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A B S T R A C T

Graph theory provides a powerful framework to investigate brain functional connectivity networks and their
modular organization. However, most graph-based methods suffer from a fundamental resolution limit that
may have affected previous studies and prevented detection of modules, or "communities", that are smaller than
a specific scale. Surprise, a resolution-limit-free function rooted in discrete probability theory, has been recently
introduced and applied to brain networks, revealing a wide size-distribution of functional modules (Nicolini and
Bifone, 2016), in contrast with many previous reports. However, the use of Surprise is limited to binary
networks, while brain networks are intrinsically weighted, reflecting a continuous distribution of connectivity
strengths between different brain regions. Here, we propose Asymptotical Surprise, a continuous version of
Surprise, for the study of weighted brain connectivity networks, and validate this approach in synthetic
networks endowed with a ground-truth modular structure. We compare Asymptotical Surprise with leading
community detection methods currently in use and show its superior sensitivity in the detection of small
modules even in the presence of noise and intersubject variability such as those observed in fMRI data. We
apply our novel approach to functional connectivity networks from resting state fMRI experiments, and
demonstrate a heterogeneous modular organization, with a wide distribution of clusters spanning multiple
scales. Finally, we discuss the implications of these findings for the identification of connector hubs, the brain
regions responsible for the integration of the different network elements, showing that the improved resolution
afforded by Asymptotical Surprise leads to a different classification compared to current methods.

1. Introduction

The brain is thought to consist of a network of interconnected,
interacting components whose architecture is critical for the emergence
of adaptive behaviors and cognition (McIntosh, 2000). Graph theory
provides a powerful means to assess topology and organization of brain
connectivity networks, like those derived from MRI and other neuroi-
maging methods (Eguíluz et al., 2005; Bullmore and Sporns, 2009).
Within this framework, the brain is represented as a network of n
nodes interconnected by m links. Typically, the nodes correspond to
anatomically defined brain regions and the links to a measure of
interregional interaction or similarity (Bullmore and Sporns, 2009).
For resting state functional connectivity networks, edge weights are
defined as interregional temporal correlations in the fluctuations of the
BOLD signals, and the resulting graph can be represented by a
correlation adjacency matrix. The arcs of structural connectivity net-
works (the “connectome”), conversely, reflect the number of white
matter tracts connecting any two regions. Brain networks have also

been defined on the basis of intersubject anatomical covariance (Evans,
2013), co-activation of different brain regions across individuals
subjected to experimental tasks (Crossley et al., 2013) or pharmacolo-
gical challenges (Schwarz et al., 2007, 2008). All of these networks are
“weighted” by definition, i.e. their edges are associated with real
numbers representing a measure of the strength of pairwise interac-
tions between nodes.

Graph-theoretical analysis of these networks has contributed sub-
stantially to our understanding of the topological organization of brain
connectivity, revealing a small-world, rich-club structure (Eguíluz
et al., 2005; van den Heuvel and Sporns, 2011) and the presence of
hub regions characterized by high connectivity and network centrality.
Additionally, a number of studies (reviewed in Bullmore and Sporns
(2009) and van den Heuvel and Hulshoff Pol (2010)) have investigated
the modular structure of brain connectivity networks, highlighting
cohesive clusters of nodes that are more densely connected among
themselves than with the rest of the network. In the graph-theory
jargon, these disjoint clusters are sometimes dubbed “communities”,
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remnant of early investigations in the field of social sciences (Girvan
and Newman, 2002).

Topological modularity is thought to reflect functional and anato-
mical segregation, a feature that may confer robustness and adaptivity
to brain networks. Moreover, the degree of clustering within functional
connectivity graphs may provide a measure of the balance between
segregation and integration underlying brain function (Bullmore and
Sporns, 2009). Finally, the identification of modules and their bound-
aries is important to understand the topological function of hub regions
within the network (Meunier et al., 2010). Indeed, hubs sharing a large
number of within-module edges may be critical to determine segrega-
tion of sub-structures within the network, while hubs connecting
different modules are responsible for network integration (van den
Heuvel and Sporns, 2013). It has been suggested that hub regions may
have increased susceptibility to the effects of brain disorders (Crossley
et al., 2014; Buckner et al., 2009), and their correct identification and
classification are important to understand their putative role in the
spread and manifestation of brain disease. Finally, alterations in the
community structure of the brain have been observed in several
neuropsychiatric conditions, including Alzheimer disease (Tijms
et al., 2013), schizophrenia (Stam, 2014) and chronic pain
(Balenzuela et al., 2010), and assessment of the brain modular
organization may provide a key to understanding the relation between
aberrant connectivity and brain disease.

Following initial work by Hilgetag et al. (2000), several graph
theoretical methods have been deployed to investigate the modular
structure of brain networks (Meunier et al., 2010, 2010; Power et al.,
2011). Typically, these methods rely on the optimization of a fitness
function that measures the quality of a network partition against that of
an ensemble of randomized networks with similar statistical properties
(the “null model”). Optimization of the fitness function of choice is
often computationally demanding and scales steeply with increasing
network size. Hence, heuristics are needed to calculate nearly optimal
partitions of large networks, like those derived from neuroimaging
data, within reasonable computation time (Blondel et al., 2008; Rosvall
and Bergstrom, 2008).

A seminal finding in graph theory is that clustering methods based
on optimization of a global function suffer from a resolution limit
(Fortunato and Barthélemy, 2007), as they are unable to resolve
modules that are smaller than a scale determined by the size of the
entire network. This problem was first demonstrated for Newman's
Modularity (Newman, 2006), a method included in the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010) and most frequently
applied to the analysis of neuroimaging data.

Subsequent work by various groups has demonstrated that the
resolution limit is quite pervasive and affects, to a different extent,
many other methods based on optimization of a global fitness functions
(Squartini et al., 2015; Traag et al., 2011; Lancichinetti and Fortunato,
2009), including Reichardt and Bornholdt's (2006), Arenas et al.
(2008), Ronhovde and Nussinov (2009), Rosvall and Bergstrom's
(Infomap) (Rosvall and Bergstrom, 2008; Kawamoto and Rosvall,
2015) and others.

The introduction of a resolution parameter has been proposed as a
means to mitigate the problem by adjusting the resolving power of the
function to a specific scale (Reichardt and Bornholdt, 2006; Ronhovde
and Nussinov, 2010; Thomas Yeo et al., 2011). However, this approach
enables resolution of smaller clusters at the expense of larger ones,
which may be unduly subdivided, thus resulting in partitions with
relatively uniform cluster size distributions that do not capture the
complex modular structure of real-world networks (Lancichinetti and
Fortunato, 2011).

Recently, we have assessed the effects of the resolution limit on the
analysis of brain connectivity networks (Nicolini and Bifone, 2016).
Specifically, we have shown that this limitation severely curtails the
ability to detect small, but functionally and anatomically meaningful
clusters of nodes even when they present high densities of intra-cluster

edges. Moreover, we showed that resolution-limited methods, like
Newman's Modularity, do not reflect the multiple scales of the
organization of brain connectivity networks, where small and large
modules can coexist. We have also demonstrated that Surprise, a
conceptually different fitness function grounded in probability theory,
behaves like a resolution-limit-free function (Nicolini and Bifone,
2016). Maximization of Surprise, based on an algorithm dubbed
FAGSO, revealed a heterogeneous distribution of modules within brain
resting state and coactivation networks. If confirmed, these findings
would suggest that a substantial revision of current models of brain
modular structure may be in order.

A fundamental limitation of Surprise lies in its definition in terms of
discrete probability and binomial coefficients that make it applicable
only to binary networks, i.e. graphs with edge values 1 or 0. This may
represent a substantial drawback, for it requires binarization of brain
connectivity networks, thus discarding potentially important informa-
tion contained in the edge weight distribution. Moreover, different
binarization procedures may lead to different network representations
for the same connectivity dataset. Therefore, an extension of Surprise
to weighted networks would be highly desirable, and would provide a
new and important tool to study the modular organization of brain
connectivity beyond the resolution limit.

Capitalizing on recent development in the field of statistical physics
of complex networks (Traag et al., 2015), here we describe and
demonstrate the use of Asymptotical Surprise, a weighted counterpart
to Surprise, in the study of the modular structure of weighted networks.
Moreover, we propose a new algorithm, dubbed PACO (PArtitioning
Cost Optimization) for the maximization of Asymptotical Surprise.

Since there is no ground-truth structure for brain functional
connectivity networks, we have assessed the performance of this novel
approach on synthetic networks with a planted modular structures, and
compared it to some of the leading graph partitioning methods.
Importantly, we demonstrate our approach in networks derived from
synthetic data that mimic different structures, levels of noise and
variability, such as those observed in functional connectivity experi-
mental data. Indeed, improved resolution afforded by Asymptotical
Surprise may imply increased vulnerability to spurious modules
resulting from noisy correlations. It is therefore important to assess
the benefits of increased resolution against the limitations arising from
intrinsic data variability.

Finally, we apply Asymptotical Surprise to weighted functional
connectivity networks from resting state fMRI data, revealing a
heterogeneous, multiscale community structure. We show that the
finer modular subdivision of resting state functional connectivity
networks obtained by Asymptotical Surprise leads to substantial
differences in the identification of connector hubs compared to other
community detection methods.

2. Materials and methods

2.1. Notation

Here we briefly summarize the terminology and the notation that
will be used throughout the paper. A binary graph G V E= ( , ) is a
representation of a set V of n nodes, also called vertices, connected by
m links (or edges), in a set E. The adjacency matrix A a= { }ij of a binary
graph is a square n n× symmetric matrix with elements A = 1ij when
an edge exists between vertex i and j and 0 otherwise. We denote the
total number of possible links in the graph as p = ( )

n
2 .

A weighted graph G V E W= ( , , ) assigns as a set of edge weights W
to the links. For weighted graphs, the adjacency matrix is square,
symmetrical and has real elements.

A clustering ζ ζ= { }c of G is a partitioning of V into disjoint sets of
nodes, ζ V⊆c , which we call modules or communities. Each module
consists of nc nodes, mc edges and p = ( )c

n
2
c pairs of nodes. On
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weighted graphs we define mc as the sum of edge weights inside a
community. The sum of edges internal to all communities, mζ and the
intra-cluster pairs pζ are m m= ∑ζ c c and p p= ∑ζ c c respectively.

2.2. Surprise and asymptotical surprise

Surprise (Aldecoa and Marín, 2011, 2013) is a quality measure of
the partition of a binary network that has its roots in probability theory.
For a given partition ζ, Surprise represents the probability that a graph
drawn uniformly at random from the set of all graphs with n nodes,
p = ( )n

2 pairs and m edges has at least as many intra-cluster edges as G.
Intuitively the lower the probability the better the partition.

For binary networks, Surprise can be computed within the discrete
probability theory of urn models as

∑S =
( )( )

( )
.

i m

m p

i

p p

m i
p
m=

−
−

ζ

ζ ζ

(1)

Due to numerical precision problems in the evaluation of large
binomial coefficients, S ζ S ζ( ) = − log ( ) is often taken as measure of
quality of the partition, with higher values corresponding to better
clustering.

Surprise quantifies the extent of the departure of the distribution of
intra-cluster nodes and edges from that of a randomly drawn partition
with the same internal density as in the original graph (Alba, 1973). In
the limit of large networks, Surprise S can be approximated by a
binomial distribution: this observation led to weighted definition of
Surprise, dubbed Asymptotical Surprise a (Traag et al., 2015):

mD q q= ( ∥〈 〉)a KL (2)

where, for brevity of notation, q m m= /ζ and q p p〈 〉 = /ζ are the
observed and expected fraction of intra-cluster links relatively and the
binary Kullback-Leibler divergence (Kullback and Leibler, 1951) is

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟D x y x x

y
x x

y
( | ) = log + (1 − )log 1 −

1 −
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In the framework of information theory (Cover and Thomas, 2006),
Asymptotical Surprise represents the Kullback-Leibler divergence
between the observed and expected fraction of intra-cluster edges; it
encodes the information lost when the prior distribution q〈 〉 is used to
approximate the posterior distribution q. Kullback-Leibler divergence
is a quasi-distance on probability distributions as it is always non-
negative, non-symmetric and zero only when q q= 〈 〉, like binary
Surprise.

Asymptotical Surprise has a simpler formulation than binary
Surprise as there are no binomial coefficients to evaluate and it has
been shown to be resolution-limit-free in the limit of large networks
(Traag et al., 2015).

2.3. Maximization of asymptotical surprise

Finding the optimal partition of a graph is an NP-hard problem
(Fortunato, 2010) and practical implementations of community detec-
tion rely on heuristic approaches that enable finding nearly-optimal
solutions in a reasonable computation time.

Here we introduce a powerful and general method for the optimiza-
tion of Asymptotical Surprise dubbed PACO (PArtitioning Cost
Optimization). PACO is a non-deterministic agglomerative algorithm
based on FAGSO and, like the Louvain method, has an element of
randomness that enables a more efficient exploration of the partition
landscape.

The operating principle of PACO is based on the triadic closure
property, i.e. the fact that in real-world networks nodes with many
common neighbors are more likely to be neighbors. This transitive
neighborhood property underlies the formation of communities of
nodes (Bianconi et al., 2014; Wang and Cui, 2015). In principle, any

measure of structural similarity between nodes could guide a commu-
nity detection heuristic toward the optimal partition. Specifically,
PACO uses the Jaccard index (Jaccard, 1901), a measure of the
fraction of overlap between the neighbors in common between nodes,
as the guiding principle for the agglomeration of similar nodes in the
same community.

In the first phase of PACO, the Jaccard metric is evaluated for every
edge. More formally, for an edge e u v= ( , ) the Jaccard index is
computed as J e( ) = Γ u Γ v

Γ u Γ v
| ( ) ∩ ( )|
| ( ) ∪ ( )| where Γ u( ) and Γ v( ) are the neighboring

nodes of u and v respectively.
The agglomerative process starts with an initial partition where

every vertex represents a community on its own. This partition has n
communities and no intra-cluster edges. The edges of the graph are
then ranked in decreasing order by their Jaccard index and iteratively,
for every edge in the sorted list, endpoint nodes are merged only if they
belong to different communities. In this case one of the two endpoints,
selected by chance, is assigned to the other's endpoint community and
the increment of Surprise is computed: if it is positive, the partition is
updated together with the new value of Surprise (or Asymptotical
Surprise), otherwise the algorithm proceeds to the next edge. The
running time of PACO is linear in the number of nodes and quadratic in
the average degree of the network. Detailed pseudocode for PACO is
shown in the Supplementary materials, Fig. S1.

The main difference between PACO and its predecessor FAGSO is
the data structure used to store the community structure. FAGSO
maintains the community structure in a disjoint-set data structure and
when one vertex is moved into another's community, the two modules
are merged into one (Supplementary materials, Fig. S2, S3).
Conversely, PACO moves single nodes between different communities,
and never merges modules (Supplementary materials, Fig. S3, boxes C,
D). This results in a more finely-grained optimization that allows a
better exploration of the quality function landscape.

2.4. Synthetic benchmark networks

Here we introduce a theoretically sound method for the generation
of synthetic FC networks that mimic properties of resting state fMRI
networks, including noise and intersubject variability, while presenting
a pre-determined ground-truth modular structure against which the
performance of community detection algorithms can be tested.

The general idea is that, starting from an adjacency matrix with a
given modular structure, we can generate time-courses for each of the
nodes whose pairwise correlations reproduce the edge structure of the
original matrix. Noise can be added to the time-courses, and the
resulting correlation matrix will provide a noisy representation of the
original one. This procedure can be repeated multiple times to produce
different datasets that represent different “subjects” in the study.

In practical terms, given an undirected weighted graph C ∈ n n×

whose community structure is known a-priori, we have calculated its
nearest positive definite matrix (Higham, 1988) and its Cholesky
decomposition, i.e. an upper triangular matrix L ∈ n n× such that
LL C=T . Starting from uncorrelated variables X ∈ n l× , we have
generated correlated random variables Y LX= such that

YY C( ) =T . Additionally, we have injected different levels of noise
into Y prior to the computation of the correlation matrix. Schematic of
this procedure is shown in Fig. 1.

We tested this idea on two different models of planted partition: a
variant of the ring of cliques (Fortunato and Barthélemy, 2007) and the
Lancichinetti-Fortunato-Radicchi (LFR) network (Lancichinetti et al.,
2008) (Fig. 2, whose degree distribution and modular structure can be
tuned to replicate topological features of real-world networks, includ-
ing scale freeness (Hagmann et al., 2008) and the presence of densely
interconnected cores (van den Heuvel and Sporns, 2011).

One important finding in Nicolini and Bifone (2016) is that brain
networks are organized in modules with heterogeneous size distribu-
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tions. We implemented this property in our two types of benchmark
networks. For the first test, we generated a ring of cliques with 300
nodes, and sizes of the cliques sampled from a power-law with
exponent τ = 2c , minimum and maximum clique size respectively
min = 5c , max = 50c (see also Supplementary materials S4). For each
subject of the sample, we synthesized 150 time-points for each node
using the neuRosim R package (Welvaert et al., 2011). We set the
baseline value of all the time series to 100 (Welvaert and Rosseel,
2013).

Finally, we correlated the original synthetic time series X by
multiplication with the matrix L, obtained the correlated time series
Y and added Rician noise (Gudbjartsson and Patz, 1995) to Y
independently for each area. The simulated data Y did not include
slow drift components, simulated physiological noise, nor spatial noise.
The average SNR was defined as S σSNR = / N where S is the average
magnitude of the signal and σN is the standard deviation of the noise
(Krüger and Glover, 2001).

In order to be more exhaustive and extend the validity of results, we
repeated the same procedure on weighted LFR networks with N=600
nodes, sampling nodes degree from a power-law with exponent τ = 2d ,
average degree k〈 〉 = 12 and maximum degree max = 50k . We set the
topological and weights mixing coefficients, i.e. the average fraction of
intra-cluster and inter-cluster degree and strengths, to μ = 0.1t and
μ = 0.1w , respectively. Planted community sizes ranged from 5 to 50
nodes and were sampled from a power law with exponent τ = 1c . In the

Supplementary information we have extended this analysis to a wider
range of network parameters.

Group-level correlation matrices were computed by Fisher-trans-
forming and averaging individual instances of the above matrices.
Sparsification was obtained by removing edges with weights below the
most stringent threshold that maintained the network connectedness, a
procedure known as percolation analysis (Gallos et al., 2012; Bardella
et al., 2016; Alexander-Bloch et al., 2010). This approach measures the
size of the largest connected component of the network upon iterative
removal of the weakest edges and enables data-driven determination of
the optimal sparsification threshold that preserves network structure
and connectedness while removing potentially spurious correlations.

2.5. Comparative community detection methods

The community structure of the resulting weighted sparsified
matrices was detected by Asymptotical Surprise optimized with
PACO and compared against two widely used methods, Infomap
(Rosvall and Bergstrom, 2008) and Newman's Modularity (Blondel
et al., 2008; Newman, 2006), that are affected by the resolution limit,
albeit to different extents. In Newman's Modularity, the size of the
smallest detectable cluster is of the order of the square root of the
number of edges in the entire network (Fortunato and Barthélemy,
2007). Infomap has a limit that depends on the overall number of
inter-cluster edges (Kawamoto and Rosvall, 2015).

Fig. 1. Flowchart of the generation and analysis of the synthetic datasets. In A the network with a pre-defined community structure is generated. The adjacency matrix is then processed
in block B to obtain the nearest positive definite matrix for the Cholesky decomposition. This enables the generation of node-wise time-courses into which different levels of noise can be
injected. The procedure is repeated multiple times to generate different instances (mimicking different subjects in the sample). Finally, correlation matrices are calculated for each
instance (block C), and Fisher transformed to calculate the average adjacency matrix for analysis by community detection algorithms (block D). Lastly, resulting partitions are compared
with the original, planted one in terms of NMI.

Fig. 2. The two benchmark networks used in this study, laid out. (A) is a power-law ring of cliques, where cliques present different sizes sampled from a power-law distribution; (B) is
the layout of an LFR network with parameters N=600, k〈 〉 = 12, max = 50k , μ = 0.1t , μ = 0.1w , min = 5c , max = 50c . The layout of (B) was generated with the graph-tool library (Peixoto,

2014).
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These two methods are based on different principles to detect the
community structure of a graph. Newman's Modularity finds the
optimal partition by maximizing intra-cluster edge-density against that
of a configuration model (Newman, 2006). Optimization of this fitness
function is typically performed using the Louvain method, a greedy
agglomerative clustering algorithm that works on hierarchical refine-
ments of the network's partitions. Here we used the Louvain imple-
mentation available in the Brain Connectivity toolbox (Rubinov and
Sporns, 2010). The idea behind Infomap is the minimization of the
description length (Rissanen, 1978) of a random walker defined on the
network through a set of heuristics. For this study we used the Infomap
implementation available in the igraph-0.7.1 package (Csardi and
Nepusz, 2006).

For all methods, including PACO, we launched 10,000 independent
runs, and picked the membership corresponding to the partition with
the best value of the fitness function, the maximum for Modularity and
Asymptotical Surprise, the minimum for Infomap. Graphs showing the
dependence of the best value of the fitness function on the number of
runs are reported in the Supplementary information section.

Degeneracy of nearly-optimal solutions, whereby similar values of
the fitness function around its maximum correspond to substantially
different partitions, has been observed for Newman's Modularity (Good
et al., 2010). A consensus approach has been suggested in Lancichinetti
and Fortunato (2012) as a means to mitigate the degeneracy problem,
yielding a stable “average” solution over a large set of partitions. In
order to ascertain whether Surprise and Asymptotical Surprise suffer
from a similar shortcoming we have performed degeneracy analysis for
these fitness functions following (Good et al., 2010). In short, we
sampled partitions from a benchmark network consisting in 24 cliques
of five nodes, connected by a single link to form a ring-like structure.
We sampled the configuration space of partitions through a Montecarlo
procedure and annotated its corresponding values of quality function
for each partition. We then built a similarity matrix between all
sampled partitions and embedded it into a three-dimensional space
maintaining similarity relations between partition following a
Curvilinear Components Analysis (CCA). In the embedded manifold,
two partitions are close if they are similar and the z-axis encodes the
quality function. Whereas a large plateau of solutions with similar
values of maximum Modularity is observed (3A, consistent with (Good
et al., 2010)), Asymptotical Surprise and Surprise display a much
sharper peak corresponding to the optimal solution, as shown in
Fig. 3B and C. Hence, degeneracy of nearly-optimal solutions does
not appear to severely affect Surprise or Asymptotical Surprise, and a
consensus approach is not deemed necessary for these functions. This
analysis supports our choice to select the solution with the highest
value of the fitness function.

Our implementation of PACO as well as the code to generate

benchmark LFR networks was written in C++ with bindings in Matlab,
Octave, Python. PACO is available at goo.gl/vpaggl. The LFR software
is available at github.com/carlonicolini/lfrwmx.

2.6. Measures of partition quality

For each method, we analyzed the level of agreement of the detected
community structure against the planted one in terms of Normalized
Mutual Information (NMI) (Danon et al., 2005). Additionally, we used
two different coefficients of similarity between partitions: Sensitivity
and Specificity.

To this end, we quantified the confusion matrix C between the
detected and planted modules. Each element Cij is the number of nodes
in the planted community-i that appear in the detected community-j.
For each planted community we scored as true positives (TP) the nodes
correctly identified as belonging to the ground-truth community, and
as false positives (FP) the nodes wrongly assigned to a community;
similarly false negatives (FN) were nodes wrongly classified in different
communities and true negatives (TN) the nodes correctly classified as
out of the community. Sensitivity, defined as TP TP FN/( + ), decreases
with increasing number of False Negatives. Specificity instead is
defined as TN TN FP/( + ) and decreases when many nodes are wrongly
assigned in the same community. Additionally, we computed Accuracy
and Matthew Correlation Coefficient (see Supplementary materials for
definitions).

2.7. Human resting state network

We applied Asymptotical Surprise maximization by PACO to a
reference resting state fMRI functional connectivity dataset from
healthy subjects (Crossley et al., 2013) made available to the scientific
community through the public Brain Connectivity Toolbox (Rubinov
and Sporns, 2010). Detailed experimental and image processing
procedures are described in the original paper (Crossley et al., 2013),
alongside with the ethical statements.

In short, fMRI data were acquired from 27 healthy volunteers at
3 T. Gradient echo-planar imaging data were collected for 5 min with
2 s TR and 13 and 31 ms echo-times. Thirty six interleaved 3 mm slices
with in-plane resolution of 3.5 × 3.5 mm were acquired. Time series
were extracted from 638 brain regions defined by a template (Crossley
et al., 2013), corrected for motion and band-passed (0.01–0.1 Hz).
Functional connectivity was defined in terms of pairwise Pearson
correlations at a subject's level. A group-level functional connectivity
matrix was calculated by averaging individuals' matrices after Fisher-
transform, and thresholded to retain 18625 edges, as described in
Crossley et al. (2013). We used BrainNetViewer as a tool for the
visualization of the communities on brain templates (Xia et al., 2013).

Fig. 3. Degeneracy landscape after dimension reduction of optimal partitions for Newman's Modularity (A), Asymptotical Surprise (B) and Surprise (C) on a benchmark ring of cliques
structure consisting of 30 cliques of five nodes. Modularity shows a wide plateau, an indication of the degeneracy of this function. The landscape of Asymptotical Surprise (B) presents a
sharper peak that enable identification of the optimal partition.
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2.8. Hub classification

Hub classification is critical for the interpretation of the roles
played by the highly connected nodes within the network structure.
Resolution limited methods may result in misclassification of hubs, and
the resulting partitions may not accurately reflect the modular organi-
zation of the connectivity network. To investigate differences in hubs'
roles as determined by different community detection methods we have
adopted the Guimera et al. (2005) classification scheme, specifying for
every node its participation coefficient and within module degree z-
score. The participation coefficient reflects the extent to which a node is
connected to nodes in other modules, and is defined in Eq. (3)

⎛
⎝⎜

⎞
⎠⎟∑P k

k
= 1 −i

c

ic

i

2

(3)

where kic is the number of links of node i to nodes in module c and ki is
the total degree of node i.

Conversely, the within-module degree reflects the degree of con-
nectivity of a node, and is defined as:

z k k
σ

= − 〈 〉
i

i i

ki (4)

In the Guimera and Amaral model, connector hubs are those with high
values of participation coefficient and high values of within-module
degree z-score. These hubs are responsible for integration of the
different modules into a cohesive structure, and are thought to be
particularly vulnerable in the presence of brain insult or disease, as
damage to these nodes is likely to disrupt network connectedness.

We mapped participation coefficients Pi and within module degrees
Zi in our benchmark resting state functional connectivity network for
Newman's Modularity, Infomap and Asymptotical Surprise. Following
Guimera and Amaral scheme, we identified connector hubs for each of
the three methods as those with simultaneously large values of
participation coefficient and within module degree (larger than 0.62
and 1.5, respectively).

3. Results

3.1. Synthetic networks

We compared the quality of the partitions of the synthetic bench-
mark networks obtained by Asymptotical Surprise with those of
Infomap (Rosvall and Bergstrom, 2008) and Newman's Modularity
(Newman, 2006; Blondel et al., 2008). Fig. 4 shows Normalized Mutual
Information, Sensitivity and Specificity of the three methods applied to
the ring of cliques for different sample sizes and SNRs; no-noise
condition is represented as “Inf”. This model network was constructed
to test the ability of the three methods to retrieve heterogeneous
community structures under various noise conditions.

As expected, all methods showed better performance with increas-
ing SNR and number of subjects, as noise and intersubject variability
introduce spurious edges that hinder the ability to retrieve the planted
structure. Partitions obtained with Newman's modularity showed the
lowest NMI with respect to the planted partition under all conditions.
Sensitivity of Newman's modularity did not exceed 0.75 even for high
SNRs and a large number of subjects, a consequence of its stronger
resolution limit. For this network, Infomap performed substantially
better in terms of NMI against the planted partition, with a Sensitivity
that was superior to that of Modularity across the spectrum of
conditions.

Asymptotical Surprise showed highest NMI and Sensitivity across
conditions, consistent with its resolution-limit-free behavior.
Asymptotical Surprise proved superior in terms of NMI and
Sensitivity in the low SNR regimes, and in the presence of relatively
large intersubject variability as mimicked by the generation of different

instances of the ring of cliques (see Section 2). Specificity of
Asymptotical Surprise was not inferior to the other methods under
all conditions, thus ruling out increased vulnerability to False Positives,
at least in this particular model network.

Comparable results were obtained for the LFR network (Fig. 5), a
model graph that replicates the distribution of nodal degree observed
in many real-world networks, including those representing brain
functional connectivity. All three methods showed similar values of
NMI for high SNR and a large number of subjects, with a plateau
reaching maximum Sensitivity with a group sample bigger than 20 and
SNR above 30. Sensitivity was only slightly worse for Modularity, but it
should be noted that for the LFR network the size distribution of the
planted modules was narrower than for the ring of cliques (Fig. 2), thus
making the resolution limit less evident.

In the lower SNR regime, Asymptotical Surprise presented the best
performance in terms of NMI and Sensitivity, with a slower decay for
decreasing SNR. Specificity was almost equivalent across the three
methods, with a quick convergence to the maximum value of 1 for high
SNR and good performance (around 0.97) for low SNR. Asymptotical
Surprise presented a faster decay with decreasing SNR. However, it
should be noticed that the scale of Specificity has a very narrow range
(0.97–1.00), and the differences between the three methods were
relatively small.

Consensus analysis applied to Newman's Modularity to assess the
potential effects of the degeneracy of nearly optimal solutions did not
show substantial differences in the comparison with the other methods
(Supplementary materials, Figs. S6, S7).

For the sake of completeness, we also computed Accuracy and
Matthew Correlation Coefficient for the same model networks, shown
in the Supplementary materials. Notably, Infomap showed a large
variability in Accuracy for lower SNRs and number of subjects. Under
closer examination, however, it appeared that the increased variance
for Infomap was due to occasional runs in which the algorithm only
retrieved one or two large modules. This is a known problem with
Infomap and other algorithms based on random walks that depends on
the need to parametrize the teleportation step in order to make the
dynamics ergodic (Lambiotte and Rosvall, 2012).

Altogether, the picture that emerges from the analysis of Accuracy
and MCC is entirely consistent with the results shown in this section.

3.2. Resting state functional connectivity dataset

Fig. 6 shows a comparison between the modular structure of the
resting state fMRI dataset obtained with Newman's Modularity,
Infomap and Asymptotical Surprise. For each method, we had 10,000
independent runs and picked the partition with the best value of the
respective fitness functions (Q=0.4967, = 8.5173, Sa=5925.3, for
Modularity, Infomap and Asymptotical Surprise, respectively). The
three methods showed significantly different partitions (relative NMIs
in Table 1), with a number of detected communities of 10, 19 and 47
for Modularity, Infomap and Asymptotical Surprise, respectively.
Interestingly, Modularity detected a relatively uniform size distribu-
tion, consistent with the intrinsic scale built into the fitness function.
Infomap showed a wider distribution of module sizes, with number of
nodes ranging between 156 and 3, while Surprise showed the largest
spread, and included communities as small as single nodes (single-
tons).

Fig. 7 shows the 16 largest modules detected by Asymptotical
Surprise, ranked by number of nodes comprised in each community.
The first and largest module (Fig. 7A) includes the pre- and post-
central gyri, part of the supramarginal gyrus and supplementary motor
area. The second community (Fig. 7B) consists largely of nodes
belonging to the occipital lobe: the visual areas and the surrounding
calcarine sulcus, the lingual and fusiform gyrus. The third module
(Fig. 7C) reflects the Default Mode Network, spanning the temporo-
parietal cortex, the medial prefrontal cortex and the posterior cingu-
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late/precuneus. The nodes involved in the executive frontal functions
form the fourth largest community. Interestingly, nodes in the com-
munities D, E, G are the major players that take part in the so-called
fronto parietal attentional network (Markett et al., 2014). The auditory
network, comprising temporal areas, was detected as a distinct com-
munity (Fig. 7F). Deeper structures emerge as separate modules in
Fig. 7H, with subcortical areas including the basal ganglia, i.e. puta-
men, globum pallidum, caudate nucleus and the whole thalamus. The
hippocampus and the parahippocampal gyrus were identified as
separate communities (O and P). Additional, smaller substructures
are shown in the third and fourth row of Fig. 7, including the
Supplementary Motor Area (Fig. 7J) and the orbital (Fig. 7M) and
orbitofrontal (Fig. 7I) modules, containing nodes from Brodmann area
47 (the smaller communities are displayed Fig. S8).

Partitions of the functional connectivity network obtained by
Newman's Modularity and Infomap are reported in the
Supplementary materials Section (Fig. S9 and S10). Newman's
Modularity retrieved four large, relatively uniform communities,
corresponding to the Default Mode Network, the central network,
occipital and frontoparietal networks. This is in keeping with previous
studies using Modularity optimization by spectral decomposition
(Crossley et al., 2013), and consistent with the strong resolution limit
that affects this method. Additionally, a few smaller modules were
found by Louvain optimization of Newman's Modularity, correspond-
ing to the basal ganglia, the hippocampal/parahippocampal formation
and two asymmetrically distributed subcortical clusters.

Infomap identified 19 communities of various sizes, also shown in
the Supplementary materials Section, Fig. S10. The largest modules
showed a close correspondence with those identified by Asymptotical

Surprise, albeit with some notable differences. By way of example, the
largest component includes the motor-sensory and auditory modules,
identified as separate communities by Asymptotical Surprise. The
Default Mode Network retrieved by Infomap includes parts of the
temporal cortices that are not normally associated with the DMN.
Similarly, hippocampus and the parahippocampal modules were
merged by Infomap, and resolved as individual modules by
Asymptotical Surprise. Other modules, including the visual, associative
and executive networks (C, E and F in Fig. S10, respectively) were
qualitatively very similar to those identified by Asymptotical Surprise.

Altogether, the picture that emerges is consistent with the idea that
the resolution limit is more severe in Newman's Modularity than in
Infomap, and that Asymptotical Surprise presents the best resolving
power among the three methods in a real-world network with finite
SNR and variability as the resting state functional connectivity network
used for this study.

3.3. Hub classification

Maps of the anatomical distribution of the participation coefficient
and within module degree show substantial differences between the
three community detection methods (Fig. 8), resulting in discrepancies
in the identification of the connector hubs for the same functional
connectivity network.

Fig. 9 shows the nodes with simultaneously high values of
participation coefficient and within module degree (connector hubs,
according to the Guimera and Amaral's classification). All three
methods pinpoint connector hubs in the superior, superior medial
and middle frontal areas, as well as in the supplementary motor area.

Fig. 4. NMI, Sensitivity and Specificity of the three community detection algorithms applied to a power-law ring of clique network. SNR indicates Signal to Noise Ratio, and Inf the
situation with a network structure unperturbed by noise. Number of Subjects indicates the different number of instances used to generate the group level network.
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However, substantial differences are observed for other hub regions.
The partition of Asymptotical Surprise localizes connector hubs in the
Temporal Middle and Frontal Middle gyri, as well as in the Rectus,
Middle Cingulate Cortex, Lingual gyrus and in the Precuneus.

Community detection by InfoMap results in the identification of
hubs that are partially consistent with either of the two other methods,
in keeping with the idea that its resolution limit is less severe than for
Newman's Modularity. Altogether, these findings indicate that node
role classification is method-dependent, and may be affected by the
resolution limit.

Fig. 5. NMI, Sensitivity and Specificity of the three community detection algorithms applied to Lancichinetti-Fortunato-Radicchi (LFR) networks. SNR indicates Signal to Noise Ratio,
and Inf the situation with a network structure unperturbed by noise. Number of Subjects indicates the different number of instances used to generate the group level network.

Fig. 6. Adjacency matrix of the resting state functional connectivity network. The node indices have been reordered by module membership in each graph, and the red lines highlight the
community structures obtained by (A) Louvain-Newman's Modularity (Q=0.4967); (B) Infomap (L=8.5173); C) Asymptotical Surprise (Sa=5925.28).

Table 1
NMI values of partitions obtained from the three different methods on the resting state
network.

NMI Newman Infomap Asymptotical Surprise

Newman 1.00 0.75 0.62
Infomap – 1.00 0.76
Asymptotical Surprise – – 1.00
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4. Discussions

4.1. Validation of asymptotical surprise in model networks

The performance of Asymptotical Surprise optimization by PACO

was assessed in model graphs with a built-in community structure, and
compared with two established community detection methods. We
have chosen two synthetic benchmark networks, the ring of cliques and
the LFR network.

The ring of cliques presents a clear-cut modular structure by

Fig. 7. Sixteen largest modules found by Asymptotical Surprise Maximization in the resting state network overlaid on an MRI brain template. The modules are ranked by decreasing
size, and named after corresponding functional networks previously identified by multivariate analysis of resting state fMRI data, or by the comprised anatomical districts.

Fig. 8. Anatomical distributions of the participation coefficient and within-module degree z-score for the resting state functional connectivity network partitioned by the three
community detection methods.
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construct, with modules corresponding to complete subgraphs of
variable sizes sampled from a power-law distribution. This toy network
proved useful to assess the effects of the resolution limit in the presence
of a wide distribution of cluster sizes. The effects of this limit were
particularly apparent for Newman's Modularity (Fig. 4), that showed
poor Sensitivity even for noiseless rings of cliques, plateauing at a value
of 0.75. This is consistent with the findings of Fortunato and
Barthélemy (2007), that showed that for Modularity the resolution
limit is set by the square root of the total number of edges in the graph.
For Infomap, this limit is less severe and is determined by the number
of inter-cluster edges (Kawamoto and Rosvall, 2015). Accordingly, the
effects of the resolution limit were not apparent in this model network,
where modules are sparingly connected by single edges. Asymptotical
Surprise presented the best performance, consistent with the idea that
this cost function is quasi-resolution limit free (Traag et al., 2015).

However, real brain networks are characterized by heterogeneous
distributions of node degree, with fat tails and power-law decays
(Bullmore and Sporns, 2009). Such heterogeneity is critical, as it
determines some of the remarkable features of brain connectivity
networks, including resilience to random failure and rich-clubness
(van den Heuvel and Sporns, 2011, 2013). To provide a more realistic
benchmark, we used the Lancichinetti-Fortunato-Radicchi algorithm
(Lancichinetti et al., 2008), that makes it possible to generate networks
with realistic and tunable power law degree distribution and commu-
nity sizes.

For LFR networks, the difference in performance in the low-noise
regime was more nuanced for the three methods compared in this
study, possibly a result of a fuzzier community structure of the LFR
network compared to the ring of cliques, and of the narrower
distribution of cluster sizes. However, the picture appears different
when noise and intersubject variability were injected into the network
structure.

Noise and other sources of variability in the data can significantly
affect the structure of the resulting network representation. Noisy fMRI
time-courses, for example, may introduce spurious correlations in
brain functional connectivity networks. This problem may be particu-
larly relevant for methods endowed with high resolution, like
Asymptotical Surprise, that may be more vulnerable to False
Positives generated by the mis-assignment of peripheral nodes, parti-

cularly in small clusters. Hence, the resolving power of community
detection methods should be gauged against Specificity, which may be
affected by noise in the distribution of edges that define the network's
structure. However, to the best of our knowledge, this aspect has never
been considered in the existing literature assessing the performance of
community detection algorithms as applied to the study of brain
connectivity.

To this end, we have devised methods to inject noise, with
amplitude and spectral distribution that mimic those of experimental
noise, into networks with a well defined planted structure. Moreover,
we have generated different instances for each network, corresponding
to different subjects in a group, to account for intersubject variability
that occurs in typical neuroimaging studies.

Unsurprisingly, for all methods and networks, detection of the
planted structure improved with decreasing levels of noise, and with
increasing number of subjects in the study. However, Asymptotical
Surprise appeared to provide a superior performance in terms of NMI
and Sensitivity to the planted structure for lower SNRs in both types of
networks, while its Specificity was in line with that of resolution-limited
methods like Newman's and Infomap (Figs. 4 and 5). This rules out the
idea that the higher sensitivity to small clusters of Asymptotical
Surprise may be detrimental in noisy networks, making it more
vulnerable to small, spurious modules.

4.2. Community detection in functional connectivity networks by
Asymptotical Surprise

Application of Asymptotical Surprise maximization to a group-level,
resting state functional connectivity network from the brains of 27
healthy subjects revealed a heterogeneous distribution of modules,
with large and small modules coexisting in the optimal partition. This
is in keeping with previous findings with binary Surprise (Nicolini and
Bifone, 2016). These modules closely reflect functional networks
reported in many studies using Independent Component Analysis or
other multivariate methods, including the sensorimotor, visual, default
mode, executive, and attentional networks. Moreover, anatomically
defined subcortical structures, like the hippocampus and parahippo-
campal formations emerged as independent moduli.

While this is entirely consistent with our understanding of the
neurofunctional and anatomical organization of the human brain, the
accuracy of Asymptotical Surprise in identifying these networks is
notable. Indeed, Surprise, like other graph-based community detection
methods, divides networks into disjoint clusters of nodes on the basis
of topological criteria. While a correspondence between topological
modularity and functional networks identified by, e.g. Independent
Component Analysis, may be expected, it is not a given, for they are
defined on different principles. Indeed, multivariate methods like ICA
separate components on the basis of the statistical independence of the
time-courses, and do not convey information regarding the mutual
relationship between modules nor about their topological organization.

Previous studies applying resolution-limited methods like
Newman's Modularity to the same dataset hereby analyzed (Crossley
et al., 2013) found a few, large modules encompassing large-scale
networks, but failed to identify finer, neurofunctionally plausible
substructures like those shown in the present study. Infomap, on the
other hand, proved sensitive to heterogeneously distributed clusters,
thus implying that this method does not have an intrinsic scale, like
Modularity and variations thereof based on the introduction of a
resolution parameter. However, Asymptotical Surprise appears to
provide superior performance in identifying small subnetworks, parti-
cularly in the presence of noise, thus suggesting that this method may
represent a new standard for community detection in brain networks.
It should also be noted that no symmetry constraint was imposed, and
the symmetrical bilateral distribution of nodes in the retrieved modules
arises entirely from Asymptotical Surprise optimization.

Hierarchical clustering methods have been extensively applied to

Fig. 9. Nodes presenting simultaneously large values of the participation coefficient and
within-module degree (larger than 0.6 and 1.5, respectively) for the three community
detection methods. These nodes are thought to represent the connector hubs responsible
for the integration of the networks's modules.
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investigate the structure of brain connectivity networks, showing
smaller and smaller clusters as the modules are iteratively subdivided
(Meunier et al., 2010). Maximization of Asymptotical Surprise reflects
the optimal cut through the dendrogram representing connectivity at
these different levels of subdivision, and provides information on the
optimal partition of the network. Hence, the heterogeneous distribu-
tion of cluster sizes retrieved by Asymptotical Surprise suggests that
multiple scales of structure exist at the same level of the dendrogram.

Finally, abnormal functional connectivity has been observed in a
number of neurological and psychiatric diseases, but the coarse
resolution of methods like Newman's Modularity (Fornito et al.,
2015) may have not detected differences in the modular organization
of networks in patients compared to healthy controls. The improved
resolution and sensitivity to multiscale structure afforded by
Asymptotical Surprise may provide a powerful means to assess the
brain functional architecture in disease states, thus contributing a
potential imaging-based marker and a key to interpret the functional
effects of aberrant connectivity.

4.3. Hub classification

The presence of heterogeneously distributed modules in functional
connectivity networks may have important consequences for our
understanding of the brain functional organization. By way of example,
it has been shown that highly connected nodes, or hubs, are critically
important in brain connectivity networks, and may play different roles
depending on their position and connectivity distribution within and
between modules (Bullmore and Sporns, 2009). Hubs that primarily
connect to nodes within the same community are dubbed "provincial
hubs", and are thought to be responsible for the definition and stability
of the modules. Conversely, hubs that connect different modules are
referred to as "connector hubs" and ensure integration of the activity of
the network. The classification of hubs strongly depends on the
modular structure that is considered, and inaccurate partitioning due
to the resolution limit can lead to the wrong interpretation of their role
in the interplay between segregation and integration of brain function
(Bullmore and Sporns, 2009). The present study suggests that this may
have been the case in previous studies, in which resolution limited
methods characterized by an intrinsic scale have been used, and
provides a solution that may enable more accurate classification of
hubs and nodes.

The connector hubs identified by our three methods (Asymptotical
Surprise, InfoMap and Newman) present some substantial differences,
consistent with the idea that hub classification depends on community
structure. These differences are particularly interesting in the light of
the important role that connector hubs are thought to play in
integrating information flow through the brain, and their putative role
in brain disease (Crossley et al., 2014; Stam, 2014). By way of example,
the Precuneus and the Cingulate Cortex are highlighted by
Asymptotical Surprise, but not by Newman's Modularity, as connector
hubs. These are two key elements of the Default Mode Network that
have been consistently identified as vulnerable regions in neurological
diseases (van den Heuvel and Sporns, 2013; Buckner et al., 2009).
Community detection by resolution limited free methods should enable
more accurate classification of hub nodes, and improve our under-
standing of their role in brain disease.

4.4. Limitations

Some caution should be taken in the interpretation of the graphs in
Figs. 4 and 5. Indeed, the SNRs of the synthetic networks we have
generated reflect noise with features, like a Rician distribution, that
mimic some, but not all aspects of the variability of experimental data.
By way of example, the brain parcellation scheme applied to define the
nodes, and the heterogeneity of voxels within these parcels, may play a
role that is difficult to model in toy networks (Fornito et al., 2010).

Hence, the simulated Sensitivity and Specificity as a function of SNR
and number of subjects should not be taken as absolute values to be
used in the power and sample size estimation in real experimental
designs. Nevertheless, these simulations provide useful information on
the dependence of these parameters on noise levels, and a rigorous
means to assess the relative merits of different community detection
methods.

Finally, we should note that the maximum value of Asymptotical
Surprise calculated with PACO is an index of quality of the entire
partition, and not of individual modules. Hence, individual modules
may not all have the same strength of internal cohesiveness relative to
their connection with other modules. We have found hints of this
phenomenon in the comparison of nearly-optimal partitions obtained
in the 10,000 runs of PACO that we have performed to find the optimal
community structure for this network. The overall community struc-
ture appeared to be robust, with most modules persistently emerging in
every nearly-optimal partition, but in some cases we observed pairs of
modules splitting or merging in otherwise similar solutions. Most
notably, this was observed for the thalamus that in some instances was
merged with the basal cluster and in others, featured as a separate
module. This phenomenon may be less critical for methods like
Newman's Modularity that have an intrinsic scale and retrieve uni-
formly distributed modules.

5. Conclusion

We have extended the use of Surprise, a resolution-limit-free fitness
function for the study of the modular structure of complex networks, to
weighted brain functional connectivity networks. Specifically, we have
developed a novel method, dubbed PACO, for the optimization of
Asymptotical Surprise, a weighted counterpart of Surprise in the limit
of large networks. We have applied PACO optimization of Asymptotical
Surprise in synthetic networks to evaluate the relative merits of this
novel approach against Newman's Modularity and Infomap, two of the
leading methods used for community detection in brain connectivity
networks. Specifically, we have implemented a process to inject noise
into networks endowed with a ground-truth modular structure to
assess the trade-off between improved resolution afforded by
Asymptotical Surprise and potential sensitivity to spurious correlations
introduced by variability in the data. Asymptotical Surprise optimiza-
tion proved superior to existing methods in terms of Sensitivity and
accuracy in detection of the planted structure as measured by
Normalized Mutual Information, while showing comparable
Specificity. We have also applied our approach to the partitioning of
functional connectivity networks from resting state fMRI experiments.
Direct comparison with other methods clearly demonstrated improved
capability to identify neurofunctionally plausible and anatomically
well-defined substructures otherwise concealed by the resolution limit.
Asymptotical Surprise revealed a complex modular structure of resting
state connectivity, with communities of widely different sizes reflecting
distributed functional networks alongside with small, anatomically or
functionally defined modules. This evidence corroborates the idea that
the resolution limit may have negatively affected current models of the
brain modular organization and the identification of the hubs respon-
sible for integration of functional modules. The application of methods
like Asymptotical Surprise provides a novel, powerful approach to
study the modular structure of brain connectivity beyond this limit.
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