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A previously derived iteration formula for a random net was applied to some data on the 
'ead of information through a population. I t  was found that if the axon density (the only 
e parameter in the formula) is determined by the first pair of experimental values, the 
;dicted spread is much more rapid than the observed one, If the successive values of the 
pparent axon density" are calculated from the successive experimental values, it is noticed 
tt this quantity at first suffers a sharp drop from an initial high value to its lowest value and 
;n gradually "recovers." 
An attempt is made to account for this behavior of the apparent axon density in terms of 
; "assumption of transitivity," based on a certain socio-structural bias, namely, that the 
ely contacts of two individuals who themselves have been in contact are expected to be 
ongly overlapping. The assumption of transitivity leads to a drop in the apparent axon 

,~nsity from an arbitrary initial value to the vicinity of unity (if the actual axon density is not 
too small). However, the "recovery" is not accounted for, and thus the predicted spread turns 
out to be slmver than the observed. 

The apparent axon density. The assumption of a completely mixed popu- 
lation implies that contacts between all pairs of individuals are equi- 
probable at all times. I t  was shown in previous papers (e.g., Rapoport, 
1951) that under this assumption the spread of state in "ordinal time" or 
"by removes" will be given by  the following iteration formula 

P ( t + l )  = [ 1 - - x ( t ) ]  [1--e-aV(O], (1) 

which can also be written 

[ 1 - x  ( t +  1) l e ~ = 1 - x  (0).  (2) 

Here t takes discrete integral values and represents the ordinal time, 
that is, the number of "removes" or times the information was trans- 
mitted, P(t) is the fraction of new knowers at the tth remove, 

t 

x (t) = ~,~P ( j )  
i=0 
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is the total fraction of knowers at the tth remove, and a the "actual axon 
density," is the number of tellings per knower during the entire process, 
assumed independent of t. We shall continue to use the neural net term 
"axon density" in this sense, which suggests that a "axons" or contacts 
"issue" from each individual (on the average), and that this number is 
characteristic for a particular process. 

In an experiment conducted by the Washington Public Opinion Labora- 
tory (1952), 33 simple messages were made to diffuse through a population 
of 184 school children under contest conditions. I t  was possible to trace 
through how many hands (removes) each message has gone. The experi- 
ment can be thought of as one in which a single message diffuses through a 
population of 6072 individuals, a population large enough for the applica- 
tion of our probabilistic method. Accordingly equation (1) was tested by 

TABLE I 

t 0 1 2 3 4 5 6 7 8 9 10 

P(t) calc. .030 .191 .585 .191 .002 .000 
P(t) obs. .030 .191 .191 .156 .107 .063 .035 .018 .009 .003 .002 
x(t) calc. .030 .221 .806 .997 .999 .999 
x(t) obs. .030 .221 .412 .568 .675 .738 .773 .791 .802 .805 .807 
a(t) 7.2 1.47 1.61 ~ 1.81 2.03 2.28 2.30 3.06 1.67 2.99 1.91 

the data  of that experiment. The value of P(0) = x(0) was fixed by the 
conditions of the experiment: each child was the starter of a message. 
Hence P(0) was fixed at 184/6072 = .03. The value of a was obtained 
from the observed value of P(1). The predicted ordinal time course could 
thus be compared with the  experimentally observed one. This comparison 
appears in the first four rows of Table I. 

Obviously equation (1)predic ts  an ordinal time course of a spread 
which is much more rapid than the observed one. Attempts  to account for 
this discrepancy led us to examine the so-called "apparent axon density" 
of the experimental process. The apparent axon density of any real ordinal 
time course of the spread of information is defined as the function a(t), 
which, when substituted for the actual axon density as in equation (1), 
will account for all the points in the ordinal time course. In other words, 
we shall describe any ordinal time course by the equation 

P ( t q - 1 )  = [ 1 - x ( t ) ]  [1-e-~( t )P( t ) ] ,  (3) 

where a(t) is a function to be determined. Obviously if all the P(t), and 
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therefore the x(t), of the process are known, a(t) can be determined by 
solving for it in equation (3). We have, in fact, 

1 1 - x  (t) 
a (t) = ~ - ! o g  1 : x U + - l )  " (4) 

The fundamental assumption of the completely random process is 
equivalent to the assumption that the expression on the right side of (4) 
is a constant (i.e., the actual axon density a). Therefore, given any actual 
process, the constancy of the expression on the right of (4) is a test of the 
random net hypothesis. 

The determination of a(t) in the experiment referred to gave a set of 
values which appears in the last row of Table I. We observe that a(t) 
starts at a rather high value (7.2) at t = 0, drops sharply for t = 1 to its 
lowest value, then rises steadily for several successive values. For t > 7, 
a(t) becomes erratic, However, as is seen from Table I, P(t) becomes ex- 
tremely small for t > 7, and, as can be deduced from (4), a(t) becomes 
excessively sensitive to small fluctuations in P(t) when x(t) is close to 
unity. I t  follows that the values of a(t) in that range are not reliable. At 
any rate, it appears reasonable to assume that the behavior of a(t) in the 
experiment at hand is characterized by a large initial drop and a subse- 
quent steady "recovery" in its significant range. 

One could a t tempt  to explain this behavior of a(t) by psychological con- 
siderations. For example, one could attribute the initial high value of a to 
a "start  effect," that  is, the enthusiasm of initiating the process. If, as is 
the case in some message diffusion experiments, only a portion of the pop- 
ulation are the "starters," they can be expected to be more strongly 
motivated to spread the information than those who get the information 
"second hand." This can conceivably explain the initial drop in a(t). In the 
case considered, however, this explanation is not convincing, inasmuch as 
every one of the 184 children started one of the 33 messages. The same 
individuals, therefore, were involved in all the removes. I t  is hard to be- 
lieve that the motivation of the same individuals fell so sharply immedi- 
ately after the start that the axon density was reduced by a factor of 5. 

In addition, we are still faced with the opposite effect, namely, the un- 
mistakable steady rise of the apparent axon density. One could, of course, 
also explain this effect by psychological considerations The experiment 
was conducted under contest conditions, where prizes were offered both 
for giving and for receiving as much information as possible. I t  is con- 
ceivable that  as the population became more and more saturated with 
knowers, and, therefore, as it became more and more difficult to find non- 
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knowers to give information to, the total number of contacts tended to 
increase with each remove. 

In this paper we will not make any psychological hypotheses. We will 
try instead to explain at least the initial drop in a(t) by some assumptions 
concerning the structure of the population, which places certain constraints 
on the possible contacts, so that they are no longer equiprobable. 

The finite acquaintance circle. The first constraint will be contained in 
the assumption that the contacts of each individual take place only within 
his acquaintance circle. We will assume first that an individual has on the 
~verage q acquaintances randomly chosen from the population. We will 
assume, moreover, that q is large compared to a. Following the reasoning 
in the derivation of equation (1) (Rapoport, loc. cit.) it is easy to see that 
under the modified assumption of the finite acquaintance circle we shall 
have 

P( t - t -1)  = [ 1 - - x ( t ) ] [ 1 -  1-- ] .  (5) 

If q is fairly large, so that the power in the second bracket on the right 
of (5) can be approximated by an exponential, (5) reduces to (1), and no 
essential modification has been introduced. If, however, q, although large 
compared to a, is small compared to N, we can reason along a different 
line. 

Let us fix our attention on an arbitrary individual A at the tracing of 
the (t q- 1)th remove. We seek the probability that on that remove A does 
not receive the information from an arbitrarily chosen individual B among 
the q individuals in his acquaintance circle. This can happen in either of 
two mutually exclusive ways: either B did not become a knower on the 
tth remove or he did become a knower on the tth remove, but his contacts 
among his own acquaintances did not include A. The probability we seek 
is the sum of the probabilities of these two events, that is, 

1--P(t)  + P ( t ) ( 1 - - 1 )  a. (6) 

Now if all the states of the acquaintances of A are independent of each 
otherl and if q is small compared to the total population, so that sampling 
with replacement can be assumed for any sample of individuals not 
greater than q, then the probability that A did not receive the information 
on the (t -k- 1)th remove will be given by 
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Then the probability that A did receive the information on the (t + 1)th 
remove will be 

1 - - 1 1 - - P ( t ) + P ( t ) ( 1 - - 1 ) a l q = l - - l l - - P ( t ) m l q  , (8) 

where 

( m = 1 - -  1 - -  ( 9 )  

Expression (8) corresponds to the expression 1 - e -aP<~ in the completely 
random case. We therefore write for our modified equation representing 
the spread of information by removes 

P ( t + l )  = [ 1 - x ( t ) ]  [ 1 - { 1 - P ( t )  m}~]. (10) 

Solving for e(t), as defined by (4), we have 

a ( t )  = f f - ~ l o g  [1  - - P ( t )  m ] .  ( 1 1 )  

Since P(t) < 1, and m < 1, we can expand the right side of (11) to 
obtain the series 

qm+�89 +�89 . . . .  (12) 

We note further that if q is large compared to a 

1~ a a 
m = 1 - 1 ( 1 3 )  

so that  
+ aP(t) . {aP(t) }2 

a ( t )=a[1  ~ - t  3q • k - . . . ] .  (14) 

Since P(t) < 1, and a/q << 1, the series converge rapidly. Thus a(t) de- 
pends (but very weakly) upon P(t), rising and falling with it. As q be- 
comes very large ~(t) tends to a, as, of course, should be the case and as is 
clear from (5). 

Although this approach to the finite acquaintance circle case still gives 
no substantially new result, it does lend itself rather readily to the imposi- 
tion of a socio-structural bias, which we will now discuss. 

The dependence of probabilities. So far the assumption underlying the 
whole argument was that  the probabilities, 1 - P(t)m, that  each of the q 
individuals in A's acquaintance circle did not inform A on the (t + 1)th 
remove were all equal, that is, the associated events were all independent. 
Another way of saying this is that our knowledge that the first acquaint- 
ance did not inform A did not affect our assumption about the state of the 
second acquaintance, etc. If we drop this assumption of independence, the 
compound probability that none of A's q acquaintances informed A can no 
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longer be represented by (7). We must write instead of the qth power a 
q-fold product 

q--1 

[1--Pk(t) m] , (15) 
k~O 

where the Pk(t) are conditional probabilities to be determined below. 
Using expression (15) instead of (7) in equation (10), and solving for 
a(t), defined by (4), we now have 

- - 1  q--1 
a (t) - P ( t )  " ~  log [1 --Pk(t) m]. (16) 

7 ~  

For m << 1 (and aforteriori P,(t)m << 1), the logarithm in (i6) can be 
well approximated by -Pk(t)m,  and we have the simplified form of a(t), 
namely, 

q--1 
m ~ P k ( t ) .  (17) 

a (t) = p  (t----~ k=o 

For the special case of the completely mixed population all the Pk are 
equal, and 

a (t) = qm~--_a, (18) 

as, of course, should be the case. I t  now remains to determine the Pk on 
the basis of certain assumptions which we wish to make about our socio- 
structural bias. 

The conditional probability PI. Let us compute the following conditional 
probability: given that an arbitrary selected acquaintance of A did not in- 
form him on the (t + 1)th remove, what is the probability that this ac- 
quaintance was not a new knower on the tth remove? 

We apply Bayes' Rule 

p ( H k [ E ) -  p(EIHk)p(Hk)  
' ( 1 9 )  

P (ElIti) p (Hi) 

which gives the probability of a hypothesis Hk, given the occurrence of the 
event E, in terms of the probabilities of the event E, given each of the 
possible hypotheses Hi, and the probabilities of these hypotheses. In our 
case we have two hypotheses, namely, 

t/1: he is a new knower on the tth remove, and 
//2: he is not a new knower on the tth remove, 

Therefore 
p(H1) = Y ( t ) ;  P (/-/2) = 1 - P ( t ) .  (20) 
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Our event E stands for "he did not inform A." Hence 

p(EIH1) = 1-- = l - - m ;  P(EIH2) =1 .  (21) 

The probability we seek is 

1 - P ( t )  (22) 
p (H2 IE) - 1 - P ( t )  m '  

whence the complementary probability, namely, that the acquaintance of 
A who did not inform him is a new knower on the tth remove, is 

Px(/) = 1 - p  (H~[E) P ( t )  ( l - - m )  (23) 
1 - P  (t) m 

The assumption of transitivity. Let  us now think of our population of N 
individuals as composed of N subsets or neighborhoods, each composed of 
a "representative" member of the population and his q acquaintances. Of 
course, the neighborhoods are overlapping. The over-all density of new 
knowers in the population on the tth remove is by definition P(t). How- 
ever, if we select a subset of the neighborhoods according to some criterion, 
we can expect that the density of new knowers in that subset will be dif- 
ferent from P(t), depending on the criterion we use in the selection of the 
subset. Let  the criterion now be the following: we select all those neighbor- 
hoods in which the representative individuals were not informed on the 
(t + 1)th remove by an arbitrarily selected individual in the correspond- 
ing neighborhoods. According to our argument above, the fraction of new 
knowers among those non-informing individuals is not P(t) but slightly 
less, namely, Pl(t), given by equation (23). 

The "assumption of transitivity" which we now make is the following: 
P~(t) can be taken as the density of new knowers in the subset of neighbor- 
hoods characterized by the criterion above (i.e,, those neighborhoods in 
which none of the arbitrarily selected first acquaintances of the represent- 
ative individuals informed the representative individuals on the tth re- 
move). This is tantamount to making the following two assumptions: 

1. The density of new knowers in a subset of neighborhoods can be 
taken as the density of new knowers in a set of individuals, each ar- 
bitrarily selected from each neighborhood. 

2. If instead of choosing a given set of individuals, to define a subset of 
neighborhoods, we substitute for each of the individuals an acquaintance 
of his, we get a subset of neighborhoods practically identical with the 
original one. 

The validity of the first assumption depends on the size of the subset. 
If the number of individuals in it is sufficiently large, then the density of 
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new knowers in a sample ( i /q ) th  the size of it can be taken to be the den- 
sity of new knowers in the whole subset. The second assumption implies 
that the neighborhoods (acquaintance circles) of two individuals who are 
acquainted are very strongly interlocking. If the population were divided 
into mutually exclusive cliques, within which all the individuals were ac- 
quainted with each other, then the second assumption would be satisfied 
exactly, because in that case any individual in a clique would represent 
the same clique. Our model, however, differs from the exclusive clique 
model, as will appear in the discussion below. 

We see that our assumptions imply that on the tth remove the density 
of new knowers in neighborhoods, characterized by the non-telling by the 
first arbitrarily selected acquaintances to the representative individual, is 
Pl(t). By  similar reasoning, the density of new knowers in neighborhoods 
characterized by the non-telling of the first two arbitrarily selected ac- 
quaintances will be 

Pl(t) ( l - - m )  (24) 
1~ = 1--1~ m ' 

and, in general, 
pk_x (t) ( l - m )  (25) 

Pk(t) = 1 - P k - l ( t )  m 

Hence the probability that the representative individual is not informed 
by any of his acquaintances is 

q--1 
YI [1 - y , ( t )  m],  (26) 
k=0 

and our quantities Pk are identical with the Pk(t) of expression (15). 
We can now show by induction that 

P (t) s k 
P~(t) = 1 - P ( t )  +P( t )  s k' (27) 

where s = 1 - m. For suppose that (27) holds for k. Then, according to 
(25), 

.e (l) sk [ AD (~) sk ]--1 ] 
P k + x - - l _ P ( t )  +P( t ) - f i  s 1 - - 1 _ P ( t )  +P( t )  s ~ ( 1 - s )  

P(t)  s ~+1 ~ (28) 

1 --P (t) + P  (t) sk+~' J 
which establishes the induction. 

To obtain the expression a(t) as given by (17), we seek 
q--I 
E P k  (t) . 
k~0 
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Since m << 1, and s = 1 - m, s is nearly unity, and its successive powers 
differ slightly from each other. We can therefore approximate our sum by 
the integral 

f0 ~ P (t) s ~ 1 
+p(t)  skdk=Fog--~log[1-P(t) ( 1 -  s~)]. (29) 1 - P  (t) 

Recalling that s = 1 -  m --~ 1 - a/q, we can further approximate the 
right side of (29) by 

1 
- - - l o g  [1 - P  (t) (1 - e -a) ] ,  (30) 

m 

thus obtaining the desired expression, namely, 

- 1  
a (t) =ff - (~- log [1 -P ( t )  ( 1 -  e - a ) ] .  (31) 

Equation (31) holds for t > 1. For t':= 0, we must take a(t) as a in equa- 
tion (1), because the initial knowers, being selected entirely at random 
from the population, determine a set of entirely randomly selected neigh- 
borhoods, so that the very first step of the process must be supposed to be 
governed by randomness. We thus have the apparent axon density given 
by two equations, namely, 

1 1 - x (0) 1 
a (0) - p  (0) log 1 - x  (1) (32) 

= p + t )  l o g [ I - P ( / )  ( 1 - e - a ) ] ,  t > 0 .  ~ ( t )  

If P(0) is sufficiently small and a not too large, P(1) will also be a small 
fraction. In that case ~(1) will be approximately equal to 1 - e -~ or, for 
a > 2, quite close to unity, where it will remain during the remainder of 
the process, since the successive P 's  must then become even smaller. In 
part  I I I  of this series, some indication will be given on the closeness of 
approximation by (31) to (17). 

The large drop from a(0) to a(1) is thus accounted for by the assump- 
tion of transitivity, but  not the subsequent rise of a(t). A modification of 
the assumptions toward that end will be undertaken in part II. 

The spread of state by removes. Equation (4) gives the ordinal time course 
of the process if an explicit expression is substituted for a(t). In our case, 
this is given by (31). Thus 

1 1 1 - x (t) 
P ( t )  log [ 1 - P ( 1 - e  -=)] - p ( t )  log 1 - x ( t + l )  " 
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Recalling that P(t q- 1) = x(t q- 1) - x(t), and rearranging, we obtain 

P ( t + l )  = [P(t)]  [ 1 - - x ( t ) ]  [1 - -e -~] ,  t > 0 .  (33) 

The "physical meaning" of equation (33) is the following. Suppose all the 
new knowers were "bunched" in clusters and normally talked only among 
themselves. If, however, a non-knower happened to get into one of these 
clusters, he could also be contacted by one of its members with the same 
probability as any other individual in it. Let the average size of these 
clusters be r individuals. Then, if once one gets into a cluster, the prob- 
ability of receiving the information will be 

(1  )or 
1 - -  - -  ~ 1  - -  e - ~ ,  ( 3 4 )  

that is, this probability will be practically independent of the size of the 
cluster if the cluster is sufficiently large, so that the approximation (34) 
holds. On the other hand, the probability of getting inside the cluster 
equals the probability of meeting a new knower on the tth remove, that is, 
P(t). Finally, 1 - x(t) is the probability of being a non-knower at t. This 
is the meaning of the three factors in (33). 

Discussion. Although one of our assumptions above is equivalent to as- 
suming mutually exclusive cliques, our model is not equivalent to the 
closed clique model. In the latter, the probabilities of becoming a knower 
cannot be taken independently for each remove. If, for example, an indi- 
vidual is not a knower by the tth remove, the knowledge of this fact should 
be reflected in assumptions about the state of affairs in his clique. For ex- 
ample, the probability that it had no initial knowers is increased thereby. 
This dependence of the distribution of knower densities on t does not ap- 
pear in our equations. 

The kind of situation reflected in equation (33) is, where there is a lim- 
ited mixing in the population in the sense that the "acquaintance circle" 
does not stay fixed but changes with t, rather as if individuals moved 
through the population, and their "circles" were defined as simply their 
geographical vicinities. The mixing is limited, however, in that there is a 
certain "inertia," i.e., new knowers tend to talk almost exclusively to new 
knowers. This happens because a group of new knowers, told by individ- 
uals close together are also close together. It  is as if the contacts "lin- 
gered" for a while, so that  groups of new knowers being in the immediate 
vicinity of their informants, continued in the vicinity of each other and 
passed their information only to those who happened to wander close by. 

The conclusion that under these conditions the apparent axon density 
becomes approximately unity indicates that  the assumption of transitivity 
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is too strong. In practically all the information diffusion experiments per- 
formed, a(0) dropped from various values (ranging from 3 to 12) to a 
value of ~(1) ranging from 1 to 2, with only very occasional values greater 
than 2 or smaller than 1 recorded. It  appears, therefore, that a weaker re- 
striction on contacts than the one implied by our assumptions should be 
chosen. 

On the other hand, a situation in which a(t) drops from an arbitrary ini- 
tial value to unity and remains there is easy to construct. Suppose all in- 
dividuals are arranged linearly on a line N units long and are denoted by 
positive and negative integers. Suppose the individual denoted by 0 is the 
initial knower. Then P(O) = 1/N. Let each new knower now tell n indi- 
viduals on his right and n on his left. Then, because of the complete over- 
lap, the individuals contacted by the extremes on either side will be the 
only new knowers. Hence P(t) will be 2n/N for all t > O, and 

2nt+ 1 
x (t) - - -  (35) 

N 

Although a, the actual axon density, is approximately 2n, the apparent 
axon density is given by 

1 ( 2 n t +  1) 

N N ~'-~1 (36) 
a ( t )  = ~-~ log [2n ( t +  1) + 1] 

1 -  
N 

for very large N and moderate t. In fact, under these conditions a(t) will 
tend to rise slowly with t. 

If we construct a similar model in two dimensions, P(t) will grow linear- 
ly (as the perimeter of the area of knowers) and a(t) will exhibit both an 
initial drop and a steady subsequent rise. 

I t  seems, therefore, that a model combining some features of random- 
ness and some of a spreading "wave" of knowers from a "focus of infec- 
tion" should be able to account for the facts. Some such "mixed" models 
will be offered in part II. 

This investigation is part  of the work done under Contract No. AF 
19(122)-161 between the U.S. Air Force Cambridge Research Laboratories 
and the University of Chicago. 
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