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ABSTRACT
Graphs are general data structures that can represent information
from a variety of domains (social, biomedical, online transactions,
and many more). Graph Neural Networks (GNNs) are quickly be-
coming the de-facto Machine Learning models for learning from
Graph data and hereby infer missing information, such as, predict-
ing labels of nodes or imputing missing edges.

In this tutorial we’ll cover essential applications of Graph Ma-
chine Learning using TensorFlow GNN1 [12], a Python frame-
work that extends TensorFlow [1] with Graph Neural Networks
(GNNs) [9]: models that leverage graph-structured data. TF-GNN is
motivated and informed by years of applying graph representation
learning to practical problems at Google [2–8, 10, 11, 13–19, 22–29].
In particular, TF-GNN focuses on the representation of heteroge-
neous graph data and supports the explicit modeling of an arbitrary
number of relationship (edge) types between an arbitrary number
of entity (node) types. These relationships can be used in combi-
nation with other TensorFlow components, e.g., a TF-GNN model
might connect representations from a language model to those of a
vision model and fine-tune these features for a node classification
task. Many teams at Google run TF-GNN models in production. We
believe this to be a direct consequence of TF-GNN’s multi-layered
API which is designed for accessibility to developers (regardless of
their prior experience with machine learning).
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1 LEARNING GOALS
We designed this tutorial for industry practitioners and academic
researchers, who would like to: 1) Apply ML techniques on graph
data, without worrying about implementation and scaling details;
and/or, 2) Extend the research field of ML on graphs, by starting
from state-of-the-art models and graph learning techniques. The
tutorial will include both conceptual details (mathematical deriva-
tions) and hands-on experience (running code in collaboratory
notebooks).
1https://github.com/tensorflow/gnn
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2 TUTORIAL CONTRIBUTORS
• Bryan Perozzi, Google Research. Bryan has been working
on graph-based machine learning for over 10 years and has
14,000+ citations in the area. Bryan completed his Ph.D. at
Stony Brook University, and his thesis [20, 21] won the 2017
ACM SIGKDD award for best dissertation. Bryan started the
Graph Neural Network group inside Google Research and
has worked on over 100 applications of graph-based learning
at the company.

• Sami Abu-el-Haija, Google Research. Sami completed his
Ph.D. at the University of Southern California, focusing on
efficient training of Graph Neural Networks. His research
contributions are on his Google Scholar.

• Anton Tsitsulin, Google Research. Anton is a researcher
at Google working on TF-GNN and unsupervised graph
embedding. He has published papers in the area at KDD,
NeurIPS, ICLR, WWW, and VLDB.

3 TUTORIAL OUTLINE
A brief overview of the schedule is as follows:

(1) Section 1: Background. We begin by covering some intro-
ductory material about GNNs and graph-based learning.
Application:Node Classification. The application for this
section is predicting a label for individual nodes in a graph
(our most popular application).

(2) Section 2: Advanced Modeling. The next section covers
details of TF-GNN’s model building API that allows stacking
convolutions.
Application: Link Prediction. In this application we’ll dis-
cuss how to build models that can read out different parts of
the graph structure and rank the likelihood that two nodes
should be connected.

(3) Section 3: TF-GNN Tooling. Finally, we’ll cover some of
the tooling designed to make it easy to build TF-GNNmodels.
Application: Unsupervised Embedding. Here we’ll cover
using unsupervised learning in a GNN to learn features that
can be re-purposed in other (non-graph) models.

4 MATERIAL
Slides, notebooks, and other material will be available at the tutorial
website2.

2https://github.com/tensorflow/gnn/blob/main/examples/tutorials/kdd_2023/
README.md
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