different node measures on the inferred network.
Figure 6(a) shows the distribution of betweenness centrality per node, vs. the degree
per node. Similarly, 6(b) shows betweenness centrality and closeness centrality. The
authors demonstrate that (degree-preserving) edge re-wiring randomization indeed
destroys the rank-order correlation between the marginal distributions of the node
measures.

There are two drawbacks of this analysis which re-occur across domains. First, while
this methodology tests some global relational structure of the network, we are unable
to interpret the relationship between any two nodes at a high geodesic distance (≥ 2).
This means that we cannot measure properties we associate with networks, such as
flow or routing. Second, significance analysis is done at a particular threshold setting,
without a sensitivity analysis on the original threshold choice. In the machine learning
settings, the parameter sensitivity will often be on the prediction model parameters at
a particular network definition threshold.

3.3. Neuroscience: Describing Functional Brain Structure and Their Connections
Much biological research suggests that the brain activates interconnected, often spa-
tially distant regions along neuronal pathways [Sporns 2014]. This interconnected
complexity makes networks a very natural model to study the brain. These studies
are broadly in two areas: structural and functional brain networks. structural net-
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(a) Betweenness vs. Degree (b) Betweenness vs. Closeness

Fig. 6: From [Donges et al. 2009a] (a) the distribution of betweenness centrality of
nodes vs. degree of nodes. (b) the distribution of betweenness centrality of nodes vs.
closeness centrality of nodes.

works (also known as ‘effective connectivity’, tractography, or the brain connectome)
map the physical axon pathways between neurons, which may be relatively long and
spatially distant. With some simplification, these networks are analogous to the phys-
ical layer in communication networks, where nodes are explicitly connected by cables
and routers. Functional networks are analogous to the logical layer in communica-
tion networks. These networks model how neuronal signals (i.e. ‘traffic’) flows over
this physical layer in order to activate other neurons (i.e. ‘resources’) to perform dif-
ferent types of behavior such as auditory, visual, or motor behaviors. Unfortunately,
researchers do not fully understand the underlying routing and information-seeking
on this physical network, nor the complex contexts which change how the behavior is
realized within the functional layer. Researchers aim to better understand and predict
this routing, and the collective activation dynamics in different areas of the brain.

Much work compared the topology of structural and functional networks using de-
scriptive network statistics, and higher-order structures such as cluster and commu-
nities [Reijneveld et al. 2007; Rubinov and Sporns 2010; Sporns and Betzel 2016],
especially under different experimental conditions which may affect these structures
such as spinal cord injuries, epilepsy, or schizophrenia. However, all of these studies
infer the network models differently, therefore it is an open challenge to rigorously
synthesize these results.

3.3.1. Underlying Data in Brain Networks. The underlying data for structural or function
networks are primarily derived from two sources. First, biomedical imaging technolo-
gies including Magnetic Resonance Imaging (MRI), functional MRI (fMRI), Diffusion
Tensor Imaging (DTI) detect structure of varying densities and water content. These
procedures produce a flat, 2-dimensional image of pixels, or a 3-dimensional volume
of voxels (often as a time series of samples). For example, Diffusion Tensor Imag-
ing (DTI) is used to construct structural networks. These images can accurately trace
axon tissue connectivity by measuring flow vector orientation through the voxel space.
Functional MRI (fMRI) similarly measures blood flow to voxels, a surrogate for ‘ac-
tivity’ at this location. Inferring a functional network on fMRI data then amounts to
measuring statistical interactions between activations in different brain areas. Sec-
ond, non-invasive sensors including Electroenchaphalography (EEG) and Magnetoen-
cephalography (MEG) measure and localize electrical current at a probed location.
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Fig. 7: From [Sporns 2014]. A data workflow for constructing brain networks. (1) for
a subject or population of subjects, (2) sensing techniques such as Diffusion Tensor
Imaging (DTI) or functional Magnetic Resonance Imaging (fMRI) are used to sense
connectivity or activity of the brain, respectively. (3) Given sensed data at recording
sites (nodes), edges are inferred by different measures on the underlying data (see:
Section 3.3.2). (4) Subsequent scientific study is conducted, using the network as a
data model.

Typically, these probes yield fewer and spatially coarser nodes than those defined from
fMRI voxel data. These techniques produce time-series estimating electrical current
(another surrogate for ‘activity’) at reference locations.

Figure 7 illustrates defining both structural and functional networks, from (1) the
data collection on individual subjects to (4) the final analysis task. The left path of Fig-
ure 7 illustrates constructing structural networks. (2) Anatomical parcellation tech-
niques use DTI or similar imaging to determine physical connectivity in the brain.
These techniques are very accurate in recovering tracts of connectivity, unambigu-
ously. (3) these tracts are translated into nodes and edges, where previous work shows
significant effects of node definition on descriptive measures such as average path
length and clustering coefficient [Zalesky et al. 2010]. Finally, (4) researchers use the
networks as models to ask questions about the brain of the original subject or popula-
tion.

The right path of Figure 7 illustrates inferring functional networks from sensed neu-
ronal activity. This activity can be for a range of stimulus such as music preferences
[Wilkins et al. 2014], image/language associations [Papalexakis et al. 2014] or for ex-
perimental conditions such as an Alzheimers patient cohort [Supekar et al. 2008a].
(2) fMRI, EEG, or MEG sensors measure activity at different recording sites (contact
locations, pixel or voxel locations). As in structural network construction, some aggre-
gation or node definition mapping may be applied for defining this time series dataset.
(3) These activity response signals are compared between recording sites (nodes) with
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time series similarity measures such as cross-correlation. ‘Sufficiently’ similar time se-
ries dynamics are interpreted as latent connections between nodes, yielding the final
functional network.

Aside from structural and functional networks from fMRI coupled with a particular
experimental user task (e.g. speaking, listening, motor), work has focused on inferring
resting-state networks (RSNs) of the brain [Greicius et al. 2003]. These networks are
constructed in much the same way as other functional networks, except this resting
connectivity is informative of very robust functional clusters. Functional networks for
different user tasks can then be characterized at a higher level (e.g. cognitively ‘diffi-
cult’ tasks) by comparing to the resting-state network (RSN).

Another network of interest is the ‘rich-club’ structural sub-networks [van den
Heuvel et al. 2012; van den Heuvel and Sporns 2011, 2015]. This network is essen-
tially a k-core decomposition of the structural network, which indicates the global
‘backbone’ of connectivity (where k > 10 is set in comparison to degree-preserving
randomized networks). Nodes within the rich-club network are also used to character-
ize the broader network into ‘rich-club edges’ connecting two rich-club nodes, ‘feeder
edges’ connecting exactly one rich-club node, and ‘local edges’ which connect two non
rich-club nodes (see: Figure 8). Analogous to routing in communication networks, in-
formation can flow locally within one local region for a particular behavior, or routed
through backbones to physically distant regions.

3.3.2. Methods for Inferring Networks. Time series are the dominant underlying data in
neuroscience, therefore methods for constructing functional brain networks are almost
exclusively in the domain of thresholded pairwise similarity measures, with some ex-
ceptions of parametric network modeling [Klimm et al. 2014]. Sakkalis [2011] provides
an in-depth review of these different measures, including cross-correlation [Bialonski
et al. 2011; Zalesky et al. 2012], frequency domain analysis such as discrete Fourier
transform (DFT) and discrete wavelet transform (DWT) and domain-driven ‘coherence’
measures [Lachaux et al. 2002; Pfurtscheller and Andrew 1999; Ponten et al. 2016;
Zhan et al. 2006]. Finally, significant work has focused on causal models [Ramsey et al.
2010], including Granger causality [Dhamala et al. 2008; Roebroeck et al. 2005] and
dynamic causal models (DCM) [David et al. 2008; Friston et al. 2011; Rosa et al. 2012].

Where these methods have threshold parameters, τ , these methods are often
validated by measuring robustness of network statistics across varying thresholds
[Kramer et al. 2008], and using these thresholds for distinguishing patient cohorts by
label or network statistic distribution. For example, previous work uses paired t-test
or other simple statistical test [Supekar et al. 2008b]. Kramer et al. [2009] proposes a
bootstrapping [Efron and Tibshirani 1993] method in the frequency domain which can
provide more general p-values without model assumptions.

3.3.3. Dynamic Functional Brain Networks. Because the data underlying functional brain
networks is often time series over a fixed set of nodes, a time series of networks (dy-
namic networks, or time-evolving networks) are a natural extension in this domain
[Hutchison et al. 2013]. Network construction using time-series similarity measures
(e.g. cross-correlation) generalize to the dynamic setting, computing on time-series
subsequences. The advantage of introducing the complexity of dynamics is discovering
distinct connectivity ‘states’ over the course of the experiment. Because fMRI response
can change very quickly as activity occurs over the brain, these states are lost un-
der global time series measures [Damaraju et al. 2014; Robinson et al. 2015; Yu et al.
2015]. Challenges of network validation generalize to this dynamic setting, with the
added challenge of appropriate temporal scale.
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Fig. 8: From [Sporns 2014]. A study workflow comparing structural and functional
brain networks. (a) a schematic of the rich-club structural network. Blue nodes indicate
the k-core decomposition of the structural network (k > 10), grey nodes indicate non-
rich nodes. Red (‘rich-club’) edges connect two rich-club nodes, orange (‘feeder’) edges
connect exactly one rich-club and one non-rich node, yellow (‘local’) edges connect two
non-rich nodes. (b) the network with colored nodes and edges, visualized in a brain
coordinate system. (c) an adjacency matrix comparing structural topology sensed from
Diffusion Tensor Imaging with rich-club edge coloring (left) to three thresholded values
of functional connections for resting brain state inferred from fMRI for the same node-
set (right). These nodes are ordered according to brain function in different spatial
regions of the brain (e.g. default mode network (DMN), motor, auditory, frontal). (d)
the distribution of rich-club nodes within these different labeled regions.

3.3.4. A Workflow for Comparing Functional and Structural Brain Networks. Figure 8 illus-
trates a complete case study which summarizes many of the topics discussed above.
This work integrates structural networks across 75 individuals, sensed from Diffusion
Tensor Imaging (DTI) with functional networks sensed from fMRI in resting state us-
ing Pearson correlation. These different views of the network enable researchers to
study how function and connectivity are correlated. (a) illustrates a schematic layout
of rich-club nodes, feeder, and local nodes. (b) shows the layout of these nodes in a
brain coordinate system, with the same node and edge coloring. (c) illustrates an ad-
jacency matrix comparing structural connections (left) with three thresholded values
of functional connections within the same node-set (right). Furthermore, nodes in dif-
ferent spatial regions of the brain (e.g. default mode network (DMN), motor, auditory,
frontal) are labeled according to primary function, showing structural and functional
edges between these regions. (d) shows the distribution of rich-club nodes within these
different labeled regions.

3.4. Epidemiology, Blogs, Information Networks: Modeling Virus Spread and Information
Flow

3.4.1. Networks in Epidemiology. Networks are used in epidemiology to simulate the
spread of disease over a family of parametric network models (e.g. random, small-
world, exponential random graphs) representing contact between entities over time
[Keeling and Eames 2005]. Network structure inference in epidemiology and infor-
mation networks aims to discover an unobservable network (e.g. physical contact net-
works, sexual networks, malware transmission) over which information or infection is

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January XXXX.



Network Structure Inference, A Survey: Motivations, Methods, and Applications 1:23

(a) (b) (c) (d)

Fig. 9: Examples of networks inferred from data, or modeled in the epidemiology do-
main, re-printed from [Danon et al. 2011]. (a) depicts a contact network where squares
are respondents, and edges are sexual or drug contact which might transmit HIV
[Bell et al. 1999]. (b) a sexual network derived from snowball sampling of respondents
(squares), where the edges between non-respondents (circle nodes) are unknown. (c)
a network of households (cliques) and their interconnections for modeling infection
in realistic social contact networks. (d) The ‘small-world’ network property modeled
through a lattice with sparse edges connecting distant nodes.

spread. We observe the effects of transmission on the infected node (e.g symptoms), but
not the edges over which they spread. Our focus is therefore on parametric inference
for these models from non-network data.

Modeling contact networks allows researchers to simulate different outbreaks on
these networks. Figure 9 illustrates types of network data and models used in the
epidemiology domain [Danon et al. 2011]. Figure 9(a) visualizes a contact network from
survey data, where squares are respondents, and edges identify transmission risk for
HIV through contact by drug use or sex [Bell et al. 1999]. Figure 9(b) shows a snowball
sample of respondents (as squares) and their partners. In this example, edges between
circle nodes are unknown. Subsequent modeling for edges between circle nodes can
test the spread over this population under different unobserved contact assumptions.
Figure 9(c) illustrates a model of households (cliques), sparsely connected to others.
This is intended to model contact networks and potential spread through family-unit
environments. Finally, 9(d) illustrates a lattice network with sparse edges outside of
the local neighborhood. This model was previously used to capture the ‘small-world’
property of information and disease spread [Boots and Sasaki 1999].

Historically, inferring networks in this area focuses largely on parametric graphi-
cal modeling using MCMC (from the epidemiology domain) and maximum likelihood
methods (from machine learning), incorporating modeling assumptions in transmis-
sion rate decay. Given a transmission model (e.g. the susceptible-infected-recovered
SIR model or susceptible-exposed-infected-recovered SEIR model), these methods mea-
sure the likelihood of possible sequences, or trees of infection, where infection times
from a root are monotonically increasing. Simply, let ti and tj denote the infection
times of nodes ni, and nj then the transmission model measures the probability
P (“j infected i”|tj − tj).

3.4.2. Contact Network Inference. Early work in the epidemiology domain focused the
inference of either spread parameters (e.g. infection rate) or network model parame-
ters on random graphs [Britton and O’Neill 2002], Poisson, and power-law networks
[Meyers et al. 2005], and fitting of real-world data to a contact network model [Bansal
et al. 2007]. In these analytical and simulation results, the network model is known
and no structural inference is necessary. These studies generally model the spread
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of an epidemic under possible individuals in contact (called ‘contact tracing’) [Patrick
et al. 2002], and discovering the root individual(s) of the infection (called ‘transmis-
sion tracing’). Early work also formulates association network heuristics based time
and distance of potential contacts [Haydon et al. 2003]. However, this area is largely
focused on parametric network modeling.

3.4.3. Infection-Time Cascades. Previous work in machine learning uses network struc-
ture inference to represent the spread of information between nodes, where the edges
of transmission are unobservable. Maximum-likelihood formulations have focused on
learning a network under assumed transmission rate models, using statistical infer-
ence for these parameters Myers and Leskovec [2010].

Figure 10(a) illustrates the intuition of network construction by information prop-
agation through unobservable edges. To recover the unobservable true network G∗,
each sequence of non-decreasing infection times (e.g. “cascades”) supports the possible
transmission between nodes with sufficiently close infection times. The key modeling
step of this area of work is specifying (or learning the parameters of) a transmission
model which measures the likelihood of a cascade according to differences in adjacent
infection times.

(a) (b)

Fig. 10: From [Gomez-Rodriguez et al. 2012]. (a) illustrates the intuition of construct-
ing network G∗ on a collection of cascades c1, c2...ck. For a possible source node s, these
methods estimate the likelihood of infecting i given the observation of information
arrival (‘infection’) at node i. (b) An estimated information network inferred from hy-
perlink arrival times at nodes.

Myers and Leskovec [2010] (“CONNIE”) uses convex programming to learn a
maximum-likelihood network under a fixed transmission time probability distribu-
tions w(t), and recovery-time distribution r(t). To learn the transmission weight ma-
trix A, the authors use an Independent Cascade model [Kempe et al. 2003] where an
uninfected node ni is exposed to infection by adjacent infected nodes nj at each time
step using a Bernoulli process with a probability Aj,i. The authors present a convex op-
timization formulation of their likelihood function, with regularization. The CONNIE
model, and most of the subsequent work, is evaluated on synthetic network models
where the underlying network is explicitly known. The ‘task’ is the accurate recon-
struction of the network which simulated these infection times. Similar to gene regu-
latory networks, the final evaluation of the network is the network itself, rather than
a subsequent task on the inferred network. These methods then also typically present
qualitative results on real-world datasets.

CONNIE uses a geometric program and is not scalable. Gomez-Rodriguez et al.
[2012] (“NETINF”) solves a simplified problem in a scalable way by fixing a global edge
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transmission probability β. For many applications, this assumption of a fixed transmis-
sion threshold can be made. The primary insight under this assumption is that we can
simply use the most likely propagation tree over a set of nodes in a cascade c. Given
a cascade set C, the authors marginalize their likelihood function relative to edge se-
lection and prove this function is monotonic and submodular. Therefore, edges can be
greedily selected with an approximation factor of (1− 1/e) [Nemhauser et al. 1978].
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Fig. 11: From [Du et al. 2012]. Three observed transmission delay histograms, demon-
strating poor fit of exponential and Raleigh models.

The transmission model of [Myers and Leskovec 2010] assumes repeated Bernoulli
trials of fixed probability. Gomez-Rodriguez et al. [2014] (“NETRATE”) introduces
transmission likelihood functions which vary over time. Given a set of cascades C, the
method infers the parameters of transmission rate models for each edge. The model
uses a hazard function H(τi|τj ;αj,i) which measures the instantaneous infection rate
on node ni from infected node nj , given the parametric function on α. The authors
present three different transmission model functions: Exponential, Power-law, and
Rayleigh, and prove that the optimization for transmission rates matrix A is convex.

In many real online applications, information can propagate in a multitude of ways.
Information might be promoted by an influential node, causing multimodal spikes in
propagation after some delays. These transmission rates may not decay monotonically,
nor according to any parametric function. Figure 11 illustrates this property on real
transmission data between blog sites in the MemeTracker4 dataset. The x-axis is the
time difference between post creation on the originating site, and the time it was linked
by another site. The data poorly fits any single exponential or Rayleigh transmission
model. Du et al. [2012] (“KernelCascade”) extends NETRATE to address this limita-
tion. The key addition of this work is to kernelize the hazard functionH(τ∗|τj , αj,i) over
m different kernels. These kernels serve as a piecewise approximation of the time-lag
distribution, which can then be used to estimate the likelihood of transmission between
nodes, given observed ‘infection’ data.

3.5. Ecology: Inferring Animal Social Networks to Explain Individual and Group Behavior
3.5.1. Networks in Ecology. Networks in ecology serve as two distinct models. In sys-

tems ecology, traditional graphical models are used to model an ecosystem at a high
level, with relationships between species, environmental variables, services, and other
processes [Milns et al. 2010]. For example, food webs model who-eats-whom within an
ecosystem [Proulx et al. 2005]. A second modeling with networks–and the focus of this
section–arises in behavioral ecology for the study of animal populations [Farine and
Whitehead 2015; Wey et al. 2008]. Analogous to sociology and political science, tradi-
tional fieldwork data in ecology are collected from direct observation and ‘surveys,’

4http://www.memetracker.org/
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measuring interactions or other relationships among individuals in the population
[Barrett et al. 2012; Sueur et al. 2011], particularly over time [de Silva et al. 2011;
McDonald 2007; Pinter-Wollman et al. 2013].

This process of direct observation allows researchers to incorporate their own intu-
ition and experience into the definition of these networks. In practice, much of the work
in this area uses ad-hoc, intuitive network definitions with some sensitivity analysis.
These networks derived from direct observation are typically categorical (e.g. kinship
relations) or discrete (e.g. thresholding on number of interactions, where interactions
are implicitly decided by observers). Methodological consideration are well established
in the field on these data, including edge strength thresholding [Croft et al. 2009],
sampling, hypothesis testing [Croft et al. 2011], and randomization strategies [Had-
dadi et al. 2011; James et al. 2009]. Each of these provide several different choices for
validating the robustness of these networks. These networks are tightly coupled with
a particular hypothesis and experimental cohorts in the population.

Two networks of interest in animal social networks measure affiliations and asso-
ciations between individuals [Whitehead and James 2015]. Affiliations describe in-
tentional social relationships between individuals [Croft et al. 2011; Whitehead et al.
2005] (e.g. grooming pairs of primates), while associations describe a broader set of
interactions which might be driven by structural factors rather than social affinity
(e.g. environmental resources, sex, age, and other individual attributes) [Bejder et al.
1998]. Whitehead and James [2015] introduces a generalized affiliation index using
a linear regression model. The authors simplify the model by subtracting sets of pre-
dictive structural features to be removed. The resulting model by subtraction is the
affiliative network model.

3.5.2. Underlying Data in Animal Social Networks: Instrumentation and Sensing of Animal Pop-
ulations. Recent instrumentation of individuals and the environment allow the obser-
vation of ecosystems and populations at an unprecedented scale using geo-location
sensors such as GPS, proximity sensors, radio-telemetry, and Passive Integrated
Transponder (PIT) tags [Kays et al. 2015; Krause et al. 2013; Rutz et al. 2012]. This
instrumentation allows the study of detailed individual behavior and social dynamics
which are often outside of the view of direct observation. This abundance of data re-
quires novel statistical techniques for inferring networks from implicit interactions.
Because these studies are often coupled with an experimental design, these individual
labels (e.g. test and control populations) are often used in visualization and hypothesis
testing.

No known work compares the biases of interaction and/or affiliation sampling via
traditional fieldwork, against the capability of simultaneous sensing for collecting un-
derlying data in animal social networks. Presently, these sensors are most effective at
recording simple co-location or trajectories. Challenging independent problems such
as activity recognition (e.g. grooming, conflict) are more easily solved by researchers
doing direct observation on the population. Yet, researchers are naturally limited in
their attention and accuracy. Future research will likely integrate the strengths of
these modalities to augment fieldwork data collection.

3.5.3. Studies and Network Inference Methods on Instrumented Data. The key difference be-
tween data from traditional fieldwork and from instrumented technologies is that the
former tend to be discrete counts (e.g. number of co-locations or grooming events),
while the latter are continuous data without these higher-level labels (e.g. relative
distances between individuals). To translate to discrete co-location events–and sub-
sequently a network–requires defining “how close” for “which duration” constitutes a
co-location edge, or “how correlated” for “which duration” constitutes a “following” edge
in the network. In contrast, researchers easily identify these relationships informally.
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The simplest method for setting these closeness and persistence thresholds for co-
location (i.e. measuring ‘association’ networks as described above) is by domain knowl-
edge, or by sampling the parameter-space in some way. Haddadi et al. [2011] use this
strategy in GPS data from sheep, ranging from individuals co-locating for 1 minute
at 1 meter, to 5 minutes at 3.5 meters. The authors have some known ‘affiliations’
(as described above), which are used to validate network accuracy at these different
thresholds when the individuals are mixed into a larger population. Aplin et al. [2012]
collect data from passive integrated transponder (PIT) tags of individuals sensed by
radio-frequency identification (RFID) antennae at feeder sites. This work defines asso-
ciations as two individuals co-occurring at the site within 30 seconds before or after the
other on a sliding 75 second window. Co-occurrence is categorical due to the physical
design of feeders, so only the ‘persistence’ of interaction need be fixed. This threshold
generates a stream of pairwise associations which can then be thresholded (τ ≥ 0.02)
to produce an aggregated association network.

Psorakis et al. [2012] define edges using Gaussian mixture models (GMM) on co-
occurrence data for a similar feeder system. This approach mitigates the ‘persis-
tence’ threshold by fitting Gaussian distributions to a one-dimensional space of occur-
rence counts (and later continuous two-dimensional geographic space, [Farine et al.
2016]). These distributions capture events of co-occurrence among several individuals.
Hamede et al. [2009] use a randomization approach to define non-random associations
on proximity sensors on a population of wild Tasmanian devils (Sarcophilus harrisii).
Internal thresholds on these sensors detect co-location within 30 centimeters of each
other. This work studies disease transmission through physical contact of the animals,
so this thresholding is appropriate.

(a) (b) (c)

Fig. 12: From [Aplin et al. 2015], Networks inferred from co-location at feeding stations
sensed using RFID over three different populations. These edges are colored showing
learned behavior (red edges) of obtaining food through an instrumented puzzle mech-
anism, the trained individuals (yellow nodes), and affiliated individuals using the de-
fault strategy (black edges).

3.5.4. A Workflow from Co-Location Data to Innovation Spread in Networks. Aplin et al. [2015]
proposes a network inference task to measure the learning of a feeding behavior in
great tits (Parus major). In this experiment, feeders instrumented with RFID anten-
nae record the visitation of each unique bird using PIT tags. The feeders use a slid-
ing door to the left or right to access the food, and this feeder records the bird’s puz-
zle solution. The authors investigate whether birds learn by example at the feeding
sites. Figure 12 shows a thresholded, aggregated network over individuals, weighted
by the frequency of co-location events at any feeder, using the Gaussian mixture model
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(GMM) method described above for interaction ‘events.’ Yellow nodes represent trained
individuals, red nodes represent individuals learning the correct behavior to solve the
feeder by the end of the study.

These networks visually show strong network modules between red and black indi-
viduals. Figure 12(b) shows a strong network separation between the two behaviors,
where trained individuals are within the red cluster. Figure 12(c) shows two strong red
clusters around both trained individuals, but also that the correct behavior is spread
across a component of untrained individuals.

3.6. Mobile Social Networks: Studying Human Mobility Through Social Relationships
3.6.1. Underlying Data in Mobile Networks. Phones and other mobile devices are among

the versatile and informative sensors of personal and social activity [Lane et al. 2010].
The modeling of mobile phone data as networks is motivated by the complex, over-
lapping, and dynamic modalities which are sensed by these devices. Mobile devices
collect physical proximity (bluetooth, WiFi), physical location (GPS), direct communi-
cation (SMS, voice), and often interactions through other online social networks (e.g.
Facebook).5 Integrating these modalities promises to give a rich picture of large scale
human mobility, dynamics and scale [Saramäki and Moro 2015], geography and com-
munication [Blondel et al. 2010; Ratti et al. 2010], and offline social networks.

While many of these underlying data are very similar to those collected for animal
social networks (proximity, location, discrete interactions), there are notable trade-offs
between privacy and experimental design in these domains. While animals are not due
rights to data privacy, they are also unable to comply with instructions or be surveyed
for ground truth network edges; in human experiments, contact diaries [Mastrandrea
et al. 2015] or Facebook friends [Sekara and Lehmann 2014] have been collected to
validate networks inferred from proximity sensors. Experiments on mobile users are
necessarily less invasive, while topics such as disease spread and sexual contact net-
works are often sensed in animal populations. Data privacy requires careful, informed
consent and secure storage [Stopczynski et al. 2014a]; location privacy has been shown
as extremely identifiable, with two to eleven data points being sufficient to uniquely
identify individuals [de Montjoye et al. 2013].

Several mobile datasets have been collected for the purposes of social research [Blon-
del et al. 2015]. The first large collection was the “Reality Mining” dataset, collected
on 100 participants (faculty and students) in the MIT Media Laboratory [Eagle and
(Sandy) Pentland 2006]. This anonymized dataset contains call logs, bluetooth device
proximity, cell tower ID (a proxy for location) and other fields. Similar mobile data
collection projects followed, including the Lausanne Data Collection Campaign on 170
student participants [Laurila et al. 2013], the Social fMRI study on 130 participants
[Aharony et al. 2011] (notably, not university students), and the SensibleDTU project
of 1, 000 participants [Stopczynski et al. 2014b]. These subsequent studies collected
more detailed user activity, surveys, Facebook, and detailed user demographics, ad-
dressing the limitations of previous efforts.

Finally, the SocioPatterns platform [Barrat et al. 2008; Cattuto et al. 2010] uses a
specialized proximity sensor design to record face-to-face interactions. These sensors
have been deployed in an academic conference setting [Smieszek et al. 2016], elemen-
tary schools [Stehl et al. 2013], high schools [Mastrandrea et al. 2015] and several
other environments.6 The specificity of these sensors for detecting individual interac-

5In this section, we also group email datasets such as Enron [Klimt and Yang Klimt and Yang] because the
discrete interaction data is most similar to this domain.
6http://www.sociopatterns.org/datasets/
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tions between users addresses the challenges of using general proximity sensors (e.g.
bluetooth) for population studies.

3.6.2. Studies and Methods on Mobile Data. The most common primary task in inferring
networks from mobile data is related to integration across modalities, for edge or at-
tribute prediction tasks. For example, predicting Facebook friends from bluetooth co-
location [Sekara and Lehmann 2014], or predicting survey-reported friends from prox-
imity and call record data [Eagle et al. 2009].

(a) Network inferred from user co-location
and call data.

(b) The social network self-reported from a
user survey.

Fig. 13: From [Eagle et al. 2009]. (a) a weighted latent network inferred by blue-
tooth proximity and call records on the population of Reality Mining users. (b) the
self-reported ground-truth friendship network.

Figure 13 examines this latter task. The network in Figure 13(a) is inferred using
principle components analysis of bluetooth proximity counts across different times and
locations (e.g. work, off-campus, weekday, weekend), and assigning edge weight by the
coefficient of the factor corresponding to non-work hours (e.g. “close friends are those
co-located outside of work”). Figure 13(b) reports the ground-truth social network, self-
reported from a user survey, accurately reconstructed by the inferred network. While
the discovery that friends meet or call after work is not particularly surprising, this
demonstrates integrating these modalities for the simple edge prediction task. The
principle components measure to infer the network edges also incorporates domain
knowledge of work schedules. Previous work shows that human mobility in urban en-
vironments is highly periodic between a small set of locations (e.g. home and work)
[Eagle et al. 2009]. Therefore, incorporating these periodicities explicitly is a key as-
pect of this domain.

De Choudhury et al. [2010] revisits the discussion of setting similarity threshold
τ for an interaction measure calculated on data. Whether the underlying data is of
discrete or continuous, varying τ realizes a range of possible networks. In Figure 14,
from left to right the number of required emails exchanged increases in order to define
an edge, thus reducing the density. Any predictive task on this network balances nov-
elty against the task difficulty: at a low threshold, a dense graph is realized and edge
prediction may not perform better than random because the definition of the edge is
simply noise. However, a very high threshold may infer a very sparse network, where
edges are trivially easy to predict (but uninteresting).

The authors generate two and four one-year aggregated networks according to the
length of data available in a university email dataset, and the Enron email dataset.
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(a) A network inferred from a university email corpus

(b) A network inferred from the Enron email corpus

Fig. 14: From [De Choudhury et al. 2010]. Two networks inferred over varying network
thresholds τ , creating sparser networks from left to right as the threshold criteria be-
comes more strict (e.g. more than τ email interactions for an edge between individuals
vi and vj).

They then tune the global threshold τ according to performance across several differ-
ent classification tasks on sets of node-level features from each inferred network. These
tasks include classification of node class (e.g. undergraduate, graduate, faculty, staff),
gender, “community” (with class labels provided by stochastic block modeling, [Hof-
man and Wiggins 2008]), where each of these tasks may be independently of interest.
Assuming these node demographics and communities were separable as a set of be-
haviors at some “natural” threshold, this analysis will discover the threshold yielding
the maximal classification accuracy. The authors also predict future communication
activity using simple linear regression, reporting the accuracy at these same τ . Each
of these tasks yield a similar range of high performing τ thresholds, suggesting that
classification and prediction agree across multiple views of the network.

4. CONCLUSION
This survey aims to provide a vocabulary and structure to the problem of inferring
networks from non-network data. Typically, this problem is addressed in data prepro-
cessing, often with several artful steps of parameter tuning or feature selection. We
anticipate investigation of this problem in a more general and rigorous framework as
network models from underlying non-network data are more numerous in data science
applications.

We survey several domains in order to illustrate the different foci in questions
and how the nature of data drive the methodological specializations in the areas.
For example–with some simplification–we observe that gene regulatory networks are
methodologically very mature, with a breadth of interaction measures appropriate for
multivariate, matrix data (e.g. microarray) including regression and graphical models.
Climate networks and brain networks are mature in time series interaction measures,
including causal and frequency-based analysis, respectively. The problems in each of
these areas are still exploratory, focusing on integrating and validating networks from
different data (e.g. structural and functional brain networks) to develop data science
tools downstream from these robust network models. Animal social networks inherit
direct observation data in relatively simple formats (e.g. counts). This yields relatively
simple network models over straightforward parameters (e.g. closeness and persis-
tence), with a focus on experimental design. Epidemiology historically studies observed
infection data spreading across a hidden contact network. Therefore, modeling these
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transmission functions is a key to this area. We hope that this data-driven summary
might help locate models and expertise on networks derived from different underlying
data modalities.

Previous work often assumes that the objective of network inference is uncover-
ing “the network” representation which is obscured by noise. Often in this context,
the network inference method tries to reconstruct known ground-truth networks from
non-network data. In contrast, our work treats a network as a model to perform a par-
ticular task, where we often cannot access the ground truth network, or assume its
parametric form. Analogous to clustering for a classification task, there are many pos-
sible clusterings which are only as valuable as they improve classification accuracy.
Conceptualizing network inference within the complete data science workflow–from
data (to network) to task models for particular questions–focuses on a tighter coupling
of data models and task models.

There are several frameworks across domains which use randomization, causality,
and significance testing strategies to rigorously learn the network model under some
assumptions. While these networks are appropriate according to their structural as-
sumptions, they may not be the most informative for the question/task(s) of interest.
Currently, no general, statistically rigorous, joint inference/prediction framework ex-
ists which learns a maximally predictive network model across particular task(s). Fur-
thermore, there is little understanding of the criteria for network models and predic-
tive models which would make them appropriate for this joint modeling. We anticipate
this will be an exciting area of future research.
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