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Many networks of scientific interest naturally decompose into clusters or
communities with comparatively fewer external than internal links; how-
ever, current Bayesian models of network communities do not exert this
intuitive notion of communities. We formulate a nonparametric Bayesian
model for community detection consistent with an intuitive definition of
communities and present a Markov chain Monte Carlo procedure for in-
ferring the community structure. A Matlab toolbox with the proposed
inference procedure is available for download. On synthetic and real
networks, our model detects communities consistent with ground truth,
and on real networks, it outperforms existing approaches in predicting
missing links. This suggests that community structure is an important
structural property of networks that should be explicitly modeled.

1 Introduction

The analysis of complex networks is an important challenge spurred by
many types of networked data arising in practically all fields of science,
including biology, social science, and technology (Girvan & Newman, 2002;
Sun, Ling, Zhang, Li, & Chen, 2003; Watts & Strogatz, 1998). Many networks
naturally decompose into clusters or communities characterized in this way
(Fortunato, 2010):

Definition 1. The organization of vertices in clusters, with many edges joining
vertices of the same cluster and comparatively few edges joining vertices of different
clusters.

Such communities have been found to correspond to behavioral or func-
tional units (Karrer, Levina, & Newman, 2008; Gulbahce & Lehmann, 2008;
Fortunato, 2010). For example, in networks of protein interaction, communi-
ties might comprise proteins with similar functions, and in social networks,
communities are groups of closely related people. This suggests that we
might gain insight into networks whose function is less well understood
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by discovering and examining their communities (Karrer et al., 2008;
Fortunato, 2010). A large variety of methods for community detection have
been proposed over the years; however, no standards have been agreed
on (Gulbahce & Lehmann, 2008). A widely used approach is to optimize
some measure of cluster structure such as modularity (Newman & Girvan,
2004) or mutual information (Rosvall & Bergstrom, 2007). An alternative
approach is to formulate a Bayesian generative network model, with the
advantage of making the definition of the model’s notion of a community
explicit. The most prominent generative model of network communities is
the stochastic block model (Nowicki & Snijders, 2001) and its extensions
(Karrer & Newman, 2011; Hofman & Wiggins, 2008; Miller, Griffiths, &
Jordan, 2009; Merup, Schmidt, & Hansen, 2010). Notably, the infinite rela-
tional model (IRM) (Kemp, Tenenbaum, Griffiths, Yamada, & Ueda, 2006;
Xu, Tresp, Yu, & Kriegel, 2006) is a nonparametric extension that allows the
number of communities to be inferred from data. In these models, clusters
are sets of nodes with homogeneous probabilities of linking within and to
other clusters. However, this is subtly different from the intuitive definition
of communities above. For example, a group of nodes that link consistently
to other groups of nodes but have no internal links between them will
be identified as a cluster. This flexible notion of group structure makes it
impossible to interpret clusters as communities in the sense conveyed in
definition 1.

In this letter, we propose a nonparametric Bayesian generative model of
networks with community structure that operationalizes the intuitive defi-
nition of communities in definition 1. We derive an efficient inference pro-
cedure based on Markov chain Monte Carlo (MCMC). Our model includes
a parameter that defines the extent to which a community has compara-
tively fewer external than internal links. This parameter is learned from
data, giving an indication of the strength of the community structure. We
compare our model to the IRM and demonstrate how the communities
detected by the two models differ on synthetic and real data. Finally, we
analyze 17 real networks and show that our model outperforms competing
approaches as measured by link prediction. Our results demonstrate that
community structure is an important property of networks that should be
modeled explicitly. A Matlab toolbox with our proposed method is available
for download (Merup & Schmidt, 2011).

2 Methods

Given a network, we address the problem of partitioning the nodes into
clusters, consistent with the notion of communities in definition 1. To sim-
plify the presentation, we consider an undirected network represented by a
binary, strictly upper triangular adjacency matrix A, where A;; = 1 indicates
that a link between node 7 and j is present; however, the ideas presented
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can trivially be extended to directed and weighted networks as well as
multigraphs.

To initiate the discussion, we describe the infinite relational model (IRM)
(Kemp et al., 2006; Xu et al., 2006) which can be characterized by the follow-
ing generative process. First, each node is assigned to a cluster according to
a Chinese restaurant process (CRP). The CRP is a metaphor for building a
partition ground up by assigning the first node (i.e., customer in a restau-
rant to a table) and subsequent nodes (customers arriving at the restaurant)
to an existing cluster with a probability proportional to how many existing
customers are placed at the table and at a new table with a probability
proportional to «. Customers tend to sit at most popular tables, making the
popular tables even more popular, an effect noted as the rich gets richer. The
partition of the nodes induced by the CRP is exchangeable in that the order
in which the customers arrive does not influence the probability of the par-
tition (Pitman, 2006). Next, link probabilities are generated that specify the
probability of observing a link within and between each cluster, and, finally,
the links in the network are generated according to these probabilities:

Cluster assignment: z ~ CRP(«), (2.1)

Link probability: n,,, ~ Beta(B, ), (2.2)

Link: A;; ~ Bernoulli(z, , ). (2.3)
Ll

Inference in the IRM model (i.e., determining the posterior distribution of
the cluster assignments) entails marginalizing over the link probabilities,
which can be done analytically. This is a major advantage of the IRM model,
enabling inference by Markov chain Monte Carlo (MCMC) sampling over
the cluster assignments alone.

However, the notion of a cluster in the IRM model is not consistent with
definition 1. A cluster ¢ is defined by the probability 7,, of observing a link
between two nodes inside the cluster and the probabilities ,,, for £ # m of
observing links between nodes in cluster ¢ and m. This is subtly different
from the intuitive notion of communities with more internal than external
links.

2.1 Bayesian Community Detection. In this letter, we propose a
nonparametric Bayesian model of network communities that strictly fol-
lows definition 1. Our model can be described by the following generative
process. First, a cluster assignment is generated, partitioning the nodes into
K clusters. For each cluster, a within-cluster link probability, n,,, is generated
specifying the probability of observing a link between two nodes in the clus-
ter. Then for each cluster, a cluster gap, y,, between 0 and 1 is generated. The
cluster gap multiplied by the within-cluster link probability determines the
maximum allowable between-cluster link probability. Next, the probability
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of links between each pair of different clusters ¢ and m is considered. For
each pair, a between-cluster link probability 7,,, is generated, such that it is
strictly less than both clusters” within-cluster link probability multiplied by
the gap. Finally, links between nodes in the same or in different clusters are
generated according to the within- and between-cluster link probabilities:

Cluster assignment: z ~ CRP(«),

Within-cluster link probability: n,, ~ Beta(g, 8),

Cluster gap: y, ~ Beta(9, 9),

Between-cluster link probability, x,,, = min[y,n,,, ¥,,1um]:
Ny, ~ Betalne(B8, B, x,,,),

Link: A;; ~ Bernoulli(n, , ),
i%j

where Betalnc(a, b, x) denotes a beta distribution constrained to the interval
[0, x], with density,

p() 0 (1 -0,

~ B.(a.b)

where B, (a,b) is the incomplete beta function. The incomplete beta dis-
tribution has previously been considered for binomial sampling in Weiler
(1965), and aspects regarding numerical evaluation can be found in Dutka
(1981). We denote the hyperparameters of the model by ¥ = {«, ¢, B}.

We name this model Bayesian community detection (BCD). According to
the BCD model, clusters are groups of nodes where the probability of links
between them is at least y, times less compared to the probability of links
within them. In addition to the model where each cluster has a separate
v,, we also consider the special case where all clusters share a common
v, = ¥, = --- = y. Figure 1 shows random networks generated according
to the IRM and the proposed BCD model with shared y. As y decreases,
the relative link densities between clusters drop, and for y =0, no links
are generated between clusters. We note that we recover the IRM model for
y — oo in the BCD, but in order for the BCD model to adhere to definition 1,
we require y < 1.

2.2 Inference in BCD. Let ) = {1,,,|1¢ = m}and i = {n,,,|¢ # m} denote
the sets of link probabilities within and between clusters, respectively. In-
ference in BCD amounts to computing the marginal posterior distribution
of the cluster assignments, p(z|A), which entails integrating over the joint



2438 M. Morup and M. Schmidt

IRM BCD

v=0.25

Figure 1: Examples of random graphs according to IRM and BCD for different
values of y.

distribution given by
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where L is the number of clusters, M, is the number of nodes in the ¢th
cluster, and Nzrm and N,,, are the number of links and nonlinks between
nodes in cluster ¢ and m such that

N M,M,, — N}, forl #m
oI MM, - 1)/2 =N, forl=m

2.2.1 Between-Cluster Link Probabilities. In the IRM model, all link prob-
abilities can be marginalized analytically. This is not the case for BCD since
within- and between-cluster link probabilities are dependent; however, the
vast majority of these parameters, namely, the between-cluster link prob-
abilities (ij = {n,,,|¢ # m}), can be marginalized analytically. We therefore
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have:
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Because we cannot integrate the posterior with respect to the remaining
parameters, z, ij, and y, we sample from their posterior distribution using
MCMC.

2.2.2 Within-Cluster Link Probabilities. When we eliminate terms that do
not depend on 7,,, the marginal posterior reduces to

. N +ﬂ 1 — _
P Az, i\ Ny v, W) 0 (1= )Nt P
(NE ﬂ Em + ﬂ)

- B, (.5)

m#L

We generate samples from this distribution using Metropolis-Hastings with
the following proposals:

qq (nZz) =Beta(B, B),
q4,(ny,) =Beta(N, + B, N, + B).
q5(ng,lm,,) =Beta (’Mcv 1- VIN)C) .

The first is the prior, the second is the marginal distribution of 5,, disre-
garding dependencies to other clusters, and the third is a random walk
centered on the current value of n,, with concentration parameterized by
C. Combining these proposals, we attain acceptance rates around 50%, and
to improve mixing, we repeat the sampling 10 times in each iteration.

2.2.3 Cluster Assignment Variables. Regarding, z, the BCD model is sim-
ilar to a Dirichlet process (DP) mixture model, and it is thus possible to
use standard MCMC methods for inference in DP mixtures. Because we are
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not able to analytically integrate 1, we have to resort to nonconjugate sam-
pling approaches. We use two MCMC transition kernels: an auxiliary vari-
able Gibbs sampler (Neal, 2000, algorithm 8) and a split-merge Metropolis-
Hastings move (Jain & Neal, 2004), to sample from p(z|A, 1, y, ¥). In the
auxiliary variable Gibbs sampler T, new within-community densities and
gap parameters are drawn from their priors. These auxiliary variables rep-
resent possible values for the parameters of the within-community density
of nodes that are not associated with any other observations. The node as-
signment is then updated by Gibbs sampling with respect to the distribution
that includes these auxiliary parameters (see also Neal, 2000, algorithm 8,
for details). Similarly, the split-merge Metropolis-Hastings algorithm pro-
poses in a split move a new within-community density and gap parameter
from the priors as part of defining the launch state for the restricted Gibbs
sampler that Jain and Neal (2004) described.

The conditional distribution of the cluster assignment of a single node
required for the Gibbs sampler, as well as the restricted Gibbs sweeps in the
split-merge sampler, is given by

: .
p(Zi = £|A, Z\Zi’ 1‘77 Y, ’!h) X n?{!}t (1 _ ngg)n’[ aLMe
. 1_[ me(NZﬂ + ni+m +B.N,, + ni + B)

im
m#L X

. (4
B, (N, +B. Ny, +B) ¢

where n:g and n;, are the number of links and nonlinks from node i to nodes
in cluster ¢, and (by slight abuse of notation) Nzrm, N,,,,and M, are computed
excluding links involving node i.

2.2.4 Cluster Gaps. When terms that do not depend on y, are eliminated,
the posterior reduces to

B, (N, +B. Ny, +8)
VolA z, iy \ v ¥) o) T —y)"
P (i [ [ HE me(ﬁ,ﬁ)

To generate samples from y, we use Metropolis-Hastings with the following
proposal densities,

71(y)) = Beta(®,9), 4,y y,) = Beta (y,C, (1 —,)C).

where the first is the prior distribution, and the second is a random walk
centered at the current value of y, with concentration parameterized by C.
To improve mixing, we repeat the sampling 10 times in each iteration.
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2.3 Predicting Missing Links. Until now it has been assumed that the
data are a fully observed network; however, the model can easily be adapted
toaccommodate a partially observed network. When it is unknown whether
there is a link between some sets of pairs of nodes in the network, these
are simply not included in the evaluation of the likelihood (p(A|z, 1)), or
equivalently excluded in the computation of the link- and nonlink-counts,
N/} and N, .

When the network is not fully observed, the model can be used to predict
if there should be a link between two nodes by computing the posterior
predictive distribution, p(A;;|A), where A denotes the observed part of
the network. Based on R posterior samples, the predictive distribution is
approximated as

R
1 - (7 r
P(Ajj|A) ~ R E P(Ai]‘|A’ z0 )0, )’( ),

r=1

where

nziz].’ i j
Py =11,z ) = | By (N BTN 4 5)
i°j
B, (NI +8, Noz +8)
7

“i

, ziyézj.

2.4 Extensions of the BCD Model. BCD can trivially be extended to
handle self-links, in which case the adjacency matrix is nonzero on the
diagonal, as well as directed networks, where the adjacency matrix is a
full binary matrix. Extension to integer weighted networks is also trivial,
replacing the Bernoulli likelihood and beta priors by Poisson and gamma
distributions. Furthermore, BCD can trivially be extended to handle mul-
tiple types of links by sharing the cluster assignments across link types
and introducing different link probability and gap parameters for each link
type. The details of all these possible extensions are described below.

2.4.1 Extension to Weighted Graphs. For the modeling of weighted graphs
based on integer count co-occurrences, we have the following generative
process for the IRM model:

Cluster assignment: z ~ CRP(«), (2.5)

Link probability: ,,, ~ Gamma(B, B), (2.6)

Link: A;; ~ Poisson(z, ), (2.7)
i
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and for the BCD,

Cluster assignment: z ~ CRP(«),

Within-cluster link probability: n,, ~ Gamma(g, ),

Cluster gap, y, ~ Beta(9, v),

Between-cluster link probability, x;,, = min(y,n,,, ¥, Mum)»
Ny ~ Gammalne(B, B, x;,,,),

Link: A;; ~ Poisson(, , ).
i

Let G, (a, b) denote the normalization constant of the incomplete gamma
distribution (Gammalnc(a, b, x)) (i.e., constrained to the interval [0, x]).
Marginalizing the between-cluster rate y,,,, we obtain

PA. 2. i yI¥) = / PA. 2 1. yI9)dii

- ﬁ me " exp L=, (NI + B
! G(B. B)

Ll L ( lm :3 NE%—'_/s)
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2.4.2 Extension to Directed Graphs. For directed graphs, we have for the
marginalized likelihood given above for integer-weighted graphs,

pA, z, ﬁyyl'ﬁ):/P(A, z, 7, y[¥)di
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2.4.3 Extension to Multigraphs. We model multigraphs by sharing the
cluster assignments z across link types but introducing link-type specific
probabilities or rates 5 and gap parameters y:

pAD, AP AR 2 (gD @, gy D, @y By

= [1"[ pAP 1z, ) pa®1R®, y©, Bypa®18)p(r® m)} p(zle).
k

3 Results and Discussion

We analyzed the proposed BCD model on a variety of synthetic and real
networks. Unless otherwise stated, we set § = ¢ = 1, used T = 3 auxiliary
components in the Gibbs sampler (Neal, 2000, algorithm 8), set « = log N,
and used three rounds of restricted Gibbs sampling in the split-merge sam-
pler. We ran the MCMC sampler for 500 iterations and discarded the first
400 samples for burn-in. The displayed solutions are the highest likelihood
sample obtained by the sampler across the 100 samples. By definition, MAP
estimation involves taking the modal, or most commonly occurring, sam-
ple. However, it is practically certain that every sample will be unique (i.e.,
every sample has frequency 1), and therefore the highest likelihood sample
is used as a proxy for the MAP solution. The displayed graphs are sorted
according to the sizes of the extracted clusters.

3.1 Synthetic Data. To examine the properties of BCD, we studied the
performance of the model on two synthetic data sets, chosen to highlight
key properties of the model also found on real networks.

The first data set was formed by two groups, each containing 20 nodes.
Within each of the two groups, half of the nodes were fully connected to each
other, while the remaining nodes were completely disconnected from each
other but linked to the fully connected core of nodes with a link density of
0.5. These nodes thereby formed so-called satellite communities (Newman
& Girvan, 2004) to the main community. Two links were further placed
between the core nodes of the two groups bridging the two main groups.
Figure 2 shows the result of the analysis for fixed y =0.01 and y =1 in
the BCD model, as well as the results of analysis by IRM. IRM extracts four
communities: the two strongly connected core groups and the two satellite
communities. The clusters found by IRM are not communities in the sense
described in definition 1 because the clusters of satellite do not constitute
a community with more internal than external links. In fact, they have no
internal links whatsoever. In BCD, the satellites are grouped together with
the core nodes of each community (y = 0.01) or when the prior is chosen to
strongly favor many communities with a small gap (y =1, @ = 250), each
satellite node is assigned to its own community.
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IRM BCD

IRM

Figure 2: (Left) IRM and BCD analysis of a synthetically generated network
of 40 nodes with two groups of 20 nodes each subdivided into 10 nodes form-
ing a core and 10 nodes defining the periphery (i.e., satellite communities).
(Right) IRM and BCD analysis of synthetically generated network with five
smaller and three larger communities.

Subsequently, we analyzed the performance of IRM and BCD on a net-
work consisting of eight communities (five smaller and three larger), all
with an internal link density of 0.6. The five smaller communities have a
link probability between them of 0.3 and an identical link probability to the
remaining three communities (0.1, 0.55, and 0.2). Figure 2 shows the results
for IRM and BCD. Although there are eight communities in the data, the
IRM finds only four communities, grouping the five smaller communities
together. The reason is that the five smaller communities have identical link
probabilities toward the rest of the network. The BCD model correctly iden-
tifies the eight communities, since this solution leads to larger within-cluster
than between-cluster link probabilities.

3.2 Zachary’s Karate Club and the Bottlenose Dolphin Networks.
Zachary’s Karate Club and the bottlenose dolphins of Doubtful Sound
(Lusseau et al., 2003) are often-used benchmark networks for community
detection (Newman & Girvan, 2004; Fortunato, 2010). The karate network
describes social interactions between members of a karate club that even-
tually split in two due to a dispute, and the dolphin network consists of
relations among 62 dolphins that were observed to split into two large
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ZACHARY’S KARATE CLUB BOTTLENOSE DOLPHINS

IRM

BCD

MODULARITY

NorRMCuUT

Figure 3: Analysis of the karate and dolphin networks by IRM, BCD,
MODULARITY, and NormCut.

groups. We compare the community structure identified by the BCD, IRM,
MODULARITY (Newman & Girvan, 2004), and normalized graph cut of
Shi and Malik (2000). The normalized graph cut (NormCut) was based on
clustering the values of the second smallest eigenvalue of the normalized
graph Laplacian into two clusters using k-means. The results of analyzing
the networks using IRM, BCD, MODULARITY, and NormCut are shown
in Figure 3.

In the karate network, IRM assigns central persons to individual clusters
and finds two large clusters of satellites, BCD detects one large commu-
nity (with one misclassified person) and subdivides the other community
into two groups and four satellites, MODULARITY splits each of the two
communities into two subcommunities, and the NormCut of Shi and Malik
(2000) incorrectly assigns one node to a wrong community.
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In the dolphins network, IRM finds two densely connected core clusters
but assigns all other nodes to one big satellite cluster, and BCD detects
one of the communities (except for one node, which is given a cluster of
its own) and splits the other into four subcommunities plus some satellite
communities. MODULARITY gives a similar result, correctly identifying
one community (except for one node assigned a different community) and
splitting the other into four subcommunities, whereas the NormCut iden-
tifies a correct split of the network.

For both considered networks, the NormCut works well. We note, how-
ever, that it is in general an open problem for spectral approaches such as
the considered NormCut to define how many eigenvectors to include in the
analysis, as well as the number of clusters to be extracted by k-means (Von
Luxburg, 2007). A benefit of the IRM, BCD, and MODULARITY is that the
models automatically determine the model orders.

Comparing the discovered clusters with the true communities, it appears
that IRM has a tendency to assign a densely connected core and its satellite
nodes into separate clusters, whereas the BCD model has a tendency to
assign some satellite nodes to separate clusters. Both of these issues can
be explained as an unwarranted subdivision of communities containing
nodes with largely varying degrees, suggesting that the models could be
improved by taking node degree into account. For example, in the BCD
analysis of the karate network, one node is incorrectly assigned to the top
cluster (dark gray circles) although it has more links to the bottom cluster.
This happens because the node has a substantially lower degree than the
other nodes in the bottom cluster.

3.3 Link Prediction in Real Networks. Link prediction as measured
by the area under curve AUC of the receiver operator characteristic has
become a standard for the evaluation of network models (Clauset, Moore,
& Newman, 2008; Miller et al., 2009). We compared the performance of the
proposed BCD model with prominent variants of the stochastic block model
(Nowicki & Snijders, 2001; Kemp et al., 2006; Xu et al., 2006, Hofman &
Wiggins, 2008; Merup et al., 2010). IHW denotes a nonparametric extension
of the model in Hofman and Wiggins (2008) where the relational matrix
1 is defined by two parameters—a within-community parameter p, and a
between-community parameter p,; IDW is a model with separate within-
community parameters p, and a shared between-community density p,, as
discussed in Merup et al. (2010); and IRMCB corresponds to the IRM model
where the prior is modified to favor communities,

Beta(10,1) if [=m

Mem ™ Beta(1,10) otherwise -

We analyzed 14 networks, summarized in Table 1, which also shows
the number of parameters found by IRM and BCD, the inferred cluster
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Table 2: Area Under Curve (AUC) [%] Link Prediction Score.

IHW IDM IRM  IRMCB BCD Shared y BCD Separate y

USAir97 75.0(23) 82.4(16) 95.7(10) 95.1(9) 95.9(5) 95.4(4)
USPowerGrid  76.9(17) 61.9(13) 52.0(16) 51.5(15)  77.0(36) 80.9(18)
Football 83.7(31) 83.3(31) 882(22) 88.7(21)  89.3(24) 89.4(25)
Celegans 57.7(17) 549(9) 76.2(25) 74.8(15)  80.4(82) 73.6(94)
yeast 68.03) 82.5(7) 88.9(4) 88.7(4) 88.7(7 ) 87.3(4)
lesmis 70.1(55) 82.4(27) 95.5(8) 92.2(23)  94.7(14) 93.8(16)
Geom 66.8(16) 71.1(7) 86.3(3) 86.6(3) 89.4(8) 89.3(4)
netscience 58.7(34) 57.3(14) 55.5(24) 49.4(24)  67.1(20) 65.3(27)
cond-mat 58.9(9) 61.5(8) 69.6(9) 66.5(5) 72.8(6) 73.4(8)
SciMet 75.1(12) 82.8(9) 55.3(15) 634(16)  89.9(6) 89.2(4)
smaGri 752(16) 83.4(8) 54.03) 654(17)  88.7(5) 88.2(7)
smallwW 84.7(9) 92.4(18) 91.7(24) 90.9(25)  97.1(11) 97.5(8)
NIPS 83.5(39) 87.4(46) 85.6(45) 88.0(34)  94.1(33) 94.0(19)
NIPSCW 81.7(25) 85.2(13) 87.1(11) 86.0(10)  90.0(6) 91.3(2)

Note: Standard deviation on last digit given in parentheses.

gap, as well as AUC scores of link prediction. AUC scores were computed
by treating 2.5% of all the links and an equivalent number of nonlinks as
missing for prediction. The values shown are for five random initializations,
each with different random sets of link and nonlinks left out for prediction.
This framework is in line with sampling a fixed fraction of dyads in the
graph for prediction (Kok & Domingos, 2007; Miller et al., 2009; Menon &
Elkan, 2011) as the AUC is invariant to the relative sizes of the link and
nonlink classes. However, an issue with these frameworks for sampling
links is that they tend to deweight errors on the periphery as this region of
the graph does not contain many edges relative to its size. This potential
bias is the same for the models considered, and we therefore use the applied
link prediction approach primarily to evaluate the relative performance of
the considered models.

In none of the experiments IHW, IDM, or IRMCB perform best (quanti-
tative results of these analyses are included in Table 2). The proposed BCD
model outperformed all other models for the majority of the considered
networks. We also estimated models with community-specific parameters
(separate values of y); however, this gave similar results to using a shared
y parameter (see also Table 2).

In Table 1, the performance of the IRM and BCD model with shared
y parameter is given. Of the 14 considered networks the USPowerGrid,
Football, NIPS and NIPSCW had a large comparative difference in within-
community and between-community link density (i.e., y < 0.2). The NIPS
network is a binary graph of the top 234 collaborating NIPS authors in
NIPS volumes 1 to 17 (also considered in Miller et al., 2009). The NIPSCW
network is the complete integer weighted network of all NIPS authors in
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NIPS NIPSCW

IRM BCD IRM BCD

Figure 4: Result of an IRM and BCD analysis of the small binary NIPS network
of the 234 most collaborating authors and the complete weighted NIPS net-
work including all authors as well as the number of articles that authors have
collaborated on.

volumes 1 to 17 compiled by Globerson, Chechik, Pereira, and Tishby (2005),
where weights indicate the number of papers authors have collaborated on.
Interestingly, the analysis indicates that of all the networks considered, the
NIPS author collaboration exhibits the strongest comparative gap between
internal and external link densities—y = 0.02 for NIPS—while a substan-
tial gap of y =0.15 is found for NIPSCW. Figure 4 gives an example of
the results obtained when analyzing the small-sized and full NIPS author
collaboration networks. From the figure, it can be seen that the IRM model
extracts a large low-density community, whereas the BCD model subdi-
vides this large group into smaller community-structured groups similar
to the effect demonstrated on the synthetic network example in Figure 2.
An inspection of the communities shows that the extracted communities of
BCD correspond well with known machine learning research communities
(see the appendix). While the IRM model defines a large-periphery class,
the BCD accounts for the network structure in terms of communities. Both
are valid accounts and explain different types of network structure. If the
aim is to account for structure, the model of choice should be the one that
performs the best in terms of link prediction; if the aim is to separate the
nodes into strict communities, the BCD model is more appropriate than the
IRM; and if the aim is a flexible model that uses few parameters, the IRM
model is in general more favorable than the proposed BCD.

For all 14 networks in Table 1, it can be seen that the BCD model extracts
alarger number of communities than the IRM. To investigate if this is a gen-
eral property of the BCD, we generated three data sets: the first according
to the IRM model without community structure, the second according to
the BCD model, and the third according to an Erdos-Rényi random graph
(corresponding to the IRM and BCD model with one giant community).
In the analysis of all three data sets, the IRM model resulted in substan-
tially fewer clusters than the proposed BCD model. For the data set gener-
ated according to the IRM model without community structure, the BCD
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generated a large number of small clusters that combined nodes from IRM
clusters with strong between-cluster link density or split existing clusters
into smaller components. From these results, it is evident when inspecting
the permuted graphs that the clusters extracted by BCD do not form valid
communities according to definition 1. For the data generated according
to the BCD model, the IRM merged many of the relatively small or low-
density communities together. In the analysis of the Erdos-Rényi random
graph, the BCD model was able to identify community structure emerg-
ing at random. When evaluating the models’ performance in terms of their
ability to predict links, it was observed that the model that generated the
data outperformed the alternative model, while both models performed no
better than random guessing on the Erdos-Rényi random graph. This indi-
cates that link prediction can be used to quantify the better model (the three
experiments are given in demo3.m, demo4.m and demob in the accompanying
Matlab toolbox; Merup & Schmidt, 2011).

Table 3 shows the average per iteration CPU time for each of the methods.
A benefit of the IHW, IDM, IRM, and BCD is that they scale in the number
of edges rather than the size of the network. All the methods rely on the
sufficient statistics N}, and N, that can be efficiently computed considering
only the edge list of the graph rather than the full adjacency matrix of size N2.
From the CPU times, it can be seen that the BCD in general is about 10 times
slower than the other approaches. Part of this additional computational cost
can be attributed to the evaluation of the log of the normalized incomplete
beta and gamma functions based on Matlab’s betainc.m and gammainc.m
functions that invokes about twice the cost of the regular betaln.m and
gammaln.m functions. The remaining additional cost we attribute to the
computational cost invoked by nonconjugate split merge sampling of z, as
a well as a sampling of # and y.

We finally compared the proposed BCD model to the mixed membership
stochastic block model (MMSB) (Airoldi, Blei, Fienberg, & Xing, 2008) and
latent feature relational model (LFRM) (Miller et al., 2009) on the same
data sets and link-prediction setup considered in Miller et al. (2009) (see
Table 4). The number of components in the MMSB model can be estimated
based on maximizing the likelihood on holdout data (Airoldi et al., 2008).
BCD is the best-performing model on the Alyawarra data set while being
on par with the best-performing LFRM model for the NIPS data. It is also
better performing than the Baysian clustered tensor factorization model
of Sutskever, Salakhutdinov, and Tenenbaum (2009) having an AUC of
0.90 and the multiple relational clusterings of Kok and Domingos (2007)
resulting in an AUC score of approximately 0.85. However, the model does
not perform well on the countries data. We attribute this to the data not
being well described by community structure, since some relations are
positive (e.g., military alliance with and exports to) while other are negative
(e.g., protests and negative communications) (Kemp et al., 2006) which does
not comply with the notion of community structure assumed in BCD.



2451

Bayesian Community Detection

‘sasajuared ur uaAr3 JISTp 3Se] 3} UO ST UOHRIASD PIepur)s 9T, 90N

(190)cT' S (9%01)68°CL (81)9°¢ (#F1D)s0€e (0o)ETT (60)86'T MOSJIN
(L1)e6T (01961 (1)sz0 (0120 (D¥FL0 (16070 SAIN
(1%)98 ¥ (80)Ts¥ (©)¥90 ($)85°0 (9280 (D190 MITews

(cenpr L (801)1£ST (91)207C #FD68'1 (9)9%°1 (zo)9Tt LDews

(299)26°6L (£99)16°29 (99)%0'9 (8E)FEF (9)se¢ (¥8)68°¢ JRINS

(958£)€5°106 (LeL9)6T TTH (6£01)89°£S (9%)LT¥e (ETFDTLF (09€D)¥6'8¥ jyew-puod
(610)€THC (16£)7991 (V4] 5ard (Tne60T (s18ze (09)20°T DUIDSIPU
(T8S€)19°L0F (ze8)TvH0¢ (81€)88°2T (zee)ssee (TSD19°11 (90)cT¥1 woan)
(9)z8°0 (#)8s0 (0)90°0 (00900 (0)50°0 (0¥00 STUISa|

(0ST)€0'TF (Orperse (29)eL9 (s0)s6'¢ (zo)ore (SD)SH'T jseak
(8¢)z8'S (€)68F ©%0 (0)£z0 (0810 0)¥1°0 suedafe)

(6)cTt (9)8£°0 (0)80°0 (0)£00 (0)900 (0)50°0 [[eq3004

(882)€L°0L (929)8¢°69 (89)ET L (8)ze9 (99)68'9 (Fr)8re PpLDHIBMOJISN

Forre (81)69°C (©)60 (©)s0 (@er0 (9)¢c0 £61TVSN
A ayeredas qDg A pareys adg JOINI NI War MHI

QWL - D uonerd)] 1od aferaay :¢ a[qer,



2452 M. Morup and M. Schmidt

Table 4: Area Under Curve (AUC) (%) Link Prediction Results.

LFRM BCD
IRM Random Shared Separate
Initialization Initialization ~IRM  MMSB  Gap Gap
Countries (global) 87.1(10) 70.7(53) 85.0(3) 86.4(8) 83.7(7) 782(7)
Alyawarra (global) 91.8(11) 71.3(30) 89.4(30) 91.4(10) 93.7(2) 93.5(1)
NIPS 95.1(13) 94.7(13) 89.1(13) 87.1(13) 91.2(6) 93.8(5)

Notes: Nonparametric latent feature relational model (LFRM) (Miller et al., 2008),
infinite relational model (IRM) (Kemp et al., 2006), mixed membership stochastic block
model (MMSB) (Airoldi et al., 2008), and the proposed infinite community model (BCD).
Standard deviation on last digit given in parentheses.

4 Conclusion

Many networks of scientific interest naturally decompose into clusters or
communities. In this letter, we proposed the BCD model to explicitly model
community structure in networks and demonstrated that modeling com-
munity structure improves on link prediction compared to the IRM and
related nonparametric models of networks. Our analysis supports the ob-
servation that community structure is an important structural property of
networks (Fortunato, 2010) that, as currently demonstrated, can be incorpo-
rated into the nonparametric Bayesian modeling of networks. The proposed
BCD model trivially extends to other Bayesian generative models such as
the multiple-membership modeling of Miller et al. (2009) and Merup et al.
(2010) as well as the degree-corrected stochastic block model of Karrer and
Newman (2011). A Matlab toolbox with the proposed inference procedure
is available for download (Merup & Schmidt, 2011).

Appendix A: NIPS Author Communities

Table 5 lists the extracted groups by the IRM and BCD for the small binary
NIPS network of the 234 top collaborating NIPS authors. From the extracted
groups, it can be seen that the large first cluster of the IRM model has been
splitinto several clusters by the BCD (clusters 2, 3,9, 10, 15-28) representing
dense subcommunities of authors who collaborate closely. The remaining
smaller clusters extracted by IRM are very similar to the clusters defined
by BCD: IRM cluster 2 ~ BCD cluster 1, IRM cluster 3 ~ BCD cluster 4,
IRM cluster 4 ~ BCD cluster 7, IRM cluster 5 ~ BCD cluster 8, IRM cluster
6 ~ BCD cluster 11, IRM cluster 7 ~ BCD cluster 13, and IRM cluster
8 ~ BCD cluster 12. When generating synthetic data according to the BCD
model, a similar effect is observed: the IRM merges some of the small or
low-density communities into large low-density clusters, whereas the BCD
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model correctly identifies the generated communities (see also dermo.4 in the
accompanying Matlab toolbox: Merup & Schmidt, 2011).
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