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Advanced age is associated with reduced within-network functional connectivity, particularly within the
default mode network. Most studies to date have examined age differences in functional connectivity via
static indices that are computed over the entire blood-oxygen-level dependent time series. Little is
known about the effects of age on short-term temporal dynamics of functional connectivity. Here, we
examined age differences in dynamic connectivity as well as associations between connectivity, meta-
bolic risk, and cognitive performance in healthy adults (N ¼ 168; age, 18e83 years). A sliding-window k-
means clustering approach was used to assess dynamic connectivity from resting-state functional
magnetic resonance imaging data. Three out of 8 dynamic connectivity profiles were associated with age.
Furthermore, metabolic risk was associated with the relative amount of time allocated to 2 of these
profiles. Finally, the relative amount of time allocated to a dynamic connectivity profile marked by
heightened connectivity between default mode and medial temporal regions was positively associated
with executive functions. Thus, dynamic connectivity analyses can enrich understanding of age-related
differences beyond what is revealed by static analyses.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

Aging affects many aspects of brain structure and function and is
associatedwith cognitive decline (see Fjell et al., 2014; Kennedy and
Raz, 2015 for recent reviews). Understanding age differences in
brain functional organization is an important step in elucidating
neural mechanisms of cognitive aging, and since its introduction,
resting-state functional magnetic resonance imaging (rs-fMRI;
Biswal et al., 1995; Raichle et al., 2001), has been applied to assess
age-related differences in brain network functioning. In rs-fMRI
analyses, configuration and strength of functional organization is
commonly inferred from spatial patterns of temporal correlations
between low-frequency fluctuations in blood-oxygen-level
dependent (BOLD) signals of different brain regions, termed
“functional connectivity” (Biswal et al., 1995; Cordes et al., 2001;
Lowe et al., 1998). Many resting-state networks (RSNs) have been
identified (Beckmann et al., 2005; Damoiseaux et al., 2006; De Luca
et al., 2006; Fox et al., 2005), and the spatial configurations of these
RSNs have been comparable to spatial configurations of networks
it, MI, USA. Tel.: (313) 664-

oiseaux).

ll rights reserved.
observed during task performance (Calhoun et al., 2008; Smith
et al., 2009).

Of the multiple known RSNs, the default mode network (DMN),
which is more active during wakeful, task-free rest and less active
during overt task engagement, has received extensive attention
(Buckner et al., 2008; Greicius et al., 2003; Raichle et al., 2001;
Shulman et al., 1997). DMN activity is associated with episodic
memory and future planning (Buckner et al., 2008), and DMN
connectivity at rest predicts subsequent memory performance
(Sala-Llonch et al., 2012; Wang et al., 2010). Furthermore, resting
DMN connectivity is negatively related to age (Andrews-Hanna
et al., 2007; Damoiseaux et al., 2008; Wu et al., 2011), and, in
comparison to younger participants, older adults exhibit lower
task-related deactivation of DMN regions (Grady et al., 2006; Lustig
et al., 2003; Sambataro et al., 2010). Thus, advanced age may be
linked to reduced flexibility in response to task demands. Whole-
brain functional connectivity analysis has also revealed
age-associated breakdown of communication within RSNs and
elevated communication between RSNs (Chan et al., 2014), sug-
gesting age-related dedifferentiation of brain organization.

An important common feature, and possible limitation, of most
rs-fMRI studies in healthy adults is reliance on functional connec-
tivity indices calculated from an entire scan session. Potentially
important information about within-scan temporal changes in
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functional connectivity may be lost in this aggregation (Allen et al.,
2014; Chang and Glover, 2010; Sakoglu et al., 2010). The assessment
of dynamic functional connectivity in rs-fMRI (see Hutchinson
et al., 2013a, for methodological review) has revealed that
individuals may transition between different dynamic whole-brain
connectivity profiles (often called “states”) characterized by distinct
connectivity patterns (Allen et al., 2014). The dynamic connectivity
profiles reveal variability in functional brain organization over time.
This variability may reflect changes in neural activity related to
cognitive and sensorimotor operations, as well as nonneuronal
factors such as systemic physiological changes or spontaneous head
motion. Previous work suggests that variability in hub region
multinetwork participation is lower (Schaefer et al., 2014), and
variability within DMN dynamic functional connectivity is higher
(Madhyastha and Grabowski, 2014) in older compared to younger
adults. Furthermore, stability of functional connectivity increases
with age in some regions (e.g., middle frontal gyrus), while
decreasing in others (e.g., supramarginal gyrus) (Yin et al., 2016).
These patterns of age differences suggest that dynamic properties
of brain networks may reflect neural phenomena relevant to age-
related functional declines.

Despite growing interest in connectivity dynamics,
investigations of lifespan age differences therein remain scarce.
Therefore, the present study aimed to determine age-related dif-
ferences in dynamic functional connectivity and their relation to
cognitive performance in healthy adults. We hypothesized age dif-
ferences in patterns of DMN dynamic connectivity as static con-
nectivity differences within this network have been previously
observed (Andrews-Hanna et al., 2007; Damoiseaux et al., 2008;Wu
et al., 2011), and increased DMN variability has been noted in older
adults (Madhyastha and Grabowski, 2014). Specifically, we hy-
pothesized that time allocation among specific dynamic connec-
tivity profiles would be age dependent and that older adults would
devote less time to profiles dominated by strong connectivity within
DMN, and between DMN and other networks, compared to younger
counterparts. We also hypothesized that time share of specific
profiles would be related to cognitive performance, with more
“youthful” patterns of dynamic connectivity linked to higher
cognitive scores, analogous to associations observed in extant
studies of static DMN connectivity and cognition (Sala-Llonch et al.,
2012; Wang et al., 2010). Considering reported age-related de-
creases in dynamic hub-region network variability (Garrett et al.,
2010; Schaefer et al., 2014) and increased variability in DMN
component intercorrelation (Madhyastha and Grabowski, 2014), we
also expected our dynamic analysis to capture age differences in the
rate of switching between connectivity profiles. Specifically, we
hypothesized older adults would switch profiles at a lower rate,
which might reflect less-than-optimal cognitive processing.

2. Methods

2.1. Participants

Structural and functional MRI data were available for 168 adults
(61 men, 107 women; 18e83 years, M ¼ 48.8, standard deviation
[SD] ¼ 18.0), recruited from the Metro Detroit, Michigan area
through advertisements in newspapers and flyers. Participants
were enrolled in an ongoing longitudinal study, in which the
resting-state sequence was introduced after some had undergone
more than 1 wave of testing. Therefore, complete baseline cognitive
testing data corresponding to the time of baseline rs-fMRI acqui-
sition were available only for a subsample of 91 participants (33
men, 58 women) with age range 18e78 years (M¼ 42.2, SD¼ 17.6).
The Wayne State University Institutional Review Board approved
the study, and signed informed consent was obtained from all
participants. Debriefing followed the experiment. Participants
spoke English as their first language and were deemed right-hand
dominant after scoring over 75% on the Edinburgh Inventory
(Oldfield, 1971). They were screened for neurological, psychiatric,
cardiovascular, and endocrine diseases, diabetes, cancer, and a
history of loss of consciousness greater than 5 minutes. Participants
were also screened for dementia [MinieMental State Examination
�26 (Folstein et al., 1975)]; and depression [Center for Epidemio-
logical Study Depression questionnaire �16; (Radloff, 1977)]. A
metabolic risk score was computed as the sum of standardized
indicators of metabolic syndrome (Grundy et al., 2004): waist-hip
ratio, blood triglycerides, systolic blood pressure, fasting blood
glucose, and high-density lipoprotein (reverse coded). See previous
report for details (Damoiseaux et al., 2016). Metabolic health in-
dicators were available for 151 of the 168 participants, and 84 of the
91 participants with cognitive data.

2.2. Assessment of cognitive performance

Cognitive tests, described in previous publications (e.g., Raz
et al., 2009), were administered across 4 sessions within a
3-month window around the MRI session. We performed confir-
matory factor analysis (CFA) to determine the main cognitive con-
structs. The CFA model consisted of 3 latent factors: processing
speed, with letter comparison and pattern comparison scores as
indicators; memory, withWoodcock-Johnson-RMemory for Names
(WJR memory, immediate and delayed) scores as indicators; and
executive functioning, with the following indicators: Stroop, Wis-
consin Card Sorting Test, size judgment span, listening span, spatial
recall, and Cattell Culture Fair Test (form 3B, tests 1, 2, 3, 4). Analyses
were conducted with Mplus 6.0 (Muthén and Muthén), and com-
posite factor scores were calculated for each latent factor (see
Damoiseaux et al., 2016 for a detailed description of the CFA).

2.3. MRI data acquisition

Imaging was performed at the Wayne State University MRI
research facility on a 3-Tesla Siemens Verio (Siemens Medical AG,
Erlangen, Germany) full-body magnet with a 12-channel head coil.
For the resting-state functional scan, 200 volumes of 43 axial slices
were acquired using a T2*-weighted echo planar sequence: repe-
tition time (TR) ¼ 2500 ms, echo time ¼ 30 ms, flip angle ¼ 90�,
pixel bandwidth ¼ 2298 Hz/pixel, generalized autocalibrating
partial parallel acquisition acceleration factor phase-encoding ¼ 2,
field-of-view ¼ 210 mm, matrix size ¼ 64 � 64, and voxel size ¼
3.3� 3.3� 3.3mm. Participants were instructed to remain still with
eyes open. For the anatomical scan, a 3D T1-weighted
magnetization-prepared rapid gradient-echo sequence was
acquired: TR ¼ 1680 ms; echo time ¼ 3.51 ms; inversion
time ¼ 900 ms; flip angle ¼ 9.0�, pixel bandwidth ¼ 180 Hz/pixel,
generalized autocalibrating partial parallel acquisition¼ 2; field-of-
view ¼ 256 mm, matrix size ¼ 384 � 384, and voxel size 0.67 �
0.67 � 1.34 mm.

2.4. Preprocessing

Image preprocessing was carried out with the FMRIB Software
Library (version 5.0; Smith et al., 2004). Resting-state processing
included removal of the first 4 image volumes, motion correction
(Jenkinson et al., 2002), removal of nonbrain structures (Smith,
2002), spatial smoothing (6 mm FWHM), 4D grand-mean
scaling, and high-pass temporal filtering (Gaussian-weighted
least-squares straight line fitting, sigma ¼ 150.0 seconds). The
scan was then aligned with the corresponding high-resolution T1
and subsequently registered to 3-mm isotropic MNI152 space
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with affine linear registration (Jenkinson et al., 2002). Trans-
lation and rotation time courses were regressed from the images
to attenuate the influence of head motion on results. Participants
with more than 3 mm absolute head displacement during the
scan were not included in the analysis. Global signal contribution
was removed.

2.5. ROI generation and organization

One hundred seventy-five regions of interest (ROIs) were
defined from a group-level parcellation generated with spatially
constrained normalized-cut spectral clustering (Craddock et al.,
2012) restricted to a gray matter mask segmented from a
Montreal Neurological Institute image using FMRIB Software
Library’s FAST (Zhang et al., 2001). Of the available ROIs, 172 were
used for subsequent analysis after the removal of brain stem ROIs.
Mean ROI time series were calculated and assigned a unit variance
before covariance estimations. Therefore, subsequent covariance
calculations were tantamount to correlation.

Static whole-brain covariance matrices were computed for all
participants, Fisher z-transformed, and averaged. A weighted,
undirected graph was constructed with ROIs as nodes and the top
10% of positive connections, in terms of strength, as edges. ROIs
were organized into nonoverlapping communities with Infomap to
define network structure (Lancichinetti and Fortunato, 2009;
Rosvall and Bergstrom, 2008). To ensure that the network struc-
turewas derived from reliable, strong connectivity, only the top 10%
of positive connections were included in the Infomap community
detection. Global signal regression, which was applied as a pre-
processing step, may induce anticorrelation between networks
(Murphy et al., 2009), rendering the interpretation of negative
correlations difficult. The Infomap analysis converged on 8 com-
munities (further referred to as RSNs), which after visual inspection
were labeled as DMN, sensorimotor (SM), visual (Vis.), dorsal/
lateral temporal (dLTL), ventral/medial temporal (vMTL), cerebellar
(CB), subcortical (SC), and orbitofrontal (OF; Fig. 1). DMN included
medial prefrontal, posterior and anterior cingulate, precuneus,
inferior parietal, dorsolateral prefrontal, and rostro-lateral pre-
frontal cortex. SM included premotor, primary motor, and primary
somatosensory cortex. dLTL included Wernicke’s area, Broca’s area,
superior and middle temporal, auditory, parietal, and secondary
somatosensory cortex. vMTL included inferior temporal, fusiform,
and parahippocampal cortex, hippocampus, and amygdala. SC
included thalamus, basal ganglia, and mammillary bodies. CB cor-
responded to the cerebellum, OF to the orbitofrontal cortex, and Vis.
to the occipital cortex.

2.6. Static connectivity analysis

Average static within- and between-network connectivity,
calculated as average covariance between ROIs in the same RSN or
between ROIs in different RSNs, was computed for each participant.
In addition, connectivity within the DMN and between the DMN
and other networks was assessed. Multiple linear regression was
used to evaluate possible relationships between static network
connectivity and age, gender, and metabolic risk. Based on previous
findings (La Joie et al., 2014; Wang et al., 2010), we also evaluated
the associations of within-DMN connectivity and DMN-vMTL con-
nectivity with cognitive performance, while controlling for age,
gender, and metabolic risk.

2.7. Dynamic covariance calculation

Dynamic connectivity was assessed via sliding-window
k-means clustering, after Allen et al. (2014). Covariance matrices
were estimated from regularized precision matrices (Smith et al.,
2011; Varoquaux et al., 2010) computed from windowed seg-
ments of the mean ROI time series (Tukey window; width ¼ 28 TR
or 70 seconds, alpha ¼ 0.2, step size ¼ 7 TR). Window width and
step size were chosen based on published research (Hutchison
et al., 2013b; Shirer et al., 2012), with the aim of reducing auto-
correlation between successive windows and retaining adequate
power to detect dynamic connectivity patterns. Regularization was
carried out via group sparse covariance estimation (Varoquaux
et al., 2010) with NiLearn (based on the scikit-learn package;
Abraham et al., 2014; Pedregosa et al., 2011). Regularization was
optimized for each participant independently; the estimator was fit
on a participant’s set of covariance matrices by assessing the like-
lihood of unseen matrices through leave-one-out cross-validation.
Matrices were Fisher z-transformed after estimation.

We applied k-means clustering (Lloyd, 1982), using L1 dis-
tance (Aggarwal et al., 2001), to the set of all dynamic covariance
matrices to identify consistent and differing dynamic connec-
tivity patterns. K-means analysis was repeated with the number
of clusters (k) ranging from 2 to 9 and run 500 times at each level
of k to escape local minima. The final number of clusters, k ¼ 8,
was determined by the gap statistic (Tibshirani et al., 2001) with
50 generated reference samples. After determining k, the data
were bootstrap-resampled 50 times and clustered the same way
as the original data to assess stability of clusters via Jaccard
similarity (Hennig, 2007). For each cluster in the original set, the
similarity value between that cluster and the most similar cluster
in the bootstrapped set was recorded. Maximum similarities over
all 50 resampling rounds were averaged for each cluster
(Table S1).

2.8. Dynamic connectivity profile quantification

Modularity was calculated twice for each dynamic connectivity
profile (Rubinov and Sporns, 2011): once using the static network
definition and once with a network structure determined by
applying Infomap to the dynamic centroid. Modularity of a profile
given the static network definition was interpreted as representing
proximity of the modular structure of the dynamic profile to static
structure. Modularity given dynamic network structure was inter-
preted as indication that a modular structure was present even if
dynamic and static structures did not correspond.

Average whole-brain within- and between-network connectiv-
ity, as well as average connectivity within the DMN and between
the DMN and the rest of the brain, were compared between each
dynamic connectivity profile and the static profile with indepen-
dent samples t tests (Table 1). Independent samples t tests were
also used to compare each connection in the dynamic connectivity
profiles to the corresponding connection in the static profile to
assess individual ROI pairing connectivity differences (Fig. S1).
Dynamic connectivity profiles were also assessed qualitatively by
plotting radial tree graphs of the top 10% of positive connections of
the centroids (Fig. 2).

2.9. Associating dynamic connectivity with age, gender, and
metabolic risk

Having a portion of a scan allocated to a dynamic connec-
tivity profile was treated for each participant as a binary out-
comed1 for having and 0 for not having. We used logistic
regression to investigate the impact of age, gender, and meta-
bolic risk on that outcome for each profile. The number of
unique connectivity profiles and transitions between profiles
per participant was also noted. Linear regression assessed the
associations between age and metabolic risk with the number of



Fig. 1. ROI network structure after running Infomap on the static FC graph of the 90th percentile of positive connections. Eight ROI subgraphs were detected by Infomap. Coordinates
are in MNI space. MNI, Montreal Neurological Institute.
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unique dynamic profiles and the relationship between age and
number of transitions.

Vectors indicating to which dynamic connectivity profile each
windowed covariance matrix belonged were created for each
participant. The amount of time allocated to each dynamic con-
nectivity profile was then calculated and multiple linear regression
was performed to examine the influences of age, gender, and
metabolic risk on the relative amount of time allocated to a profile.
Participants who did not have a portion of their scan correspond to
a profile were not included in that regression; therefore, each
analysis drew a different subsample of the participant pool.

2.10. Associating dynamic connectivity with cognitive performance

The event of allocating any time to a particular profile was
related to cognitive performance in the subset of 91 participants
while controlling for age, gender, and metabolic risk via analysis
of covariance. For participants who had some portion of their
scan correspond to a profile, the relative amount of time
allocated to that profile was related to cognitive performance
constructs via general linear models with age, gender, and
metabolic risk included. Only connectivity profiles 2, 3, and 7
were evaluated because too few participants with metabolic and
cognitive data had connectivity patterns related to the other
profiles (n <<40).
2.11. Packages, visualizations, and multiple comparison correction

In-house Python (2.7.6) and R (3.3.1) scripts, and SPSS (23.0),
were used for statistical analyses, FSLView was used for ROI RSN
structure visualization, graph-tool (Peixoto, 2014) was used for
radial tree graph visualization, and matplotlib (Hunter, 2007) was
used for all other visualizations. Experiment-wise false discovery
rate correction (q ¼ 5%) was applied. Matrices comparing each
static connection to the corresponding dynamic connections were
not included in this false discovery rate correction and were instead
Bonferroni corrected (a ¼ 3.39E-6) on a per-matrix basis.



Table 1
Within- and between-network average connectivity differences between the static
connectivity profile and dynamic connectivity profiles

Overall
within

Overall
between

DMN
within

DMN
between

Static 0.2601 �0.0265 0.2074 �0.0293

Profile 1 0.4205 �0.0332 0.3199 �0.0575

t(410) �15.12 4.9274 �8.3144 7.7877
p b<0.0001 b<0.0001 b<0.0001 b<0.0001

Profile 2 0.2371 �0.0234 0.1786 �0.0261

t(1485) 4.5141 �5.1539 4.7751 �1.9272
p b<0.0001 b<0.0001 b<0.0001 0.0549

Profile 3 0.3048 �0.0278 0.2417 �0.0395

t(775) �6.8210 1.6469 �4.2732 4.2302
p b<0.0001 0.1008 b<0.0001 b<0.0001

Profile 6 0.3582 �0.0298 0.3123 �0.0262

t(417) �10.4580 3.0395 �9.4912 �1.0227
p b<0.0001 b0.0026 b<0.0001 0.3076

Profile 7 0.2668 �0.0252 0.2492 �0.0224

t(984) �1.1698 �2.0326 �6.0450 �3.7135
p 0.2431 a0.0430 b<0.0001 b0.0002

Profile 8 0.3011 �0.0277 0.2624 �0.0220

t(627) �5.7559 1.3968 �5.9295 �3.1728
p b<0.0001 0.1638 b<0.0001 b0.0017

Two-tailed independent samples t tests. Negative t values indicate that the average
connectivity was greater in the dynamic profile.
Key: DMN, default mode network.

a Significant at a ¼ 0.05.
b Significant after experiment-wise false discovery rate correction.
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3. Results

3.1. Static functional connectivity

Advanced agewas associated with lower functional connectivity
between DMN and vMTL (b ¼ �0.282, p ¼ 0.001), and greater
connectivity between DMN and SM (b ¼ 0.222, p ¼ 0.01), while
controlling for metabolic risk and gender. Women, regardless of age
or network type, had lower average within (b ¼ �0.239, p ¼ 0.008)
and between (b ¼ �0.233, p ¼ 0.01) network connectivity
compared to men.
3.2. Dynamic functional connectivity and its correlates

3.2.1. Connectivity profiles
Eight dynamic connectivity profiles identified in these data are

depicted in Fig. 2. Not every participant entered each profile, and
the mean number of profiles per person was 3.12 (SD ¼ 1.00).
Dynamic connectivity profiles 2, 3, and 7 had high membership,
whereas the rest had moderate to low membership, particularly
profile 4 (Table S1). All connectivity profiles, except profile 5,
exhibited moderate (greater than 0.5) to high (greater than 0.7)
average Jaccard values, indicating cluster stability (Table S1). Less
stable profiles could reflect important between-subject variability,
but also intermediate transitional states between more stable
profiles. No profile represented a dissolved network configuration
as all had moderate modularity given a network structure opti-
mized for the profile centroid (Table S1). Because of low member-
ship and low stability, profiles 4 and 5 were removed from further
analyses. Differences between the remaining dynamic connectivity
profiles and the static profile in whole brain and DMN-specific
within- and between-network connectivity are detailed in Table 1
and depicted in Fig. S1.
3.2.2. Predictors of connectivity profile presence
Differences in the presence or absence of a connectivity profile

may indicate differences in brain network organization and effi-
ciency. We therefore applied logistic regression to test age, gender,
and metabolic risk as predictors of individual dynamic connectivity
profile membership (Table S2). Older agewas associated with lower
odds of having profiles 2 (odds ratio [OR] ¼ 0.957, p ¼ 0.005) and 7
(OR ¼ 0.953, p < 0.0001) and higher odds of having profile 3
(OR ¼ 1.028, p ¼ 0.008). Neither metabolic risk nor gender was
associated with any of the dynamic profiles. The age difference in
odds of having profiles 3 and 7 is in accordwith our finding of lower
DMN-vMTL connectivity in older adults in the static functional
connectivity analysis, because profile 3 has low whereas profile 7
has high DMN-vMTL between-network connectivity (Fig. 2). Since
the connectivity pattern of profile 2 is most similar to the static
connectivity pattern (Fig. S1), lower odds of the observing profile 2
could be interpreted as an age-related deviation from typical brain
integration.

3.2.3. Number of unique connectivity profiles and profile transitions
The number of unique dynamic connectivity profiles per indi-

vidual was unrelated to age or metabolic risk (R2 ¼ 0.004, p ¼ 0.72;
age b ¼ �0.07, p ¼ 0.43; metabolic risk b ¼ 0.006, p ¼ 0.94).
Moreover, we observed no association between the number of
profile transitions and age (R2¼ 0.005, age b¼�0.07, p¼ 0.35). This
was contrary to our expectations that older adults would have
lower transition rates.

3.2.4. Age, gender, metabolic risk, and relative time allocated to
dynamic connectivity profiles

Older age was associated with more time allocated to profile 8
(b ¼ 0.357, p ¼ 0.009), that evidenced lesser connectivity between
DMN and SM, Vis., and dLTL, and greater DMN-CB and DMN-SC
connectivity compared to the static profile (Fig. S1). Furthermore,
greater metabolic risk score was associated with more time allo-
cated to profile 2 (b ¼ 0.278, p ¼ 0.007) and less time to profile 7
(b ¼ �0.350, p ¼ 0.003). None of the other tested associations
reached significance (see Table S3).

3.2.5. Cognitive performance and functional connectivity
Whether an individual exhibited a specific dynamic profile or

not was unrelated to cognitive performance after controlling for
age, gender, and metabolic risk. However, the relative amount of
time allocated to profile 7 was positively associated with executive
function score (b ¼ 0.297, p ¼ 0.013) for participants who had that
pattern of connectivity. Thus, the more time participants allocated
to a dynamic connectivity pattern with high DMN connectivity, the
better their performance was on tasks of executive functioning
outside of the scanner. None of the other tested associations
between time allocated to a profile and cognitive function reached
significance (Table S4). Furthermore, static DMN connectivity was
unrelated to cognitive performance beyond age, gender, and
metabolic risk (Tables S5 and S6).

3.2.6. Effect of motion on dynamic functional connectivity
Motion artifacts can remain in the signal time series after

motion regression (Power et al., 2012), and dynamic connectivity
could be influenced by head motion (Laumann et al., 2016).
Assessment of the association between head motion and dynamic
functional connectivity in our data revealed that mean framewise
displacement (FD) was associated with odds of demonstrating any
profile except profile 8 and with time allocated to profile 2
(Tables S7 and S8). Mean FD was unrelated to rate of switching
between profiles (r ¼ 0.14, p ¼ 0.06). The observed age, gender, and
metabolic risk effects remained largely the same after including



Fig. 2. Functional connectivity for the static connectivity profile and each dynamic connectivity profile. Matrices represent average positive and negative connectivity between ROIs
for all participants (static only) or average positive and negative connectivity between ROIs for all windows that correspond to a dynamic profile. Radial tree graphs represent the
90th percentile of positive connections.
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mean FD into the models. Only the age-related odds of demon-
strating profile 2 were reduced to a trend level, and age-related
odds of demonstrating profile 3 were no longer significant
(Table S7).
4. Discussion

We examined age-related differences in dynamic functional
connectivity and contrasted the results to findings obtained from a
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static connectivity analysis. In line with previous research, we
found lower static functional connectivity between default mode
regions and ventral and medial regions of the temporal lobe in
older participants (Andrews-Hanna et al., 2007; Damoiseaux et al.,
2016). This lower static DMN-vMTL connectivity may represent an
age-related reduction in communication within putative memory
systems (Ranganath and Ritchey, 2012). Projections from MTL
regions to posterior DMN regions are part of a presumed posterior
memory system, which is thought to be involved in episodic
memory function (Kahn et al., 2008; Ranganath and Ritchey, 2012).
Our finding of gender differences in static whole-brain within- and
between-network connectivity is in accord with previous reports of
gender differences across functional connectivity measures (Gong
et al., 2011; Tomasi and Volkow, 2012). Because of the association
between gender and functional connectivity, we included gender in
the models, but the results remained significant after this control.
No gender differences were observed in the dynamic connectivity
measures.

4.1. Dynamic resting functional connectivity

After partitioning the total BOLD time series into discrete seg-
ments, we found that older participants were less likely to allocate
windowed time segments to a dynamic connectivity profile similar
to the static state (profile 2) and a profile with high DMN-vMTL
connectivity (profile 7) but more likely to allocate them to a pro-
file with low DMN-vMTL connectivity (profile 3). These findings
suggest that the lower connectivity observed in the static state can
be explained by both lower and higher odds of having certain
transient connectivity profiles.

Connectivity profile 2 has the highest membership of all profiles
(i.e., present in 132 participants and accounted for 31.4% of all
windows; Table S1) and is most similar to the static state (Fig. S1).
Therefore, this connectivity pattern may reflect a kind of “ground
state” with other profiles possibly reflecting deviations from it that
arise due to cognition, movement in the scanner (Laumann et al.,
2016; Power et al., 2012; Van Dijk et al., 2012), sleep (Allen et al.,
2014), or respiration and variations in arterial blood flow (Chang
and Glover, 2010; Wise et al., 2004). The lower odds of having
certain profiles in older adults could reflect known age-related
differences observed using static connectivity approaches
(Andrews-Hanna et al., 2007; Campbell et al., 2013; Damoiseaux
et al., 2008, 2016), with the age differences observed in profiles 3
and 7 providing additional information. The lower DMN-vMTL
connectivity of profile 3 could indicate disconnection of posterior
memory regions, which appears more prevalent in older adults.
Conversely, connectivity in profile 7 possibly represents a
strengthening or integration of anterior and posterior memory
regions as it exhibits greater connectivity between not just DMN
and vMTL but also between DMN and OF and vMTL and OF regions
(Fig. S1). Projections from MTL to OF regions are considered part of
an anterior memory system (Ranganath and Ritchey, 2012).

Profile 7 is of interest in the context of cognitive aging. The
association of the profile with lesser metabolic risk and better
performance on executive functions suggests that modulation of
the DMN by vMTL activity may be important in mitigating decline
in typical age-sensitive cognitive domains (Yuan and Raz, 2014) and
resisting negative influence of metabolic risk on cognition (Dahle
et al., 2009). Both are aspects of aging that are increasingly
viewed as mutually related determinants of late-life development
(Allan et al., 2016). This is in accordwith the extant reports that age-
related DMN alterations at rest may be related to age-sensitive
cognitive skills (Andrews-Hanna et al., 2007; Damoiseaux et al.,
2008). Low membership of profile 7, therefore, may represent a
marker for cognitive impairment. An unknown mechanism related
to aging or metabolic risk might be preventing maintenance of this
connectivity pattern at rest. Conversely, time allocation to profile 7
could be an indicator of cognitive reserve (Stern, 2002). Either way,
longitudinal analysis is necessary to determine the relationship
between change in cognitive performance and maintenance of
dynamic connectivity patterns like profile 7.

Our results indicate that although individuals, regardless of age,
can traverse multiple dynamic connectivity profiles, the odds of
allocating time to a specific connectivity pattern vary with age.
However, contrary to our expectations, we did not observe any
association between older age and rate of switching between
dynamic connectivity profiles. Because dynamic hub-region
network variability decreases with age (Garrett et al., 2010;
Schaefer et al., 2014), we hypothesized that functional connectiv-
ity patterns would be more similar across shorter periods for older
adults. Contrary to this expectation, we found no association be-
tween age and the rate of profile switching. Possible explanations
for this discrepancy may include differences in analysis approach
and sample characteristics, such as exact age range and participant
health, between the studies. It is also important to note that,
regardless of the observed age-related differences, most of the
associations tested did not reveal significant differences. Therefore,
the stability of age differences in dynamic functional connectivity
remains unclear, and their magnitude may be relatively modest.

4.2. Limitations

Some of the identified connectivity profiles (e.g., profile 4) had
low membership, a fact that may confound interpretation. It is
possible that clusters with low membership are generalizable and
that scanning conditions could be keeping most participants from
entering those profiles. Those profiles, however, may also reflect
artifacts that confound individual variability in connectivity.

One of the limitations of k-means clustering is the “curse of
dimensionality.” As clustering algorithms are forced to classify a
vast number of connections associated with whole-brain connec-
tivity, dimensionality of a space grows, and empty space between
data points increases exponentially. Such disproportionate increase
in sparsity can jeopardize the effectiveness of k-means analysis,
thus casting doubt on whether obtained clusters optimally repre-
sent a true configuration. Most clusters in the present analysis were
stable and can therefore be interpreted as meaningful even if not
representative of the “true” dynamic connectivity. Still, future
analyses could assess dynamic interactions between select regions
rather than attempting to quantify the whole brain to overcome
dimensionality woes.

Furthermore, the use of group least absolute shrinkage and se-
lection operator (LASSO) regression (Varoquaux et al., 2010) to
enforce covariance sparsity on participants individually comes with
caveats. Group LASSO forces the same sparsity structure on the set
of input covariance matrices. Each participant therefore is assigned
their own sparsity structure. Because we expect dynamic connec-
tivity profiles to reveal different connectivity patterns, the “true”
underlying sparsity structure between windows may differ.
Therefore, applying LASSO is associated with a trade-off: attenua-
tion of covariance estimation error comes with reduction of dif-
ferences between connectivity profilesdthat is, LASSO might
artificially make dynamic profiles more similar.

Simulation studies have raised concerns regarding the utility of
sliding window approaches to assessing dynamic functional con-
nectivity (Hindriks et al., 2016; Shakil et al., 2016). Future analysis
is needed to establish optimal parameters and use of this
approach. Dynamic patterns could also be contaminated by head
motion (Laumann et al., 2016), and motion artifacts remain in the
signal time course even after adjustment via motion regression
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(Power et al., 2012); therefore, it is possible that static age-related
connectivity differences and the age-related odds of having a
specific dynamic connectivity profile could be related to the same
motion artifacts. To address this possibility, we assessed the
association between mean FD and odds of demonstrating a profile,
time allocated to a profile, and rate of switching between profiles.
We found that motion was associated with the odds of demon-
strating, and the time allocated to, certain profiles. However,
observed age, gender, and metabolic risk effects remained largely
the same. Thus, although motion is associated with dynamic
functional connectivity (FC), it does not fully explain the rela-
tionship between dynamic FC, age, and metabolic risk.

It is also suggested that dynamic connectivity reflects systematic
and reoccurring patterns of cerebral blood flow that might repre-
sent optimized global metabolic processing (Zalesky et al., 2014).
However, given that machine learning classifiers can reliably
discern between connectivity profiles that arise due to different
task demands (Shirer et al., 2012), it is likely that unsupervised
algorithms produce meaningful connectivity clusters that provide
interesting information about the brain at rest that relates to
cognitive functioning.

In this study, we used rs-fMRI data to assess the effect of age on
dynamic functional connectivity. It is possible that dynamic func-
tional connectivity assessed during task-evoked functional MRI
could yield slightly different results. As observed in the extant
literature, static functional connectivity differences exist across
different conditions (Shirer et al., 2012) although network con-
nectivity structure remains similar (Smith et al., 2009). Therefore,
our prediction regarding the effect of age on DMN connectivity
would hold for task-evoked MRI data, even though specific profiles
may look different. Nevertheless, more research comparing func-
tional MRI data acquired under different conditions is needed to
examine the effect of behavioral context.

5. Conclusion

We observed age-related differences in configuration of dy-
namic whole-brain functional connectivity patterns at rest.
Advanced age, elevated metabolic risk, and low executive func-
tion scores were associated with lesser likelihood of a dynamic
profile that is characterized by heightened functional connec-
tivity between DMN and vMTL. Lower membership in specific
dynamic profiles may denote a potential marker for age-related
cognitive decline. Our results indicate that dynamic analysis
can capture nuanced differential age-related FC patterns that are
obscured by aggregation of BOLD data over the whole time
series.
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