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Abstract. We describe a general strategy for sampling configurations from a given
(Gibbs-Boltzmann or other) distribution. It is not based on the Metropolis concept
of establishing a Markov process whose stationary state is the wanted distribution.
Instead, it builds weighted instances according to a biased distribution. If the bias is
optimal, all weights are equal and importance sampling is perfect. If not, “population
control” is applied by cloning/killing configurations with too high/low weight. It uses
the fact that nontrivial problems in statistical physics are high dimensional. Therefore,
instances are built up in many steps, and the final weight can be guessed at an early
stage. In contrast to evolutionary algorithms, the cloning/killing is done such that
the wanted distribution is strictly observed without simultaneously keeping a large
population in computer memory. We apply this method (which is also closely related
to diffusion type quantum Monte Carlo) to several problems of polymer statistics,
population dynamics, and percolation.

1 Introduction

For many statistical physicists, “Monte Carlo” is synonymous for the Metropolis
strategy[1] where one sets up an ergodic Markov process which has the desired
Gibbs-Boltzmann distribution as its unique asymptotic state. There exist nu-
merous refinements concerned with more efficient transitions in the Markov pro-
cess (e.g. cluster flips[2] or pivot moves[3]), or with distributions biased such that
false minima are more easily escaped from and that autocorrelations are reduced
(e.g. multicanonical sampling[4] and simulated tempering[5]). But most of these
schemes remain entirely within the framework of the Metropolis strategy.

On the other hand, stochastic simulations not based on the Metropolis strat-
egy have been used from early times on. Well known examples are evolutionary
(in particular genetic) algorithms [6,7,8], diffusion type quantum Monte Carlo
simulations [9,10,11], and several algorithms devised for the simulation of long
chain molecules [12,13,14,15,16]. But these methods were developed indepen-
dently in different communities and it was not in generally recognized that they
are realizations of a common strategy. Maybe the first who pointed this out
clearly were Aldous and Vazirani [17] who also coined the name “go with the
winners”. For later references who also stressed the wide range of possible ap-
plications of this strategy see [18,19]. Ref. [19] points even to applications in
lattice spin systems and Bayesian inference, fields which will not be treated in
the present review.

As we shall see, the main drawbacks of the go-with-the-winners strategy are:

http://arxiv.org/abs/cond-mat/0010265v1


2 Peter Grassberger and Walter Nadler

• The method yields correlated samples, just as the Metropolis method does.
This makes a priori error estimates difficult [17]. A posteriori errors, esti-
mated from fluctuations of measured observables, are of course always possi-
ble. But they can be very misleading when sampling is so incomplete that the
really large fluctuations have not yet been seen. However, there is also a pos-
itive side: more easily than in the Metropolis case one can estimate whether
this has happened, and whether, therefore, the method gives reliable results
or not.

• Efficiency is not guaranteed. The go-with-the-winners strategy allows a lot
of freedom with respect to implementation details, and its efficiency depends
on a good choice of these. Thus, there are cases where it has not yet been
successful at all, while there are other problems where its efficiency is not
nearly matched by any other method we aware of. On the other hand, the
flexibility of the general strategy represents a strong positive point.

Instead of giving a formal definition of the go-with-the-winners strategy, we
shall present an example from which the basic concepts will become clear. In
later sections we shall then see how these concepts are implemented in detail
and how they are applied to other problems as well.

2 An Example: A Lamb in front of a Pride of Lions

The example is a very idealized problem from population dynamics (or chemical
reactions, if you whish) [20,21]: consider a ‘lamb’, represented by a random
walker on a 1-dimensional lattice x = . . . − 1, 0, 1 . . . with discrete time and
hopping rate p per time unit, leading to a diffusion constant Dlamb. It starts at
time t = 0 at x = 0. Together with it, there start also N ‘lions’, nL of them
at xi = −1 (i = 1, . . . nL) and nR = N − nL at xi = +1. They also perform
random walks, but with a diffusion constant Dlion which may differ from Dlamb.
Two lions can jump onto the same site without interacting with each other. But
if a lion and the lamb meet at the same site, the lamb is eaten immediately,
and the process is finished. Note that both the lamb and the lions are absolutely
short-sighted and stupid: there is no evading or chasing. It is for this reason
that the model can also be interpreted as the caption of a diffusing molecule by
diffusing adsorbers.

The survival probability P (t) of the lamb up to time t can be estimated easily
for a single lion, N = 1. In this case the relative distance makes a random walk
with diffusion constant Dlamb +Dlion which starts at ∆x = 1, and P (t) is equal
to the probability that the walk has not yet hit an absorbing wall at ∆x = 0.
This probability is well known to decrease as t−1/2, thus

PN=1 ∼ t−1/2. (1)

The problem is less trivial but still solvable for N = 2, (see [21] and the
literature quoted there). One finds again a power law

PN=2 ∼ t−α2 , (2)
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but with an exponent which depends on the ratio Dlamb/Dlion and on whether
both lions are on the same side or on different sides of the lamb. For the first
case one gets

α2 =

[

2 −
2

π
arccos

Dlamb

Dlamb +Dlion

]−1

N = nR = 2, nL = 0. (3)

For the case with both lions on opposite sides one obtains a similar expression.
If Dlamb = Dlion, Eq. (3) reduces to α2 = 3/4.

For any N > 2 one can still prove rigorously that asymptotically holds, for
large t,

PN ∼ t−αN , (4)

but this time one cannot give closed expressions for αN . Numerical values for the
case where all lions are on one side have been obtained for several N by direct
simulation (α3 ≈ 0.91, α4 ≈ 1.03, α10 ≈ 1.4 [20]), but these estimates become
more and more difficult for increasing N because of the exceedingly small chance
for the lamb to survive sufficiently long to allow precise measurements.

Such numerical estimates would be welcome in order to test an asymptotic
estimate for N → ∞ [21]. In this limit, the location of the outmost of a group
of lions moves nearly deterministically: If the lion who made the front at time
t lags behind, there will be another lion who overtakes him, so that the front
continues to move on with maximal speed. Assuming that the fluctuations in
the motion of the front can be neglected, the authors of [21] found

αN ≈
Dlion

4Dlamb
lnN N = nR ≫ 1, nL = 0. (5)

In the same spirit, the optimal strategy of a lamb squeezed between N/2 lions
to its left and N/2 to its right would be to stand still. Assuming that this single
path dominates in the limit N → ∞, one finds simply αN ≈ N .

As we said, straightforward simulations to check these predictions are ineffi-
cient. In order to improve the efficiency, one can think of two tricks:

Trick 1 : Make occasional “enrichment” steps.

In particular, this might mean that one starts with M ≫ 1 instances. As soon as
the number of surviving instances has decayed to a number < M/2, one makes
a clone of each instance (note that lambs can be cloned also in reality, but on
the computer we clone the entire configuration consisting of lamb and lions!).
This boosts the number of instances again up to ≈ M , and one can repeat the
game. One has just to remember how often the sample had been enriched when
computing survival probabilities, i.e. each instance generated carries a relative
statistical weight w = 1/2c, with c the number of cloning steps.

Trick 2 : Replace the random walks by biased random walks

Not only should the lamb preferentially run away from the lions, but also the
lions should run away from the lamb in order to obtain long-lived samples that
contribute to Eq. (4). If just this were done without compensation, this would
of course give wrong results. But we can correct for this bias by giving weights
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to each instance. For each step (of either the lamb or the lion) that was made
according to a biased pair of probabilities {pL, pR} instead of {p, p}, we should
multiply the weight by a factor p/pR if the actual step was to the right, and
by a factor p/pL if the step was to the left. In this way the weights compensate
exactly, on average, the fact that not all walks were sampled with the same
probability. This trick is indeed very general. In any sampling procedure where
some random move should be done with probability p > 0 in order to obtain
an unbiased sample, one can replace p by any other probability p′ 6= 0 if we at
the same time use weighted samples and multiply the current sample weight by
p/p′.

Actually, in view of the second trick, the first one is clearly not optimal.
Instead of cloning irrespective of its weight, one would like to clone preferentially
those configurations which have high weight. Thus we replace the first trick by

Trick 1’ : Clone only configurations with high weight.

Choose a cloning threshold W+(t). It can be in principle an arbitrary function of
t, and it need not be kept fixed during the simulation; thus it can be optimized
on-line. Good choices will be discussed later. If a configuration at some time t
has weight w > W+(t), it is cloned and both clones are given weight w/2.

On the other hand, a too strong bias and too frequent cloning could result in
configurations which have too small weight. Such configurations are just costly
in terms of CPU time, without adding much to the precision of the result. But
we are not allowed to kill (“prune”) them straigh away, since they do carry some
weight nevertheless. Instead, we use

Trick 3 : Kill probabilistically configurations with low weight.

Choose a pruning threshold W−(t). The same remarks apply to it as to W+(t).
If w < W−(t), we call a random number r uniformly in [0, 1]. If r < 1/2, we
prune. Otherwise, if r > 1/2, we keep the configuration and double its weight,
w → 2w. Again this does not introduce a bias, as far as averages are concerned.

In principle, that’s all. One can modify the tricks 1’, 2 and 3 by making more
than one clone at each enrichment step, by killing with probability 6= 1/2, or by
letting W± depend also on other variables. Whether such further improvements
are helpful will depend on the problem at hand, in the case of lamb & lions it
seems they were not. Indeed, in this problem also pruning was not needed if the
bias was not too strong, but this is somewhat special.

Before going on and describing the detailed implementation, let us just see
some results. Probabilities PN (t) for all lions at the same side and the result-
ing decay exponents are shown in Fig.1, for N up to 50. We see that Eq. (5) is
qualitatively correct in predicting a logarithmic increase of αN , but not quantita-
tively. Obviously, fluctuations of the front of the pride of lions are not negligible.
The data on the right panel show a slight downward curvature. This might be
an indication that Eq. (5) is asymptotically correct, but then asymptotia would
set in only at extremely large values of N . The same conclusion is reached when
N/2 lions are on either side, as seen from Fig.2. In that case the raw data, shown
in the left panel, clearly demonstrate the power of the algorithm: We are able
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Fig. 1. Left panel: Survival probabilities for a lamb starting next to N lions, all of
whom are on the same side. Lamb and lions both make ordinary random walks with
Dlion = Dlamb = 1/2. Right panel: Corresponding decay exponents. The lower dashed
line represents the prediction from Eq. (5).
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Fig. 2. Same as Fig.1 but for N/2 lions on each side of the lamb. This time neglecting
fluctuations of the front of the group of lions would give αN = N .

to obtain reliable estimates of probabilities as small as 10−50, which would have
been impossible with straightforward simulation.

3 Other Examples

3.1 Multiple Spanning Percolation Clusters

Let us now consider percolation [22] on a large but finite rectangular lattice in
any dimension 2 ≤ d < 6. We single out one direction as “spanning direction”. In
this direction boundary conditions are open (surface sites just have no neighbours
outside the lattice), while boundary conditions in the other direction(s) might
be either open or periodic. Up to some six years ago there was a general believe,
based on a misunderstood theorem, that there is at most one spanning cluster
in the limit of large lattice size, keeping the shape of the rectangle fixed (Li =
xiL, L → ∞, i = 1, . . . d). A ‘spanning cluster’ is a cluster which touches both
boundaries in the spanning direction.
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Since there is no spanning cluster for subcritical percolation (with probability
decreasing exponentially in the lattice size L), and since there is exactly one in
the supercritical case, the relevant case is only critical percolation. For that case
it is now known that the probabilities Pk to have exactly k spanning clusters
are all non-zero in the limit L→ ∞. In two dimensions they were calculated by
Cardy exactly using conformal invariance [23], but in dimensions ≥ 3 no exact
results are known. The only analytical ‘result’ is a conjecture by Aizenman [24],
stating that for a lattice of size L × . . . × L × (rL) (rL is the length in the
spanning direction)

Pk ∼ e−αr (6)

with
α ∝ kd/(d−1) for k ≫ 1. (7)

Cardy’s formula in d = 2 agrees with Eqs. (6) and (7), for periodic transverse
boundary conditions it is

α =
2π

3

(

k2 −
1

4

)

k ≥ 2, d = 2 . (8)

It has recently been generalized [25] to the case where the clusters are seperated
by at least two lattice units (i.e., there are at least two non-intersecting paths
on the dual lattice between any two clusters). In that case

α =
2π

3

(

(
3k

2
)2 −

1

4

)

. (9)

In order to test Eqs. (7)-(9) for a wide range of values of k and r, one has to
simulate events with tiny probabilities, lnPk ∼ −102 to −103. It is thus not

Fig. 3. Configuration of 5 spanning site percolation clusters on a lattice of size 500×900.
Any two clusters keep a distance of at least 2 lattice units. Lateral boundary conditions
are periodic. The probability to find 5 such spanning clusters in a random disorder
configuration is ≈ 10−92.
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surprising that previous numerical studies have verified Eq. (8) only for small
values of k, and have been unable to verify or disprove Eq. (7) [26,27].

In order to demonstrate that such rare events can be simulated efficiently
with the go-with-the-winners strategy, we show in Fig.3 a rectangular lattice of
size 500×900 with 5 spanning clusters which keep distances ≥ 2. Eq.(9) predicts
for it Pk = exp(−336π/5) ≈ 10−92. This configuration was obtained by letting
5 clusters grow simultaneously, using a standard cluster growth algorithm [28],
from the left border. Precautions were taken that they grow with the same speed
towards the right, i.e. if one of them lagged behind, the growth of the others was
stopped until the lagging cluster had caught up. If one of them died, or if two
came closer than two lattice units, the entire configuration was discarded. If not,
cloning was done as described in trick 1’. Note that here the growth was made
without bias (it is not obvious what this bias should have been), and therefore
the weight was just determined by the cloning. Due to that and since there are no
Boltzmann weights, no configuration could get too high a weight, and therefore
no pruning was necessary either.

In this way we could check Eqs. (8),(9) with high precision. We do not show
these data. Essentially they just test the correctness of our algorithm.

More interesting is the test of Eq. (7) for d = 3. Estimated probabilities for
up to 16 spanning clusters, on lattices of sizes up to 64 × 64 × 2000, are shown
on the left panel of Fig.4. Note that probabilities now are as small as 10−300.
Values of α obtained from these simulations and from similar ones at different
lattice sizes (in order to eliminate finite-size corrections) are shown in the right
panel of Fig.4. The dashed line there is a fit [29]

α = 2.76(k2 − 0.61)3/4 (10)

Even if we should not take this fit too serious, we see clearly that α ∝ k3/2 for
k → ∞, in perfect agreement with Eq.(7).
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Fig. 4. Left panel: probabilities to have k spanning clusters on simple cubic lattices of
size 64× 64×L, with k ≤ 16 and L ≤ 2000. Right panel: Decay exponents αk versus k
obtained from the data on the left panel, and from similar data with transverse lattice
sizes 16 × 16, 32 × 32, and 128 × 128. The dashed line is a fit with αk ∼ k3/2 for large
k.
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3.2 Polymers

Another big class of problems where the go-with-the-winners strategy is nat-
urally applied are configurational statistics of long polymer chains. It is well
known that linear polymers in good solvents form random coils which differ
from random walks by having size

R ∼ Nν (11)

with ν 6= 1/2: ν = 3/4 in 2 dimensions, and ν ≈ 0.588 in d = 3 [30,31].
The canonical model which gives this anomalous scaling is the self avoiding
random walk. Anomalous scaling laws in other universality classes are obtained
by attaching polymers to impenetrable boundaries, to attractive walls, by adding
monomer-monomer attraction, etc. Simulating long chain molecules was thus a
vigorous problem since the very early days of electronic computers.

The most straightforward method to simulate a self avoiding random walk on
a regular lattice is to start from one end and to make steps in random directions.
As long as no site is visited twice, every configuration should have the same
weight. But as soon as a site is visited which has already been visited before,
the energy becomes infinite because of hard core repulsion, the weight thus
becomes zero, and the configuration can be discarded. This leads to exponential
“attrition” – the number of generated configurations of length t decreases as
C(t) ∼ exp(−at) – and to a very inefficient code.

A first proposal to avoid – or at least reduce – this attrition was made
by Rosenbluth and Rosenbluth [12]. They proposed to bias the sampling by
replacing steps to previously visited sites by steps to unvisited ones, if possible.
Take e.g. a simple cubic lattice. Except for the very first step, there will be
at most 5 free neighbours for the next move. If there is no free neighbour at
any given moment, the configuration must be discarded. Otherwise, if there are
m ≥ 1 free neighbours, one selects one of them randomly and moves to it. At
the same time, in order to compensate for this bias one multiplies the weight
of the configuration by a factor ∝ m (the value of the proportionality constant
is irrelevant for estimates of averages, and affects the partition sum in a trivial
way only).

Although this allows much longer chains to be simulated, the Rosenbluth
method is far from perfect because it leads to very large weight fluctuations [32].
As an alternative, enrichment was therefore proposed – in the form of trick 1
of Sec.2 – in [13]. But more efficient than either is the full go-with-the-winners
strategy with all three steps 1’, 2, and 3. Population control (pruning/cloning)
is of course done on the basis of full statistical weights, including both Boltz-
mann and bias correction factors. This was first used in [15] and later, with a
different implementation, in [16]. In the latter, it was called the ‘pruned-enriched
Rosenbluth method’ (PERM).

PERM is particularly efficient near the so-called ‘theta-’ or coil-globule tran-
sition. This transition occurs when we start with a good solvent and make it
worse, e.g. by lowering the temperature T . The repulsive interaction between
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monomers and solvent molecules lead to an effective monomer-monomer attrac-
tion which would like to make the polymer collapse into a dense globule. If T is
sufficiently high, this is outweighed by the loss of entropy associated to the col-
lapse. But at T < Tθ, the entropy is no longer sufficient to prevent the collapse.
According to the generally accepted scenario, the theta-point is a tricritical point
with upper critical dimension d = 3 [30,31].

At the 3-d theta-point bias correction and Boltzmann factors nearly cancel.
Therefore, long polymers have essentially random walk configurations with very
small (logarithmic) corrections. Therefore, an unbiased random walk (with just
a non-reversal bias: no 180 degree reversals are allowed) is already sufficient to
give good statistics with very few pruning and enrichment events. In [16] chains
made of up to 1,000,000 steps could be sampled with high statistics within
modest CPU time.

Applications of PERM to other polymer problems are treated in [33,34,35,36,37,38,39,40,41,42,43,44].
We want to discuss here just two application, namely the ‘melting’ (denatura-
tion) of DNA [40] and the low-energy (”native”) states of heteropolymers[35].

DNA Melting As is well known, DNA in physiological conditions forms a
double helix. Changing the pH value or increasing T can break the hydrogen
bonds between the A-T and C-G pairs, and a phase transition to an open coil,
with higher energy but also with higher entropy, occurs. This transition has
been studied experimentally since about 40 years. It seems to be very sharp,
experimental data are consistent with a first order transition [45]. While a second
order transition would be easy to explain [46,47], constructing models which give
first order transitions turned out to be much more difficult [48].

The model studied in [40] lives on a simple cubic lattice. A double strand of
DNA with length N is described by a diblock copolymer of length 2N , made of
N monomers of type A and N monomers of type B. All monomers have excluded
volume interactions, i.e. two monomers cannot occupy the same lattice site, with
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Fig. 5. Left panel: Specific heat as a function of ǫ at T = 1, for single strand length
N = 500, . . . 3000. Right panel: Histograms of the number of contacts, for the same
chain lengths, at ǫ = ǫc. On the horizontal axis is plotted n/N as is appropriate for a
first order transition.
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one exception: The k-th A-monomer and the k-th B-monomer, with k = 1 . . .N
being their index counted from the center where both strands are joint together,
can occupy the same site. If they do so, then they even gain an energy −ǫ. This
models the binding of complementary bases.

The surprising result of simulations of chains with N up to 4000 is that the
transition is first order, but shows finite scaling behaviour as expected for a
second order transition with cross-over exponent φ = 1. To demonstrate this, we
first show in Fig.5 the specific heat as a function of ǫ at T = 1, for several chain
lengths. We see a linear increase of the peak height with N which indicates a first
order transition. In the right hand panel of Fig.5 are plotted energy histograms
for the same chain lengths. Energy is measured in terms of number n of contacts,
divided by chain length N . One sees two maxima, one at n = 0 and the other at
n ≈ N/2, whose distance scales proportionally to N . This again points to a first
order transition. But in contrast to usual first order transitions the minimum
between these two maxima does not become deeper with increasing N . This is
due to the absence of any analogon to a surface tension. Finally, in Fig.6 we
show average squared end-to-end distances. They obviously diverge for infinite
N when the transition point is approached from low temperatures. This is typical
of a second order transition. A more detailed analysis shows that this divergence
is Rend ∼ (ǫ− ǫc)

ν , as one would expect for a transition with φ = 1 [40].

Native Configurations of Toy Proteins Models Predicting the native
states of proteins is one of the most challenging problems in mathematical biol-
ogy [49]. It is not only important for basic science, but could also have enormous
technological applications. At present, such predictions are mostly done by ana-
log methods, i.e. by comparing with similar amino acid sequences whose native
states are already known. More direct approaches are hampered by two difficul-
ties:

• Molecular force fields are not yet precise enough. Energies between native
and misfolded states are usually just a few eV, which is about the typical
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precision of empirical potentials. Quantum mechanical ab initio calculations
of large biomolecules are impossible today.

• Even if perfect force fields were available, present day algorithms for finding
ground states are too slow. One should add that the accepted dogma is that
native states – at least of not too large proteins – are essentially energetic
ground states.

In view of the second problem, there exists a vast literature on finding ground
states of artificially constructed heteropolymers. Most of these models are for-
mulated on a (square or simple cubic) lattice and use only few monomer types.
The best known example is the HP model if K. Dill [50] which has two types
of amino acids: hyrophobic (H) and hyrophilic (polar, P) ones. With most algo-
rithms, one can find ground states typically for random chains of length up to
∼ 50.

In [35] we have used PERM to study several sequences, of the HP model
and of similar models, which had been discussed previously by other authors.
In all cases we found the lowest energy states found also by these authors, but
in several cases we found new lowest energy states. A particularly impressive
example is a chain of length 80 with two types of monomers with somewhat
artificial interactions: Two monomers on neighbouring lattice sites contribute
an energy −1 if they are of the same type, but do not contribute any energy if
they are different [51]. A particular sequence was constructed such that it should
fold into a bundle of four “helices” with an energy −94 [51]. Even with a specially
designed algorithm, the authors of [51] were not able to recover this state. With
PERM we not only found it easily, we also found several lower states, the lowest
one having energy −98 and having a completely different structure. Instead of
being dominanted by α-helices, it has mostly β-sheets (as far as these structures

Fig. 7. Left: Putative native state of the “four helix bundle” sequence of [51]. It has E =
−94, fits into a rectangular box, and consists of three homogeneous layers. Structurally,
it can be interpreted as four helix bundles. Right: True ground state with E = −98.
Its shape is highly symmetric although it does not fit into a rectangular box. It is
degenerate with other configurations not discussed here.



12 Peter Grassberger and Walter Nadler

can be identified on a lattice), see Fig.7. Since PERM gives not only the ground
state but the full partition sum, we could also follow the transition between
mostly helical states at finite T and the sheetlike ground state. We found a peak
in the specific heat associated to this transition which could have been mistaken
as a sign of a transition between a molten globule and the frozen native state.

3.3 Lattice Animals (Randomly Branched Polymers)

Consider the set of all connected clusters Cn of n sites on a regular lattice, with
the origin being one of these sites, and with a weight defined on each cluster.
The (n-site) lattice animal problem is defined by giving the same weight to each
cluster. The last requirement distinguishes animal statistics from statistics of
percolation clusters. Take site percolation for definiteness, with ‘wetting’ proba-
bility p. Then a cluster of n sites with b boundary sites carries a weight pn(1−p)b

in the percolation ensemble, while its weight in the animals ensemble is inde-
pendent of b. In the limit p → 0 this difference disappears obviously, and the
two statistics coincide. Due to universality, we expect indeed that the scaling be-
havior is the same for any value of p less than the critical percolation threshold
pc. It is generally believed that lattice animals are a good model for randomly
branched polymers [52].

While there exists no simple and efficient algorithm for simulating large an-
imals which also gives estimates for the partition sum, there exist very simple
and efficient algorithms for percolation clusters. The best known is presumably
the Leath algorithm[28] which constructs the cluster in a “breadth first” (see
next section) way.

Our PERM strategy consists now in starting off to generate subcritical per-
colation clusters by the Leath method, and in making clones of those growing
clusters which contribute more than average to the animal ensemble [53]. Since
we work at p < pc, each cluster growth would stop sooner or later if there were
no enrichment. Therefore we do not need explicit pruning. The threshold W+

for cloning is chosen such that it depends both on the present animal weight and
on the anticipated weight at the end of growth.

Usually, with growth algorithms like the Leath method, cluster statistics
is updated only after clusters have stopped growing. But, as outlined below,
one can also include contributions of still growing clusters. For percolation, this
reduces slightly the statistical fluctuations of the cluster size distributions, but
the improvement is small. On the other hand, this improved strategy is crucial
when using PERM to estimate animal statistics.

Consider a growing cluster during Leath growth. It contains n wetted sites, b
boundary sites which are already known to be non-wetted, and g boundary sites
at which the cluster can still grow since their status has not yet been decided
(“growth sites”). This cluster will contribute to the percolation ensemble only
if growth actually stops at all growth sites, i.e. with weight (1 − p)g. Since
the relative weights of the percolation and animal ensembles differ by a factor
(1− p)(b+g) (since now b+ g is the total number of boundary sites), this cluster
has weight w(C) ∝ (1 − p)−b in the animal ensemble. If we would use only this
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Fig. 8. A typical lattice animal with
8000 sites on the square lattice.

weight as a guide for cloning, we would clone if w(C) is larger than some W+

which is independent of b and g, and which depends on n in such a way that
the sample size becomes independent of n. But clusters with many growth sites
will of course have a bigger chance to keep growing and will contribute more to
the precious statistics of very large clusters. It is not a priori clear what is the
optimal choice for W+ in view of this, but numerically we obtained best results
for W+ ∝ (1 − p)g.

In this way we were able to obtain good statistics for animals of several
thousand sites, independent of the dimension of the lattice. A typical 2-d animal
with 8000 sites is shown in Fig. 8. We were also able to simulate animal collapse
(when each nearest neighbor pair contributes −ǫ to the energy), and animals
near an adsorbing surface. Details will be published in Ref.[53].

4 Implementation Details

In this section, the notation will be appropriate for the lamb-and-lions problem
of Sec.2, but all statements hold mutatis mutandis also for the other problems.

4.1 Depth First Versus Breadth First

As described in trick 1 of Sec.2, original enrichment was implemented “breadth
first”. There one keeps many replicas of the process simultaneous in the com-
puter, and advances them simultaneous. This is also the traditional way of im-
plementing evolutionary algorithms [6,7]. There it is required for two reasons:
Because of cross-over moves where two configurations (“replicas”, “instances”,
“individua”, ...) are combined to give a new configuration, and because of tour-
nament selection where the less fit of a randomly selected pair is killed and
replaced by the more fit. In the present case there are no cross-overs, and tour-
nament selection is replaced by comparing the “fitness” w against thresholds
W± which will be determined by some average fitness.
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This allows us to use a “depth first” implementation where only a single
replica is kept in computer memory at any given time, and only when this is
pruned or has reached its final time tmax, a new replica is started. The names
“breadth first” and “depth first” come from searching rooted trees where the
first searches the tree in full breadth before increasing the depth, while in the
second one first follows a branch in full depth and only then considers alternative
branches [54,55].

The main advantages of depth first algorithms are reduced storage require-
ments (which can be important even in present days of parallel machines where
breadth first algorithms can be implemented by putting each configuration on its
own node) and elegance of programming. While the ‘natural’ coding paradigmes
for breadth first algorithms are iterations and first-in/first-out queues, for depth
first approaches they are recursions and stacks. In order to implement the lamb-
and-lions problem we need just a recursive function STEP(t,w,x,x1, ... xN ) whose
arguments have the obvious meaning. When called, it increases t → t+1, selects
new positions from the neighbours of the previous ones, updates w accordingly,
and calls itself either twice (cloning), once (normal evolution) or not at all (prun-
ing). A pseudocode for this is given in [16].

There is a folklore saying that recursions are inefficient in terms of CPU
time [56], and large recursion depths should be avoided. It can be avoided since
each recursion can also be re-coded as an iteration (FORTRAN 77, e.g., has
no recursion and is yet a universal language). But the speed-up is negligible
on modern compilers (less than 10%, typically), depths of 104 − 105 make no
problems, and readability of the code is much worse if recursion is not used.
We see only one reason for avoiding recursion, and that is its less efficient use of
main memory. In very large problems where stack size limitations can be crucial,
recoding in terms of iterations might be needed.

4.2 Choosing W±

In general, thresholds for pruning/cloning should not be too far apart since
otherwise the weights fluctuate too much and most of the total weight is carried
by few configurations only. We had best experiences with 3 < W+/W− < 10 in
most applications, but other authors [44] report good results also for W+/W− ≈
100. Obviously, the precise value is not very important.

More important is W+ itself. As a rule of thumb, it should be chosen such
that the total number of configurations C(t) created at time t is independent of
t. If C(t) decreases with t, most of the CPU time is spent on small t and the
statistics at large t depend on only few realizations. Inversely, if C(t) increases
with t, all configurations at large t are descendants of only few ancestors and
are thus strongly correlated.

There is a very simple way to guarantee the approximate (up to a factor ∼ 1)
constancy of C(t) [16]. Let us denote by Z(t) the path integral (or partition sum),
and Ẑ(t) its estimate from the current simulation,

Ẑ(t) = M−1
∑

j

wj(t) . (12)
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HereM is the number of starting configurations which have already been treated,
and wj(t) is the weight of the j-th configuration at time t. C(t) will be roughly
independent of t if

W± = c±Ẑ(t) (13)

with c± being constants of order unity (typically, c+ ≈ 1/c− ≈ [W+/W−]1/2).
We thus start the simulation with some guess for W± (the precise values are
largely irrelevant, any large values would also do) and replace them by Eq. (13)
as soon as there was already a configuration at t, i.e. as soon as we have Ẑ(t) > 0.

More sophisticated ways [35,33] to choose W± are needed only for very hard
problems with excessive pruning and cloning. In this case, the above method
would occasionally give excessively large “tours” (a tour is the set of all configu-
rations which descend from the same ancestor, i.e. which are obtained by cloning
from the same starting configuration). To cut them short, one should make W±

larger than given by Eq. (13) if a tour is already very large. We should however
warn the reader that in such hard cases the estimates of partition sums are no
longer reliable, and results should be taken with some suspicion.

4.3 Choosing the Bias

As a general rule, the bias should be such that the bias correction factor can-
cels exactly the Boltzmann weight (if there is one) and minimizes the number
of pruning/cloning events. A bad choice of the bias is immediately seen in an
increase of these events, and in a decrease of the number of tours which reach
large values of t. In t, a simulation corresponds essentially to a random walk
with reflecting boundary at t = 0. While normal evolution steps correspond to
forward steps in t, pruning events correspond to backward jumps to the last
previous cloning time. A proper choice of W± eliminates any drift from this
random walk, while a good bias maximized the effective diffusion constant. If
W+ is chosen according to Eq. (13), the CPU time needed to create an inde-
pendent configuration at large t increases essentially ∼ t2, the prefactor can be
substantially decreased by choosing a good bias.

Unfortunately, there is no universal recipe for such a good bias. There is
a general prescription in the case of diffusion quantum Monte Carlo (see next
section) and for related Markov processes, but even this is usually not easy to
implement. In other cases such as polymers with self avoidance one has only
heuristics. Sometimes even the algorithm without bias is already very efficient,
such as for multiple spanning percolation clusters. In other cases, as in the lamb-
and-lions problem, the qualitative properties of the bias are obvious, but for its
quantitative implementation we had used trial and error.

One possible way to determine a good bias (or “guiding”, as it is sometimes
called) is to look k steps ahead. For a polymer, e.g., one might try all extensions
of the chain by k monomers, and decides on the success of these extensions
which single step to take next. This scanning method [57] is efficient in guiding
the growth, but also very time consuming: The effort increases exponentially
with k. For polymers at low temperatures, where Boltzmann factors can become
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very large, this may be efficient nevertheless. But for a-thermal SAWs and for
lattice polymers in the open coil phase, another method is much more efficient.

Markovian Anticipation In this alternative strategy [37] to guide polymer
grow, one essentially does not look forward k steps, but backward. Thus we
remember during the growth the last k steps. On a lattice with coordination
number N , this means we label the present configuration by an integer i =
1, . . .N k. Assume now that the next step is in direction j, j = 1, . . .N . During
the initial steps of the simulation (or during an auxiliary run) we build up a
histogram H(i, j) of size N (k+1). There we add up the weights with which all
configurations with history (i, j) between the steps n − k and k contribute to
the partition sum of chains with length n + m, with m ≫ 1 (we typically use
m ≈ 100 − 200). The ratio

p̂(j|i) =
H(i, j)

∑

j′ H(i, j′)
(14)

is then an estimate of how efficient the extension j was in the long run. After
some obvious modifications taking into account that there is no history yet for
the first k steps, and that no anticipation is useful for the last few steps, we use
p̂(j|i) (which is properly normalized already!) as the probability with which we
make step j, given the history i.

Note that this can also be used, e.g., for stretched polymers where the p̂(j|i)
are not isotropic, and where one can anticipate that the next monomer should
be added preferentially in the direction of stretching.

4.4 Error Estimates and Reliability Tests

Errors can in principle be estimated a priori and a posteriori. In the former case
one knows them even before making the simulations. For instances, if one draws
n realizations of a random number with variance σ, the average has variance
σ/N . A posteriori errors, in contrast, are obtained from fluctuations between
the different realizations.

A priori errors for go-with-the-winners simulations are possible [17] but diffi-
cult because the generated sample is correlated. Indeed, making such estimates
was the main objective of [17], but the compromizes as regards efficiency are
such that the results obtained there seem not very practical.

A posteriori errors can be made easily by dividing a long run into several
bunches, computing averages over each bunch, and studying the fluctuations
between them. This is essentially also the strategy in standard Metropolis sim-
ulations, but here the situation is even simpler. Since each ‘tour’ (see Sec.4.2)
is independent from any other, the break-up into bunches just has to be be-
tween tours. No problem due to correlations of uncertain range as in Metropolis
simulations occurs here.

Nevertheless, the problems of critical slowing down and of being trapped in
local free energy minima which plague Metropolis simulations are not absent in
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go-with-the-winners simulations. They just appear in new guises. Namely, single
tours can become extremely large. If that happens, nearly the entire weight
accumulated during a long simulation can be carried by a single tour or, what is
even worse, the tours of really large weight have not been found at all. The latter
is the analogon to not yet having reached equilibrium in Metropolis simulations.

Although this is first of all a problem of error bars, it can easily, if one is
not very careful, turn into a source of systematic errors. This is because one is
primarily not interested in the partition sum (which is always sampled without
a bias), but in its logarithm or in derivatives thereof. Consider e.g. a situation
where we want to make several independent runs since we want to make sure that
we have made everything right. From each simulation we estimate a free energy,
and then we take their average value as our final estimate. If the problem is really
hard, the fluctuations of the partition sums will be non-Gaussian, with very many
small downward fluctuations compensated by few large positive fluctuations. By
taking the logarithm, the latter are cut down, and a negative bias results.

There is no fool-proof remedy against this danger. But there is an easy and
straightforward way to check that at least that part of phase space which has
been visited at all has been sampled sufficiently during a single run. For this, we
make a histogram of tour weights on a logarithmic scale, P (log(w)), and compare
it with the weighted histogram wP (log(w)). If the latter has its maximum for
values of log(w) where the former is already large (i.e. where the sampling is
already sufficient), we are presumably on the safe side. However, if wP (log(w))
has its maximum at or near the upper end of the sampled range, we should be
skeptical.

As an example, we show results for a self avoiding 2-d walk in a random
medium [39]. This medium is an infinite square lattice with (frozen) random
energies Ei on each site i. In particular, Ei is either −1 (with probability p)
or 0 (with probability 1 − p). The polymer is free to float in the entire lattice.
Previous simulations [58] had suggested that for any finite p there is a phase
transition at T = Tc(p), maybe because the polymer becomes localized in an
“optimal” part of the lattice for T < Tc.
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Fig. 10. Full lines are histograms of logarithms of tour weights for 1/kT = 0.92 (left
panel) resp. 2.30 (right), normalized as tours per bin. Broken lines show the corre-
sponding weighted distributions, normalized so as to have the same maximal heights.
Weights W are only fixed up to a β-dependent multiplicative constant.

But one can show rigorously that no such transition can exist [39]. In order
to understand the source of the problem, we made simulation with PERM and
monitored the distribution of tour weights. Results are shown in Figs. 9 and
10. In Fig.9 we show the average values of the energy1, |U | = −〈

∑

i∈C
Ei〉 for

p = 1/4 and chain length N = 200. Three curves obtained from simulations are
shown together with a curve obtained analytically. The fact the three curves, ob-
tained with vastly different statistics, agree with each other but deviate from the
theoretical curve at the same value of T indicates the supposed phase transition.
But histograms obtained in the regions where theory and simulations (dis-)agree
(see Fig.10) show clearly that the simulations for 1/kT > 2 are not reliable (right
panel) while those for 1/kT < 1.5 are.

5 Diffusion Quantum Monte Carlo

For completeness we sketch here shortly the main idea of diffusion type quantum
MC (QMC) simulations [9,10,11], to show how they are related to the previous
calculations and to understand why a perfect bias is in principle possible in QMC
but not in classical applications.

We start from the simplest version of a time dependent Schrödinger equation,

i∂ψ(x, t)/∂t = −(2m)−1∇2ψ(x, t) + V (x)ψ(x, t), (15)

and we are interested in finding its ground state energy, i.e. we want to solve the
time-independent Schrödinger equation

Eminψ(x) = −(2m)−1∇2ψ(x) + V (x)ψ(x), (16)
1 Here, C denotes the set of sites occupied by the walk, and averaging is done over all

walks and all disorder realizations
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for the smallest eigengenvalue Emin. Replacing t by an imaginary “time” and
(2m)−1 by a diffusion coefficient D we end up at a diffusion equation

∂ψ(x, t)/∂t = D∇2ψ(x, t) − V (x)ψ(x, t) (17)

with an external source/sink V (x) and ψ viewed as a classical density. The
ground state energy of the original problem is now transformed into the slowest
relaxation rate. If we want to simulate this by diffusing particles, we can take
the last term into account by either killing particles (if V > 0) and cloning them
(if V < 0), or by giving them a weight exp[

∫

dtV (x(t))]. Neither is very efficient.
For efficiency, we should rather replace the random walk by a biased (“guided”)
motion for which neither weighting nor killing/cloning is needed.

For this purpose we choose a “guiding function” g(x) and write

ψ(x, t) = ρ(x, t)/g(x) . (18)

Eq.(17) leads then to the following equation for ρ:

∂ρ/∂t = D∇2ρ− [V (x) −D
∇2g(x)

g(x)
]ρ−∇

(

[2D
∇g(x)

g(x)
] ρ

)

(19)

This is now a diffusion equation with drift (last term) and with a modified
source/sink term. If the latter is constant, i.e.

D∇2g(x) − V (x) g(x) = const g(x), (20)

then no killing/pruning is needed and the weight increase/decrease is uniform
and thus trivial. But Eq. (20) is just the time-independent Schrödinger equation,
Eq. (16), we wanted solve. It seems that we have gained nothing. For an optimal
implementation, we have to know already the solution we want to get.

Things are of course not so bad since we can proceed iteratively: start with
a rough guess for g(x), obtain with it an estimate for ψ(x), use it as the next
guess for g(x), etc.

A crucial observation now is the following: the density ρ(x) of the guided
diffusers is, if g(x) satisfies Eq. (20), just equal to the quantum mechanical
density2, |ψ(x)|2. Thus random sampling of Eq. (19) corresponds precisely to
random sampling of the quantum-mechanical density. We thus really have solved
the problem of importance sampling.

Note that if we had started instead with Eq. (17) as a classical problem, and
were interested in the classical density, we would not make perfect importance
sampling: the particles would be sampled in the simulation not with the density
they should have. Although using Eq. (20) for the guiding function would still
be formally correct, it would not lead to minimal statistical fluctuations.

2 Note that ψ(x) is real here since we are interested in the ground state. However, a
similar derivation is possible when using a time-dependent guiding function g(x, t).
Then Eq. (20) becomes the adjoint time-dependent Schrödinger equation.
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6 Conclusion

We have seen that stochastic simulations not following the traditional Metropolis
scheme can be very efficient. We have illustrated this with a wide range of prob-
lems. Conspicuously, the Ising model was not among them. The reason is simply
that no go-with-the-winners algorithm for the Ising model has been proposed
which is more efficient than, say, the Swendsen-Wang [2] algorithm. But there is
no reason why such an algorithm should not exist. In principle, the go-with-the-
winners strategy has at least as wide a range of applications as the Metropolis
Metropolis scheme. Its only requirement is that instances (configurations, histo-
ries, ...) are built up in small steps, and that the growth of their weights during
the early steps of this build-up is not too misleading.

The method is not new. It has its roots in algorithms which are regularly used
since several decades. Some of them, like genetic algorithms, are familiar to most
scientists, but it is in general not well appreciated that they can be made into
a general purpose tool. And it seems even less appreciated how closely methods
developed for quantum MC simulations, polymer simulations, and optimization
methods are related. I firmly believe that this close relationship can be made
use of in many more applications to come.
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