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Abstract. Markov random fields are used to model high dimensional
distributions in a number of applied areas. Much recent interest has
been devoted to the reconstruction of the dependency structure from
independent samples from the Markov random fields. We analyze a sim-
ple algorithm for reconstructing the underlying graph defining a Markov
random field on n nodes and maximum degree d given observations. We
show that under mild non-degeneracy conditions it reconstructs the gen-
erating graph with high probability using Θ(d log n) samples which is
optimal up to a multiplicative constant. Our results seem to be the first
results for general models that guarantee that the generating model is
reconstructed. Furthermore, we provide an explicit O(dnd+2 log n) run-
ning time bound. In cases where the measure on the graph has correlation
decay, the running time is O(n2 log n) for all fixed d . In the full-length
version we also discuss the effect of observing noisy samples. There we
show that as long as the noise level is low, our algorithm is effective. On
the other hand, we construct an example where large noise implies non-
identifiability even for generic noise and interactions. Finally, we briefly
show that in some cases, models with hidden nodes can also be recovered.

1 Introduction

In this paper we consider the problem of reconstructing the graph structure
of a Markov random field from independent and identically distributed samples.
Markov random fields (MRF) provide a very general framework for defining high
dimensional distributions and the reconstruction of the MRF from observations
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has attracted much recent interest, in particular in biology, see e.g. [9] and a list
of related references [10].

1.1 Our Results

We give sharp, up to a multiplicative constant, estimates for the number of in-
dependent samples needed to infer the underlying graph of a Markov random
field. In Theorem 2 we use a simple information-theoretic argument to show that
Ω(d log n) samples are required to reconstruct a randomly selected graph on n
vertices with maximum degree at most d . Then in Theorems 4 and 5 we propose
two algorithms for reconstruction that use only O(d log n) samples assuming
mild non-degeneracy conditions on the probability distribution. The two theo-
rems differ in their running time and the required non-degeneracy conditions.
It is clear that non-degeneracy conditions are needed to insure that there is a
unique graph associated with the observed probability distribution.

Chickering [2] showed that maximum-likelihood estimation of the underly-
ing graph of a Markov random field is NP-complete. This does not contradict
our results which assume that the data is generated from a model (or a model
with a small amount of noise). Although the algorithm we propose runs in time
polynomial in the size of the graph, the dependence on degree (the run-time is
O(dnd+2 log n)) may impose too high a computational cost for some applica-
tions. Indeed, for some Markov random fields exhibiting a decay of correlation
a vast improvement can be realized: a modified version of the algorithm runs in
time O(dn2 log n). This is proven in Theorem 8.

In addition to the fully-observed setting in which samples of all variables are
available, we extend our algorithm in several directions. These sections are omit-
ted due to space constraints; we refer the reader to the full version [14] for the
discussion on these topics. In Section 5 of [14] we consider the problem of noisy
observations. We first show by way of an example that if some of the random
variables are perturbed by noise then it is in general impossible to reconstruct
the graph structure with probability approaching 1. Conversely, when the noise
is relatively weak as compared to the coupling strengths between random vari-
ables, we show that the algorithms used in Theorems 4 and 5 reconstruct the
graph with high probability. Furthermore, we study the problem of reconstruc-
tion with partial observations, i.e. samples from only a subset of the nodes are
available, and provide sufficient conditions on the probability distribution for
correct reconstruction.

1.2 Related Work

Chow and Liu [1] considered the problem of estimating Markov random fields
whose underlying graphs are trees, and provided an efficient (polynomial-time)
algorithm based on the fact that in the tree case maximum-likelihood estima-
tion amounts to the computation of a maximum-weight spanning tree with edge
weights equal to pairwise empirical mutual information. Unfortunately, their
approach does not generalize to the estimation of Markov random fields whose
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graphs have cycles or hidden nodes. Much work in mathematical biology is de-
voted to reconstructing tree Markov fields when there are hidden nodes. For
trees, given data that is generated from the model, the tree can be reconstructed
efficiently from samples at a subset of the nodes given mild non-degeneracy con-
ditions. See [12,13,11] for some of the most recent and tightest results in this
setup.

Abbeel, et al [3] considered the problem of reconstructing graphical models
based on factor graphs, and proposed a polynomial time and sample complexity
algorithm. However, the goal of their algorithm was not to reconstruct the true
structure, but rather to produce a distribution that is close in Kullback-Leibler
divergence to the true distribution. In applications it is often of interest to recon-
struct the true structure which gives some insight into the underlying structure
of the inferred model.

Note furthermore that two networks that differ only in the neighborhood
of one node will have O(1) KL distance. Therefore, even in cases where it is
promised that the KL distance between the generating distribution and any other
distribution defined by another graph is as large as possible, the lower bounds on
the KL distance is Ω(1). Plugging this into the bounds in [3] yields a polynomial
sampling complexity in order to find the generating network compared to our
logarithmic sampling complexity. For other work based on minimizing the KL
divergence see the references in [3].

Essentially the same problem as in the present work (but restricted to the Ising
model) was studied by Wainwright, et al [5], where an algorithm based on �1-
regularization was introduced. In that work, sufficient conditions—different than
ours—for correct reconstruction were given. They require a condition (called
A2) where the neighborhood of every vertex is only weakly affected by their
neighbors. Verifying when the condition holds seems hard and no example is
given in the paper where the condition holds. The simulation studies in the
paper are conducted for graphs consisting of small disconnected components. In
this setting the running time of their algorithm is O(n5). The result [5] is best
compared to our result showing that under standard decay of correlation (e.g.,
for models satisfying the Dobrushin condition, which is satisfied for the models
simulated in their work), the running time of our algorithm is O(n2 log n) as
given in Theorem 8. The algorithm of [5] has suboptimal sample complexity,
requiring Θ(d5 log n) samples for reconstruction.

Subsequent to our work being posted on the Arxiv, Santhanam and Wain-
wright [4] again considered essentially the same problem for the Ising model,
producing nearly matching lower and upper bounds on the asymptotic sampling
complexity. A key difference from our work is that they restrict attention to the
Ising model, i.e. Markov random fields with pairwise potentials and where each
variable takes two values. Also, they consider models with a fixed number of
total edges, and arbitrary node degree, in contrast to our study of models with
bounded node degrees and an arbitrary number of edges. We note that their re-
sults are limited to determining the information theoretic sampling complexity
for reconstruction, and provide no efficient algorithm.
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2 Preliminaries

We begin with the definition of Markov random field.

Definition 1. On a graph G = (V ,E ), a Markov random field is a distribution
X taking values in AV , for some finite set A with | A |= A, which satisfies the
Markov property

P(X (W ),X (U ) | X (S )) = P(X (W ) | X (S ))P(X (U ) | X (S )) (1)

when W , U , and S are disjoint subsets of V such that every path in G from W
to U passes through S and where X (U ) denotes the restriction of X from AV

to AU for U ⊂ V .

Famously, by the Hammersley-Clifford Theorem, such distributions can be writ-
ten in a factorized form as

P(σ) =
1
Z

exp

[∑
a

Ψa(σa )

]
, (2)

where Z is a normalizing constant, a ranges over the cliques in G, and Ψa : A|a| →
R ∪ {−∞} are functions called potentials.

The problem we consider is that of reconstructing the graph G, given k in-
dependent samples X = {X 1, . . . ,X k} from the model. Denote by Gd the set
of labeled graphs with maximum degree at most d . We assume that the graph
G ∈ Gd is from this class. A structure estimator (or reconstruction algorithm)
Ĝ : Akn → Gd is a map from the space of possible sample sequences to the set
of graphs under consideration. We are interested in the asymptotic relationship
between the number of nodes in the graph, n, the maximum degree d , and the
number of samples k that are required. An algorithm using number of samples
k(n) is deemed successful if in the limit of large n the probability of reconstruc-
tion error approaches zero.

3 Lower Bound on Sample Complexity

Suppose G is selected uniformly at random from Gd . The following theorem gives
a lower bound of Ω(d log n) on the number of samples necessary to reconstruct
the graph G. The argument is information theoretic, and follows by comparing
the number of possible graphs with the amount of information available from
the samples.

Theorem 2. Let the graph G be drawn according to the uniform distribution
on Gd . Then there exists a constant c = c(A) > 0 such that if k ≤ cd log n
then for any estimator Ĝ : X → Gd , the probability of correct reconstruction is
P(Ĝ = G) = o(1).

Remark 1. Note that the theorem above doesn’t need to assume anything about
the potentials. The theorem applies for any potentials that are consistent with
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the generating graph. In particular, it is valid both in cases where the graph is
“identifiable” given many samples and in cases where it isn’t.

Proof. To begin, we note that the probability of error is minimized by letting Ĝ
be the maximum a posteriori (MAP) decision rule,

ĜMAP(X ) = argmaxg∈GP(G = g | X ).

By the optimality of the MAP rule, this bounds the probability of error using
any estimator. Now, the MAP estimator ĜMAP(X ) is a deterministic function
of X . Clearly, if a graph g is not in the range of Ĝ then the algorithm always
makes an error when G = g. Let S be the set of graphs in the range of ĜMAP,
so P(error | g ∈ S c) = 1. We have

P(error) =
∑
g∈G

P(error | G = g)P(G = g)

=
∑
g∈S

P(error | G = g)P(G = g) +
∑
g∈Sc

P(error | G = g)P(G = g)

≥
∑
g∈Sc

P(G = g) = 1 −
∑
g∈S

| G |−1

≥ 1 − Ank

| G | ,

(3)

where the last step follows from the fact that | S |≤| X |≤ Ank . It remains only
to express the number of graphs with max degree at most d , | Gd |, in terms of
the parameters n, d . The following lemma gives an adequate bound.

Lemma 3. Suppose d ≤ nα with α < 1. Then the number of graphs with max
degree at most d, | Gd |, satisfies

log | Gd |= Ω(nd log n). (4)

Proof. To make the dependence on n explicit, let Un,d be the number of graphs
with n vertices with maximum degree at most d . We first bound Un+2,d in terms
of Un,d,. Given a graph G with n vertices and degree at most d , add two vertices
a and b. Select d distinct neighbors v1, . . . , vd for vertex a, with d labeled edges;
there are

(n
d

)
d ! ways to do this. If vi already has degree d in G, then vi has at

least one neighbor u that is not a neighbor of a, since there are only d − 1 other
neighbors of a. Remove the edge (vi , u) and place an edge labeled i from vertex
b to u. This is done for each vertex v1, . . . , vd , so b has degree at most d . The
graph G can be reconstructed from the resulting labeled graph on n +2 vertices
as follows: remove vertex a, and return the neighbors of b to their correct original
neighbors (this is possible because the edges are labeled).

Removing the labels on the edges from a and b sends at most d !2 edge-labeled
graphs of this type on n + 2 vertices to the same unlabeled graph. Hence, the
number of graphs with max degree d on n + 2 vertices is lower bounded as
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Un+2,d ≥ Un,d

(
n
d

)
d !

1
d !2

= Un,d

(
n
d

)
1
d !

.

It follows that for n even (and greater than 2d + 4)

Un,d ≥ ×n/2
i=1

(
n − 2i

d

)
1
d !

≥
((

n/2
d

)
1
d !

)n/4

. (5)

If n is odd, it suffices to note that Un+1,d ≥ Un,d . Taking the logarithm of
equation (5) yields

log Un,d = Ω(nd(log n − log d)) = Ω(nd log n), (6)

assuming that d ≤ nα with α < 1. �

Together with equation (3), Lemma 3 implies that for small enough c, if the
number of samples k ≤ cd log n, then

P(error) ≥ 1 − Ank

|G| = 1 − o(1).

This completes the proof of Theorem 2. �

4 Reconstruction

We now turn to the problem of reconstructing the graph structure of a Markov
random field from samples. For a vertex v we let N (v) = {u ∈ V \ {v} : (u, v) ∈
E} denote the set of neighbors of v . Determining the neighbors of v for every
vertex in the graph is sufficient to determine all the edges of the graph and
hence reconstruct the graph. Our algorithms reconstruct the graph by testing
each candidate neighborhood of size at most d by using the Markov property,
which states that for each w ∈ V \ (N (v) ∪ {v})

P(X (v) | X (N (v)),X (w)) = P(X (v) | X (N (v))). (7)

We give two algorithms for reconstructing networks; they differ in their non-
degeneracy conditions and their running time. The first one, immediately below,
has more stringent non-degeneracy conditions and faster running time.

4.1 Conditional Two Point Correlation Reconstruction

The first algorithm requires the following non-degeneracy condition:

Condition N1: There exist ε, δ > 0 such that for all v ∈ V , if U ⊂ V \ {v}
with | U |≤ d and N (v) � U then there exist values xv , xw , x ′

w , xu1 , . . . , xul

such that for some w ∈ V \ (U ∪ {v})

|P(X (v) = xv | X (U ) = xU ,X (w) = xw )

− P(X (v) = xv | X (U ) = xU ,X (w) = x ′
w )| > ε

(8)
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and

|P(X (U ) = xU ,X (w) = xw )| > δ,

|P(X (U ) = xU ,X (w) = x ′
w )| > δ.

(9)

Remark 2. Condition (8) captures the notion that each edge should have suffi-
cient strength. Condition (9) is required so that we can accurately calculate the
empirical conditional probabilities.

We now describe the reconstruction algorithm, with the proof of correctness
given by Theorem 4. In the following, P̂ denotes the empirical probability mea-
sure from the k samples.

Algorithm SimpleRecon(Input: k i.i.d. samples from MRF; Output: estimated
graph G)

– Initialize E = ∅.
– For each vertex v do

• For each U ⊆ V \ {v} with |U | ≤ d, w ∈ V \ (U ∪ {v}), and
x1, . . . , xl, xw, x′

w, xv ∈ A
∗ If

|P̂ (X(U) = xU , X(w) = xw)| > δ/2

and
|P̂ (X(U) = xU , X(w) = x′

w)| > δ/2 ,

then compute

r(U, xU , w, xw, x′
w) =

∣∣P̂ (X(v) = xv|X(U) = xU , X(w) = xw)

− P̂ (X(v) = xv|X(U) = xU , X(w) = x′
w)

∣∣ .

• Let N(v) be the minimum cardinality U such that
maxxU ,w,xw,x′

w
r(U, xU , w, xw, x′

w) < ε/2.
• Add the edges incident to v: E = E ∪ {(v, u) : u ∈ N(v)}.

– Return the graph G = (V, E).

Run-time analysis. The analysis of the running time is straightforward. There
are n nodes, and for each node we consider O(nd ) neighborhoods U . For each
candidate neighborhood, we check O(n) nodes xw and perform a correlation test
of complexity O(d log n). The run-time of SimpleRecon is thus O(dnd+2 log n)
operations.

We now give the main theorem.

Theorem 4 (Correctness of SimpleRecon). Suppose the MRF satisfies
condition N1. Then with the constant C =

(
81(d+2)
ε2δ42d + C1

)
, when k > Cd log n,

the estimator SimpleRecon correctly reconstructs with probability at least
1 − O(n−C1).
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Proof. Azuma’s inequality gives that if Y ∼ Bin(k , p) then

P(| Y − kp |> γk) ≤ 2 exp(−2γ2k)

and so for any collection U = {u1, . . . , ul} ⊆ V and x1, . . . , xl ∈ A we have

P
(∣∣∣P̂(X (U ) = xU ) − P(X (U ) = xU )

∣∣∣ ≤ γ
)

≤ 2 exp(−2γ2k). (10)

There are Al
(n
l

)
≤ Aln l such choices of u1, . . . , ul and x1, . . . , xl . An application

of the union bound implies that with probability at least 1 − Aln l2 exp(−2γ2k)
it holds that ∣∣∣P̂(X (U ) = xU ) − P(X (U ) = xU )

∣∣∣ ≤ γ (11)

for all {ui}l
i=1 and {xi}l

i=1. If we additionally have l ≤ d+2 and k ≥ C (γ)d log n,
then equation (11) holds with probability at least 1 − Ad+2nd+22/n2γ2C (γ)d .
Choosing C (γ) = d+2

γ22d + C1, equation (11) holds with probability at least 1 −
2Ad+2/nC1 .

For the remainder of the proof assume (11) holds. Taking

γ(ε, δ) = εδ2/9 , (12)

we can bound the error in conditional probabilities as

| P̂(X (v) = xv | X (U ) = xU ) − P(X (v) = xv | X (U ) = xU ) |

=

∣∣∣∣∣ P̂(X (v) = xv ,X (U ) = xU )

P̂(X (U ) = xU )
− P(X (v) = xv ,X (U ) = xU )

P(X (U ) = xU )

∣∣∣∣∣
≤

∣∣∣∣∣ P̂(X (v) = xv ,X (U ) = xU )
P(X (U ) = xU )

− P(X (v) = xv ,X (U ) = xU )
P(X (U ) = xU )

∣∣∣∣∣
+

∣∣∣∣∣ 1

P̂(X (U ) = xU )
− 1

P(X (U ) = xU )

∣∣∣∣∣
≤ γ

δ
+

γ

(δ − γ)δ
≤ εδ2

9δ
+

εδ2

9(δ − εδ2

9 )δ
=

εδ

9
+

ε

(9 − εδ)
<

ε

4
. (13)

For each vertex v ∈ V we consider all candidate neighborhoods for v , subsets
U ⊂ V \ {v} with | U |≤ d . The estimate (13) and the triangle inequality imply
that if N (v) ⊆ U , then by the Markov property,

|P̂(X (v) = xv | X (U ) = xU ,X (w) = xw )

− P̂(X (v) = xv | X (U ) = xU ,X (w) = x ′
w )| < ε/2 (14)

for all w ∈ V and x1, . . . , xl , xw , x ′
w , xv ∈ A such that∣∣∣P̂(X (U ) = xU ,X (w) = xw )

∣∣∣ > δ/2,∣∣∣P̂(X (U ) = xU ,X (w) = x ′
w )

∣∣∣ > δ/2. (15)
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Conversely by condition N1 and (9) and the estimate (13), we have that for any
U with N (v) � U there exists some w ∈ V and xu1 , . . . , xul , xw , x ′

w , xv ∈ A such
that equation (15) holds but equation (14) does not hold. Thus, choosing the
smallest set U such that (14) holds gives the correct neighborhood.

To summarize, with number of samples

k =
(

81(d + 2)
ε2δ42d

+ C1

)
d log n

the algorithm correctly determines the graph G with probability

P(SimpleRecon(X ) = G) ≥ 1 − 2Ad+2/nC1 .

�

4.2 General Reconstruction

While the algorithm SimpleRecon applies to a wide range of models, condition
N1 may occasionally be too restrictive. One setting in which condition N1 does
not apply is if the marginal spin at some vertex v is independent of the marginal
spin at each of the other vertices, (i.e for all u ∈ V \ {v} and all x , y ∈ A
we have P(X (v) = x ,X (u) = y) = P(X (v) = x )P(X (u) = y). In this case the
algorithm would incorrectly return the empty set for the neighborhood of v . The
weaker condition for GeneralRecon holds on essentially all Markov random
fields. In particular, (16) says that the potentials are non-degenerate, which is
clearly a necessary condition in order to recover the graph. Equation (17) holds
for many models, for example all models with soft constraints. This additional
generality comes at a computational cost, with SimpleRecon having a faster
running time, O(dnd+2 log n), versus O(dn2d+1 log n) for GeneralRecon.

We use the following notation in describing the non-degeneracy conditions.
For an assignment xU = (xu1 , . . . , xul ) and x ′

ui
∈ A, define

x i
U (x ′

ui
) = (xu1 , . . . , x ′

ui
, . . . , xul )

to be the assignment obtained from xU by replacing the ith element by x ′
ui

.

Condition N2: There exist ε, δ > 0 such that the following holds: for all
v ∈ V , if N (v) = u1, . . . , ul , then for each i , 1 ≤ i ≤ l and for any set W ⊂
V \ (v ∪N (v)) with | W |≤ d there exist values xv , xu1 , . . . , xui , . . . , xul , x

′
ui

∈
A and xW ∈ A|W | such that

|P(X (v) = xv | X (N (v)) = xN (v))

− P(X (v) = xv | X (N (v)) = x i
N (v)(x

′
ui

))| > ε
(16)

and

| P(X (N (v)) = xN (v),X (W ) = xW ) |> δ,

| P(X (N (v)) = x i
N (v)(x

′
ui

),X (W ) = xW ) |> δ.
(17)
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We now give the algorithm GeneralRecon.

Algorithm GeneralRecon(Input: k i.i.d. samples from MRF; Output: esti-
mated graph G)

– Initialize E = ∅.
– For each vertex v do

• Initialize N(v) = ∅.
• For each U ⊆ V \{v} with l = |U | ≤ d, W ∈ V \ (U ∪{v}) with |W | ≤ d,

each i, 1 ≤ i ≤ l, and xv, xW , xU , x′
ui

∈ A
∗ If

P̂ (X(W ) = xW , X(U) = xU ) > δ/2

P̂ (X(W ) = xW , X(U) = xi
U (x′

ui
)) > δ/2

then compute

r(U,W, i, xv, xW , xU , x′
ui

)

=
∣∣P̂ (X(v) = xv|X(W ) = xW , X(U) = xU )

− P̂ (X(v) = xv|X(W ) = xW , X(U) = xi
U (x′

ui
))

∣∣.
• Let N(v) be the maximum cardinality set U such that

minW,i maxxv,xW ,xU ,x′
ui

r(U,W, i, xv, xW , xU , x′
ui

) > ε/2.
• Add the edges incident to v: E = E ∪ {(v, u) : u ∈ N(v)}.

– Return the graph G = (V, E).

Run-time analysis. The analysis of the running time is similar to the previous
algorithm. The run-time of GeneralRecon is O(dn2d+1 log n).

Theorem 5 (Correctness of GeneralRecon). Suppose condition N2 holds
with ε and δ. Then for the constant C = 81(2d+1)

ε2δ42d + C1, if k > Cd log n then
the estimator GeneralRecon correctly reconstructs with probability at least
1 − O(n−C1).

Proof. As in Theorem 4 we have that with high probability∣∣∣P̂(X (U ) = xU ) − P(X (U ) = xU )
∣∣∣ ≤ γ (18)

for all {ui}l
i=1 and {xi}l

i=1 when l ≤ 2d + 1 and k ≥ C (γ)d log n; we henceforth
assume that (18) holds. For each vertex v ∈ V we consider all candidate neigh-
borhoods for v , subsets U = {u1, . . . , ul} ⊂ V \ {v} with 0 ≤ l ≤ d . For each
candidate neighborhood U , the algorithm computes a score

f (v ; U ) =

minW ,i max xv ,xW ,xU ,x ′
ui
|P̂(X (v) = xv | X (W ) = xW ,X (U ) = xU )

− P̂(X (v) = xv | X (W ) = xW ,X (U ) = x i
U (x ′

ui
))|,
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where for each W , i , the maximum is taken over all xv , xW , xU , x ′
ui

, such that

P̂(X (W ) = xW ,X (U ) = xU ) > δ/2 (19)

P̂(X (W ) = xW ,X (U ) = x i
U (x ′

ui
)) > δ/2

and W ⊂ V \ (U ∪ {v}) is an arbitrary set of nodes of size d , xW ∈ Ad is an
arbitrary assignment of values to the nodes in W , and 1 ≤ i ≤ l .

The algorithm selects as the neighborhood of v the largest set U ⊂ V \ {v}
with f (v ; U ) > ε/2. It is necessary to check that if U is the true neighborhood
of v , then the algorithm accepts U , and otherwise the algorithm rejects U .

Taking γ(ε, δ) = εδ2/9, it follows exactly as in Theorem 4 that the error in
each of the relevant empirical conditional probabilities satisfies

| P̂(X (v) = xv | X (W ) = xW ,X (U ) = xU )

− P(X (v) = xv | X (W ) = xW ,X (U ) = xU ) |< ε

4
. (20)

If U � N (v), choosing ui ∈ U − N (v), we have when N (v) ⊂ W ∪ U that

|P(X (v) = xv | X (W ) = xW ,X (U ) = xU )

− P(X (v) = xv | X (W ) = xW ,X (U ) = x i
U (x ′

ui
))|

= |P(X (v) = xv | X (N (v)) = xN (v)) − P(X (v) = xv | X (N (v)) = xN (v))|
= 0 ,

by the Markov property (7). Assuming that equation (18) holds with γ chosen
as in (12), the estimation error in f (v ; U ) is at most ε/2 by equation (20) and
the triangle inequality, and it holds that f (v ; U ) < ε/2 for each U � N (v).
Thus all U � N (v) are rejected. If U = N (v), then by the Markov property (7)
and the conditions (16) and (17), for any i and W ⊂ V ,

|P(X (v) = xv | X (W ) = xW ,X (U ) = xU )

− P(X (v) = xv | X (W ) = xW ,X (U ) = x i
U (x ′

ui
))|

= |P(X (v) = xv | X (N (v)) = xN (v)) − P(X (v) = xv | X (N (v)) = x i
N (v)(x

′
ui

))|
> ε

for some xv , xW , xU , x ′
ui

. The error in f (v ; U ) is less than ε/2 as before, hence
f (v ; U ) > ε/2 for U = N (v). Since U = N (v) is the largest set that is not
rejected, the algorithm correctly determines the neighborhood of v for every
v ∈ V when (18) holds.

To summarize, with number of samples

k =
(

81(2d + 1)
ε2δ42d

+ C1

)
d log n

the algorithm correctly determines the graph G with probability

P(GeneralRecon(X ) = G) ≥ 1 − 2A2d+1/nC1 .

�
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4.3 Non-degeneracy of Models

We can expect condition N2 to hold in essentially all models of interest. The
following proposition shows that the condition holds for any model with soft
constraints.

Proposition 6 (Models with soft constraints). In a graphical model with
maximum degree d given by equation (2) suppose that all the potentials Ψuv

satisfy ‖Ψuv‖∞ ≤ K and

maxx1,x2,x3,x4∈A |Ψuv(x1, x2) − Ψuv (x3, x2) − Ψuv (x1, x4) + Ψuv (x3, x4)| > γ,

(21)

for some γ > 0. Then there exist ε, δ > 0 depending only on d ,K and γ such
that condition N2 holds.

Proof. It is clear that for some sufficiently small δ = δ(d ,m,K ) > 0 we have
that for all u1, . . . , u2d+1 ∈ V and xu1 , . . . , xu2d+1 ∈ A that

P(X (u1) = xu1 , . . . ,X (u2d+1) = xu2d+1) > δ. (22)

Now suppose that u1, . . . , ul is the neighborhood of v . Then for any 1 ≤ i ≤ l it
follows from equation (21) that there exists xv , x ′

v , xui , x ′
ui

∈ A such that for any
xu1 . . . , xui−1 , xui+1, . . . , xul ∈ A,

P(X (v) = xv | X (u1) = xu1 , . . . ,X (ui) = x ′
ui

, . . . ,X (ul) = xul )
P(X (v) = x ′

v | X (u1) = xu1 , . . . ,X (ui) = x ′
ui

, . . . ,X (ul) = xul )

≥ eγP(X (v) = xv | X (u1) = xu1 , . . . ,X (ui) = xui , . . . ,X (ul) = xul )
P(X (v) = x ′

v | X (u1) = xu1 , . . . ,X (ui) = xui , . . . ,X (ul) = xul )
.

Combining with equation (22), equation (16) follows, showing that condition N2
holds. �

Although the results to follow hold more generally, for ease of exposition we will
keep in mind the example of the Ising model with no external magnetic field,

P(x ) =
1
Z

exp

⎛
⎝ ∑

(u,v)∈E

βuvxuxv

⎞
⎠ , (23)

where βuv ∈ R are coupling constants and Z is a normalizing constant.
The following lemma gives explicit bounds on ε and δ in terms of bounds on

the coupling constants in the Ising model, showing that condition N2 can be
expected to hold quite generally.

Proposition 7. Consider the Ising model with all parameters satisfying

0 < c <| βij |< C

on a graph G with max degree at most d . Then condition N2 is satisfied with

ε ≥ tanh(2c)
2C 2 + 2C−2 and δ ≥ e−4dC

22d .

Proof. We refer the reader to the full version [14] for the proof. �
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4.4 O(n2 log n) Algorithm for Models with Correlation Decay

The reconstruction algorithms SimpleRecon and GeneralRecon run in poly-
nomial time O(dnd+2 log n) and O(dn2d+1 log n), respectively. It would be de-
sirable for the degree of the polynomial to be independent of d , and this can be
achieved for Markov random fields with exponential decay of correlations. For
two vertices u, v ∈ V , let d(u, v) denote the graph distance and let dC (u, v)
denote the correlation between the spins at u and v defined as

dC (u, v)=
∑

xu ,xv∈A |P(X (u) = xu ,X (v) = xv ) − P(X (u) = xu)P(X (v) = xv)| .

If the interactions are sufficiently weak, the graph will satisfy the Dobrushin-
Shlosman condition (see e.g. [8]) and there will be exponential decay of correla-
tions between vertices, i.e. dC (u, v) ≤ exp(−αd(u, v)) for some α > 0.

The following theorem shows that by restricting the candidate neighborhoods
of the GeneralRecon algorithm to those nodes with sufficiently high correla-
tion, one can achieve a run-time of O(dn2 log n).

Theorem 8 (Reconstruction with correlation decay). Suppose that G and
X satisfy the hypothesis of Theorem 5 and that for all u, v ∈ V , dC (u, v) ≤
exp(−αd(u, v)) and there exists some κ > 0 such that for all (u, v) ∈ E,
dC (u, v) > κ. Then for some constant C = C (α, κ, ε, δ) > 0, if k > Cd log n then
there exists an estimator Ĝ(X ) such that the probability of correct reconstruction
is P(G = Ĝ(X )) = 1−o(1) and the algorithm runtime is O(nd

d ln(4/κ)
α +dn2 lnn)

with high probability.

Proof. Denote the correlation neighborhood of a vertex v as NC (v) = {u ∈ V :
d̂C (u, v) > κ/2} where d̂C (u, v) is the empirical correlation of u and v . For large
enough C , with high probability for all v ∈ V , we have that N (v) ⊆ NC (v) ⊆
{u ∈ V : d(u, v) ≤ ln(4/κ)

α }. Now, we have the estimate | {u ∈ V : d(u, v) ≤
ln(4/κ)

α } |≤ d
ln(4/κ)

α , which is independent of n.
When reconstructing the neighborhood of a vertex v we modify General-

Recon to only test candidate neighborhoods U and sets W which are subsets
of NC (v). The algorithm restricted to the smaller range of possible neighbor-
hoods correctly reconstructs the graph since the true neighborhood of a vertex
is always in its correlation neighborhood. For each vertex v the total number of
choices of candidate neighborhoods U and sets W the algorithm has to check
is O(d

d ln(4/κ)
α ), so the reconstruction algorithm takes O(nd

d ln(4/κ)
α ) operations. It

takes O(dn2 lnn) operations to calculate all the correlations, which for large n
dominates the run time. �

Acknowledgment. E.M. thanks Marek Biskup for helpful discussions on models
with hidden variables.
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